首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The causes and etiology of Crohn''s disease (CD) are currently unknown although both host genetics and environmental factors play a role. Here we used non-targeted metabolic profiling to determine the contribution of metabolites produced by the gut microbiota towards disease status of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS) was used to discern the masses of thousands of metabolites in fecal samples collected from 17 identical twin pairs, including healthy individuals and those with CD. Pathways with differentiating metabolites included those involved in the metabolism and or synthesis of amino acids, fatty acids, bile acids and arachidonic acid. Several metabolites were positively or negatively correlated to the disease phenotype and to specific microbes previously characterized in the same samples. Our data reveal novel differentiating metabolites for CD that may provide diagnostic biomarkers and/or monitoring tools as well as insight into potential targets for disease therapy and prevention.  相似文献   

2.
There is a critical need for mapping early metabolic changes in schizophrenia to capture failures in regulation of biochemical pathways and networks. This information could provide valuable insights about disease mechanisms, trajectory of disease progression, and diagnostic biomarkers. We used a lipidomics platform to measure individual lipid species in 20 drug-naïve patients with a first episode of schizophrenia (FE group), 20 patients with chronic schizophrenia that had not adhered to prescribed medications (RE group), and 29 race-matched control subjects without schizophrenia. Lipid metabolic profiles were evaluated and compared between study groups and within groups before and after treatment with atypical antipsychotics, risperidone and aripiprazole. Finally, we mapped lipid profiles to n3 and n6 fatty acid synthesis pathways to elucidate which enzymes might be affected by disease and treatment. Compared to controls, the FE group showed significant down-regulation of several n3 polyunsaturated fatty acids (PUFAs), including 20:5n3, 22:5n3, and 22:6n3 within the phosphatidylcholine and phosphatidylethanolamine lipid classes. Differences between FE and controls were only observed in the n3 class PUFAs; no differences where noted in n6 class PUFAs. The RE group was not significantly different from controls, although some compositional differences within PUFAs were noted. Drug treatment was able to correct the aberrant PUFA levels noted in FE patients, but changes in re patients were not corrective. Treatment caused increases in both n3 and n6 class lipids. These results supported the hypothesis that phospholipid n3 fatty acid deficits are present early in the course of schizophrenia and tend not to persist throughout its course. These changes in lipid metabolism could indicate a metabolic vulnerability in patients with schizophrenia that occurs early in development of the disease.  相似文献   

3.
4.
5.
6.
《PloS one》2013,8(11)
Reproductive factors have been linked to both breast cancer and DNA methylation, suggesting methylation as an important mechanism by which reproductive factors impact on disease risk. However, few studies have investigated the link between reproductive factors and DNA methylation in humans. Genome-wide methylation in peripheral blood lymphocytes of 376 healthy women from the prospective EPIC study was investigated using LUminometric Methylation Assay (LUMA). Also, methylation of 458877 CpG sites was additionally investigated in an independent group of 332 participants of the EPIC-Italy sub-cohort, using the Infinium HumanMethylation 450 BeadChip. Multivariate logistic regression and linear models were used to investigate the association between reproductive risk factors and genome wide and CpG-specific DNA methylation, respectively. Menarcheal age was inversely associated with global DNA methylation as measured with LUMA. For each yearly increase in age at menarche, the risk of having genome wide methylation below median level was increased by 32% (OR:1.32, 95%CI:1.14–1.53). When age at menarche was treated as a categorical variable, there was an inverse dose-response relationship with LUMA methylation levels (OR12–14vs.≤11 yrs:1.78, 95%CI:1.01–3.17 and OR≥15vs.≤11 yrs:4.59, 95%CI:2.04–10.33; P for trend<0.0001). However, average levels of global methylation as measured by the Illumina technology were not significantly associated with menarcheal age. In locus by locus comparative analyses, only one CpG site had significantly different methylation depending on the menarcheal age category examined, but this finding was not replicated by pyrosequencing in an independent data set. This study suggests a link between age at menarche and genome wide DNA methylation, and the difference in results between the two arrays suggests that repetitive element methylation has a role in the association. Epigenetic changes may be modulated by menarcheal age, or the association may be a mirror of other important changes in early life that have a detectable effect on both methylation levels and menarcheal age.  相似文献   

