首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The aim of this study was to obtain insight into the coactivation behaviour of the jaw muscles under various a priori defined static loading conditions of the mandible. As the masticatory system is mechanically redundant, an infinite number of recruitment patterns is theoretically possible to produce a certain bite force. Using a three-component force transducer and a feedback method, subjects could be instructed to produce a bite force of specific direction and magnitude under simultaneous registration of the EMG activity of anterior and posterior temporal, masseter and digastric muscles on each side. Forces were measured at the second premolars. Vertical, anterior, posterior, lateral and medial force directions were examined; in each direction force levels between 50 N and maximal voluntary force were produced. The results show that for all muscles the bite force-EMG relationship obeys a straight-line fit for forces exceeding 50 N. The relationship varies with bite force direction, except in the case of the digastric muscles. Variation is small for the anterior temporal and large for the posterior temporal and masseter muscles. The relative activation of muscles for a particular force in a particular direction in unique, despite the redundancy.  相似文献   

2.
Single-element and/or rosette strain gages were bonded to mandibular cortical bone in Galago crassicaudatus and Macaca fascicularis. Five galago and eleven macaque bone strain experiments were performed and analyzed. In vivo bone strain was recorded from the lateral surface of the mandibular corpus below the postcanine tooth row during transducer biting and during mastication and ingestion of food objects. In macaques and galagos, the mandibular corpus on the balancing side is primarily bent in the sagittal plane during mastication and is both twisted about its long axis and bent in the sagittal plane during transducer biting. On the working side, it is primarily twisted about its long axis and directly sheared perpendicular to its long axis, and portions of it are bent in the sagittal plane during mastication and molar transducer biting. In macaques, the mandibular corpus on each side is primarily bent in the sagittal plane and twisted during incisal transducer biting and ingestion of food objects, and it is transversely bent and slightly twisted during jaw opening. Since galagos usually refused to bite the transducer or food objects with their incisors, an adequate characterization of mandibular stress patterns during these behaviors was not possible. In galagos the mandibular corpus experiences very little transverse bending stress during jaw opening, perhaps in part due to its unfused mandibular symphysis. Marked differences in the patterns of mandibular bone strain were present between galagos and macaques during the masticatory power stroke and during transducer biting. Galagos consistently had much more strain on the working side of the mandibular corpus than on the balancing side. These experiments support the hypothesis that galagos, in contrast to macaques, employ a larger amount of working-side muscle force relative to the balancing-side muscle force during unilateral biting and mastication, and that the fused mandibular symphysis is an adaption to use a maximal amount of balancing-side muscle force during unilateral biting and mastication. These experiments also demonstrate the effects that rosette position, bite force magnitudes, and types of food eaten have on recorded mandibular strain patterns.  相似文献   

3.
Bite force is a measure of feeding performance used to elucidate links between animal morphology, ecology, and fitness. Obtaining live individuals for in vivo bite-force measurements or freshly deceased specimens for bite force modeling is challenging for many species. Thomason's dry skull method for mammals relies solely on osteological specimens and, therefore, presents an advantageous approach that enables researchers to estimate and compare bite forces across extant and even extinct species. However, how accurately the dry skull method estimates physiological cross-sectional area (PCSA) of the jaw adductor muscles and theoretical bite force has rarely been tested. Here, we use an ontogenetic series of southern sea otters (Enhydra lutris nereis) to test the hypothesis that skeletomuscular traits estimated from the dry skull method accurately predicts test traits derived from dissection-based biomechanical modeling. Although variables from these two methods exhibited strong positive relationships across ontogeny, we found that the dry skull method overestimates PCSA of the masseter and underestimates PCSA of the temporalis. Jaw adductor in-levers for both jaw muscles and overall bite force are overestimated. Surprisingly, we reveal that sexual dimorphism in craniomandibular shape affects temporalis PCSA estimations; the dry skull method predicted female temporalis PCSA well but underestimates male temporalis PCSA across ontogeny. These results highlight the importance of accounting for sexual dimorphism and other intraspecific variation when using the dry skull method. Together, we found the dry skull method provides an underestimation of bite force over ontogeny and that the underlying anatomical components driving bite force may be misrepresented.  相似文献   

4.
Between weaning and adulthood, the length and height of the facial skull of the New Zealand rabbit (Oryctolagus cuniculus) double, whereas much less growth occurs in the width of the face and in the neurocranium. There is a five-fold increase in mass of the masticatory muscles, caused mainly by growth in cross-sectional area. The share of the superficial masseter in the total mass increases at the cost of the jaw openers. There are changes in the direction of the working lines of a few muscles. A 3-dimensional mechanical model was used to predict bite forces at different mandibular positions. It shows that young rabbits are able to generate large bite forces at a wider range of mandibular positions than adults and that the forces are directed more vertically. In young and adult animals, the masticatory muscles differ from each other with respect to the degree of gape at which optimum sarcomere length is reached. Consequently, bite force can be maintained over a range of gapes, larger than predicted on basis of individual length-tension curves. Despite the considerable changes in skull shape and concurrent changes in the jaw muscles, the direction of the resultant force of the closing muscles and its mechanical advantage remain stable during growth. Observed phenomena suggest that during development the possibilities for generation of large bite forces are increased at the cost of a restriction of the range of jaw excursion.  相似文献   

5.
Artificial support stimulation is known to attenuate or prevent many motor or skeletal muscle effects of actual or simulated microgravity. The present study was purposed to analyze the effects of artificial support on human soleus fibers after 7-day exposure to supportless environment. 8 healthy male volunteers were exposed to dry immersion in supine position for 7 days according to Shulzhenko and Vil-Villiams (1972). 4 of them worn the support device which provided them with plantar stimulation in regime described elsewhere.  相似文献   

6.
Wear facets on molars of the Eocene primate Adapis magnus are described. Striations on these wear facets indicate three separate directions of mandibular movement during mastication. One direction corresponds to a first stage of mastication involving orthal retraction of the mandible. The remaining two directions correspond to buccal and lingual phases of a second stage of mastication involving a transverse movement of the mandible. The mechanics of jaw adduction are analysed for both the orthal retraction and transverse stages of mastication. During the orthal retraction stage the greatest component of bite force is provided by the temporalis muscles acting directly against the food with the mandible functioning as a link rather than as a lever. A geometrical argument suggests that during the transverse stage of mastication bite force is provided by the temporalis muscles of both sides, the ipsilateral medial and lateral pterygoid muscles, and the contralateral masseter muscle.  相似文献   

7.
The purpose of this study is to test various hypotheses about balancing-side jaw muscle recruitment patterns during mastication, with a major focus on testing the hypothesis that symphyseal fusion in anthropoids is due mainly to vertically- and/or transversely-directed jaw muscle forces. Furthermore, as the balancing-side deep masseter has been shown to play an important role in