7.
Processing speed is an important contributor to working memory performance and fluid intelligence in young children. Myelinated white matter plays a central role in brain messaging, and likely mediates processing speed, but little is known about the relationship between myelination and processing speed in young children. In the present study, processing speed was measured through inspection times, and myelin volume fraction (VFM) was quantified using a multicomponent magnetic resonance imaging (MRI) approach in 2- to 5-years of age. Both inspection times and VFM were found to increase with age. Greater VFM in the right and left occipital lobes, the body of the corpus callosum, and the right cerebellum was significantly associated with shorter inspection times, after controlling for age. A hierarchical regression showed that VFM in the left occipital lobe predicted inspection times over and beyond the effects of age and the VFM in the other brain regions. These findings are consistent with the hypothesis that myelin supports processing speed in early childhood.  相似文献   

8.

Background

Curcumin (CUR) has deserved extensive research due to its anti-inflammatory properties, of interest in human diseases including cancer. However, pleiotropic even paradoxical responses of tumor cells have been reported, and the mechanisms of action of CUR remain uncompletely elucidated.

Methodology/Principal Findings

1H-NMR spectroscopy-based metabolomics was applied to get novel insight into responses of MCF7 and MDA-MB-231 breast cancer cells to CUR alone, and MCF7 cells to CUR in cotreatment with docetaxel (DTX). In both cell types, a major target of CUR was glutathione metabolism. Total glutathione (GSx) increased at low dose CUR (≤ 10 mg.l−1–28 µM-) (up to +121% in MCF7 cells, P<0.01, and +138% in MDA-MB-231 cells, P<0.01), but decreased at high dose (≥ 25 mg.l−1 −70 µM-) (−49%, in MCF7 cells, P<0.02, and −56% in MDA-MB-231 cells, P<0.025). At high dose, in both cell types, GSx-related metabolites decreased, including homocystein, creatine and taurine (−60 to −80%, all, P<0.05). Together with glutathione-S-transferase actvity, data established that GSx biosynthesis was upregulated at low dose, and GSx consumption activated at high dose. Another major target, in both cell types, was lipid metabolism involving, at high doses, accumulation of polyunsaturated and total free fatty acids (between ×4.5 and ×11, P<0.025), and decrease of glycerophospho-ethanolamine and -choline (about −60%, P<0.025). Multivariate statistical analyses showed a metabolic transition, even a biphasic behavior of some metabolites including GSx, between low and high doses. In addition, CUR at 10 mg.l−1 in cotreatment with DTX induced modifications in glutathione metabolism, lipid metabolism, and glucose utilization. Some of these changes were biphasic depending on the duration of exposure to CUR.

Conclusions/Significance

Metabolomics reveals major metabolic targets of CUR in breast cancer cells, and biphasic responses that challenge the widely accepted beneficial effects of the phytochemical.  相似文献   

9.
10.
Liang  Jiaying  Zheng  Yichun  Zeng  Weihong  Chen  Liuqing  Yang  Shaofen  Du  Peng  Wang  Yujiang  Yu  Xingsu  Zhang  Xiqian 《The protein journal》2021,40(6):929-939
The Protein Journal - The objective of the present study was to investigate the differences in the proteomic profiles of sperm from infertile males with severe oligoasthenoteratozoospermia...  相似文献   

11.
Epidemiological studies have shown an increased obesity-related risk of asthma. In support, obese mice develop airway hyperresponsiveness (AHR). However, it remains unclear whether the increased risk is a consequence of obesity, adipogenic diet, or the metabolic syndrome (MetS). Altered L-arginine and nitric oxide (NO) metabolism is a common feature between asthma and metabolic syndrome that appears independent of body mass. Increased asthma risk resulting from such metabolic changes would have important consequences in global health. Since high-sugar diets can induce MetS, without necessarily causing obesity, studies of their effect on arginine/NO metabolism and airway function could clarify this aspect. We investigated whether normal-weight mice with MetS, due to high-fructose diet, had dysfunctional arginine/NO metabolism and features of asthma. Mice were fed chow-diet, high-fat-diet, or high-fructose-diet for 18 weeks. Only the high-fat-diet group developed obesity or adiposity. Hyperinsulinemia, hyperglycaemia, and hyperlipidaemia were common to both high-fat-diet and high-fructose-diet groups and the high-fructose-diet group additionally developed hypertension. At 18 weeks, airway hyperresponsiveness (AHR) could be seen in obese high-fat-diet mice as well as non-obese high-fructose-diet mice, when compared to standard chow-diet mice. No inflammatory cell infiltrate or goblet cell metaplasia was seen in either high-fat-diet or high-fructose-diet mice. Exhaled NO was reduced in both these groups. This reduction in exhaled NO correlated with reduced arginine bioavailability in lungs. In summary, mice with normal weight but metabolic obesity show reduced arginine bioavailability, reduced NO production, and asthma-like features. Reduced NO related bronchodilation and increased oxo-nitrosative stress may contribute to the pathogenesis.  相似文献   

12.
13.

Objective

We aimed to evaluate the association of birth weight SDS with insulin resistance, blood pressure, and auxology in children and adolescents born 23–42 weeks of gestation.

Methods

We studied 143 singleton children and adolescents aged 9.3 ± 3.3 years (range 2.0–17.9 years). Clinical assessments included insulin resistance measured by HOMA2-IR, auxology, and blood pressure from sphygmomanometer measurements. Continuous associations were examined, and stratified analyses carried out. For the latter, participants were divided into those of below-average birth weight (BABW, <0 SDS) and above-average birth weight (AABW, ≥0 SDS).

Results

Irrespective of gestational age, lower birth weight SDS was associated with progressively greater HOMA2-IR (p<0.0001) and higher fasting insulin concentrations (p<0.0001). Decreasing birth weight SDS was associated with higher systolic (p = 0.011) and diastolic (p = 0.006) blood pressure. Lower birth weight SDS was also associated with decreasing stature (p<0.010). The BABW group was ~40% more insulin resistant than AABW participants (p = 0.004), with the former also displaying fasting insulin concentrations 37% higher (p = 0.004). BABW participants were 0.54 SDS shorter than those of higher birth weight (p = 0.002). On average, BABW participants had not met their genetic potential, tending to be shorter than their parents (p = 0.065). As a result, when corrected for parents'' heights, BABW participants were 0.62 SDS shorter than those born of higher birth weight (p = 0.001). Sub-group analyses on participants born appropriate-for-gestational-age (n = 128) showed that associations of birth weight SDS with both insulin resistance and stature remained (although attenuated).

Conclusion

Decreasing birth weight SDS (even within the normal range) is associated with adverse metabolic profile and lower stature in children and adolescents.  相似文献   

14.
ContextMaternal pre-pregnancy obesity may increase the risk of childhood obesity but it is unknown whether other metabolic factors in early pregnancy such as lipid profile and hypertension are associated with offspring cardiometabolic traits.ObjectiveOur objective was to investigate whether fasting lipid, glucose, and insulin levels during early pregnancy and maternal pre-pregnancy weight status, are associated with offspring adiposity measures, lipid levels and blood pressure at preschool age.ResultsPre-pregnancy overweight/obesity was associated with greater risk of offspring overweight/obesity (RR: 1.83, 95%CI: 1.19, 2.81), central adiposity (RR: 1.97, 95%CI: 1.11, 3.49), and greater fat mass by 5.10mm (95%CI: 2.49, 7.71) at 4 years of age. These associations were more pronounced in girls. An increase of 40mg/dl in fasting serum cholesterol levels in early pregnancy was associated with greater skinfold thickness by 3.30mm (95%CI: 1.41, 5.20) at 4 years of age after adjusting for pre-pregnancy BMI and several other confounders. An increase of 10mmHg in diastolic blood pressure in early pregnancy was associated with increased risk of offspring overweight/obesity (RR: 1.22, 95%CI: 1.03, 1.45), and greater skinfold thickness by 1.71mm (95% CI: 0.57, 2.86) at 4 years of age.ConclusionsMetabolic dysregulation in early pregnancy may increase the risk of obesity at preschool age.  相似文献   

15.
The availability of acyl-Coenzyme A (acyl-CoA) thioester compounds affects numerous cellular functions including autophagy, lipid oxidation and synthesis, and post-translational modifications. Consequently, the acyl-CoA level changes tend to be associated with other metabolic alterations that regulate these critical cellular functions. Despite their biological importance, this class of metabolites remains difficult to detect and quantify using current analytical methods. Here we show a universal method for metabolomics that allows for the detection of an expansive set of acyl-CoA compounds and hundreds of other cellular metabolites. We apply this method to profile the dynamics of acyl-CoA compounds and corresponding alterations in metabolism across the metabolic network in response to high fat feeding in mice. We identified targeted metabolites (>50) and untargeted features (>1000) with significant changes (FDR < 0.05) in response to diet. A substantial extent of this metabolic remodeling exhibited correlated changes in acyl-CoA metabolism with acyl-carnitine metabolism and other features of the metabolic network that together can lead to the discovery of biomarkers of acyl-CoA metabolism. These findings show a robust acyl-CoA profiling method and identify coordinated changes of acyl-CoA metabolism in response to nutritional stress.Thioester compounds containing acyl-coenzyme A (acyl-CoA)1 are key metabolites in intermediary metabolism. The most prominent of which is acetyl-CoA whose levels regulate critical cellular processes such as energy metabolism, protein acetylation, lipid synthesis and catabolism, and even autophagy (14). Other acyl-CoA compounds are also increasingly appreciated as playing important roles in diverse cellular processes (58). These compounds are generated from multiple pathways, such as glycolysis, the citric acid cycle (TCA cycle), beta-oxidation, and branched chain amino acid catabolism. As the acyl group carrier, acyl-CoA can partake in chemical reactions on proteins including histones resulting in mediation of chromatin biology. Therefore, considerable effort has been spent on developing methods for acyl-CoA and corresponding acyl protein modification measurements (917). Liquid chromatography coupled to mass spectrometry (LC-MS) is the most frequently used method for small molecule analysis in large part because of superior sensitivity. Moreover, LC-MS analysis can handle a broad range of complex biological mixtures and the analysis is relatively easier compared with many other methods, such as NMR, scintillation counting, and UV detection.Reversed phase LC coupled to a triple quadrupole mass spectrometer has been frequently used as for targeted measurements of specific acyl-CoA compounds, because acyl-CoA compounds undergo a common fragmentation, the neutral loss of adenosine diphosphate, which is the basis of multiple reaction monitoring for acyl-CoA measurements. Especially when stable isotope labeled acyl-CoA standards are used, this method has shown high accuracy and precision (11, 14). However, these methods involve several laborious steps of sample purification and enrichment before LC-MS analysis, such as solid phase extraction, which in addition to often being time- and cost-prohibitive, can also result in poor sensitivity and accuracy because of imperfect metabolite recovery. Moreover, reversed phase ion-paired chromatography coupled to high-resolution MS has also been used for short, medium, and long chain acyl-CoA identification or quantification with the help of stable isotope labeled standards (10, 13). However, these methods were also developed with limited coverage of metabolites, and the quantitative capacity without using stable isotope labeled standards was not evaluated.We therefore developed a novel method for sensitive, rapid, and quantitative acyl-CoA profiling, with a compatible sample preparation procedure that has been previously shown for polar metabolite analysis (18). The method involves LC-MS using reversed phase chromatographic separation coupled to a high-resolution Orbitrap mass spectrometer with label free quantitation. With a single liquid extraction from a few milligrams of tissue, followed by three separate chromatography methods, a broad coverage of metabolites is achieved, which is especially valuable when sample availability is limited.To show the utility of our approach, we considered the alterations in the metabolic network that accompany high fat (HF) feeding. Conditions of high fat feeding that induce nutritional stress are shown to induce global changes in enzymes in metabolism (19, 20), but a comprehensive assessment of the global alterations in metabolism that remains include possible remodeling of acyl-CoA metabolism remain unknown. We reasoned that under such a condition, a dynamic response involving alterations in acyl-CoA levels along with the rest of the metabolome may be observed. This remodeling could also be associated with acyl-carnitine metabolism that often serves as both a readout of acyl-CoA metabolism and other features of metabolism status. Propionyl-CoA that is mainly generated from branched chain amino acid (BCAAs) catabolism and has been implicated in contributing to insulin resistance (21, 22), exhibits large changes. We applied our method to understand the metabolic changes that accompany HF feeding in mouse liver (23). We identify acyl-CoA compounds with dramatic changes after administration of a HF diet. Hierarchical clustering and principle component analysis (PCA) of metabolites measured in liver tissue show further diet-dependent metabolic profiling changes. Moreover, measurements of acyl-carnitine compounds have been used to reflect acyl-CoA levels (24), but the correlation between these two species has not been studied. Our method with coverage of both acyl-carnitine and acyl-CoA enabled us to evaluate acyl-carnitine as a biomarker of acyl-CoA status. In turn, we were able to confirm many relationships between acyl-CoA and acyl-carnitine levels but also discovered several unexpected relationships as well.  相似文献   

16.
Effective triage of dengue patients early in the disease course for in- or out-patient management would be useful for optimal healthcare resource utilization while minimizing poor clinical outcome due to delayed intervention. Yet, early prognosis of severe dengue is hampered by the heterogeneity in clinical presentation and routine hematological and biochemical measurements in dengue patients that collectively correlates poorly with eventual clinical outcome. Herein, untargeted liquid-chromatography mass spectrometry metabolomics of serum from patients with dengue fever (DF) and dengue hemorrhagic fever (DHF) in the febrile phase (<96 h) was used to globally probe the serum metabolome to uncover early prognostic biomarkers of DHF. We identified 20 metabolites that are differentially enriched (p<0.05, fold change >1.5) in the serum, among which are two products of tryptophan metabolism–serotonin and kynurenine. Serotonin, involved in platelet aggregation and activation decreased significantly, whereas kynurenine, an immunomodulator, increased significantly in patients with DHF, consistent with thrombocytopenia and immunopathology in severe dengue. To sensitively and accurately evaluate serotonin levels as prognostic biomarkers, we implemented stable-isotope dilution mass spectrometry and used convalescence samples as their own controls. DHF serotonin was significantly 1.98 fold lower in febrile compared to convalescence phase, and significantly 1.76 fold lower compared to DF in the febrile phase of illness. Thus, serotonin alone provided good prognostic utility (Area Under Curve, AUC of serotonin = 0.8). Additionally, immune mediators associated with DHF may further increase the predictive ability than just serotonin alone. Nine cytokines, including IFN-γ, IL-1β, IL-4, IL-8, G-CSF, MIP-1β, FGF basic, TNFα and RANTES were significantly different between DF and DHF, among which IFN-γ ranked top by multivariate statistics. Combining serotonin and IFN-γ improved the prognosis performance (AUC = 0.92, sensitivity = 77.8%, specificity = 95.8%), suggesting this duplex panel as accurate metrics for the early prognosis of DHF.  相似文献   

17.
The centrosome is the major microtubule-organizing center in animal cells and consists of a pair of centrioles surrounded by a pericentriolar material. We demonstrate laser manipulation of individual early Drosophila embryo centrosomes in between two microelectrodes to reveal that it is a net negatively charged organelle with a very low isoelectric region (3.1 ± 0.1). From this single-organelle electrophoresis, we infer an effective charge smaller than or on the order of 103 electrons, which corresponds to a surface-charge density significantly smaller than that of microtubules. We show, however, that the charge of the centrosome has a remarkable influence over its own structure. Specifically, we investigate the hydrodynamic behavior of the centrosome by measuring its size by both Stokes law and thermal-fluctuation spectral analysis of force. We find, on the one hand, that the hydrodynamic size of the centrosome is 60% larger than its electron microscopy diameter, and on the other hand, that this physiological expansion is produced by the electric field that drains to the centrosome, a self-effect that modulates its structural behavior via environmental pH. This methodology further proves useful for studying the action of different environmental conditions, such as the presence of Ca2+, over the thermally induced dynamic structure of the centrosome.  相似文献   

18.
Journal of Plant Growth Regulation - Salinity is one of the major environmental constraints limiting crop plant yields around the world. Therefore, understanding the salt-tolerant mechanism and...  相似文献   

19.
Clinical evidence has shown that stress may be associated with alterations in masticatory muscle functions. Morphological changes in masticatory muscles induced by occlusal alterations and associated with emotional stress are still lacking in the literature. The objective of this study was to evaluate the influence of acute stress on metabolic activity and oxidative stress of masseter muscles of rats subjected to occlusal modification through morphological and histochemical analyses. In this study, adult Wistar rats were divided into 4 groups: a group with extraction and acute stress (E+A); group with extraction and without stress (E+C); group without extraction and with acute stress (NO+A); and control group without both extraction and stress (NO+C). Masseter muscles were analyzed by Succinate Dehydrogenase (SDH), Nicotinamide Adenine Dinucleotide Diaphorase (NADH) and Reactive Oxygen Species (ROS) techniques. Statistical analyses and two-way ANOVA were applied, followed by Tukey-Kramer tests. In the SDH test, the E+C, E+A and NO+A groups showed a decrease in high desidrogenase activities fibers (P < 0.05), compared to the NO+C group. In the NADH test, there was no difference among the different groups. In the ROS test, in contrast, E+A, E+C and NO+A groups showed a decrease in ROS expression, compared to NO+C groups (P < 0.05). Modified dental occlusion and acute stress - which are important and prevalent problems that affect the general population - are important etiologic factors in metabolic plasticity and ROS levels of masseter muscles.  相似文献   

20.

Background

The pattern of development of allergen-specific T cell cytokine responses in early childhood and their relation to later disease is poorly understood. Here we describe longitudinal changes in allergen-stimulated T cell cytokine responses and their relation to asthma and allergic disease during the first 8 years of life.

Methods

Subjects with a family history of asthma, who were enrolled antenatally in the Childhood Asthma Prevention Study (public trials registration number ACTRN12605000042640), had skin prick tests, clinical evaluation for asthma and eczema, and in vitro assessment of T cell cytokine responses to HDM extract performed at ages 18 months (n = 281), 3 years (n = 349), 5 years (n = 370) and 8 years (n = 275). We measured interleukin (IL-) 13 at 3, 5 and 8 years, and IL-5, IL-10, and interferon-γ (IFN-γ), at 18 months, 3, 5 and 8 years by ELISA. A cohort analysis was undertaken. Independent effects of cytokine responses at each age on the risk of asthma and allergic outcomes at age 8 years were estimated by multivariable logistic regression.

Results

HDM-specific IL-5 responses increased with age. HDM-specific IL-13 and IL-10 responses peaked at age 5 years. HDM-specific IL-5 responses at 3 years, 5 years and 8 years were significantly associated with the presence of asthma and atopy at 8 years. IL-13 responses at 3 years, 5 years and 8 years were significantly associated with atopy at 8 years, but this association was not independent of the effect of IL-5. Other HDM-specific cytokine responses were not independently related to asthma or eczema at 8 years.

Conclusion

HDM-specific IL-5 responses at age 3 years or later are the best measure of T cell function for predicting asthma at age 8 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号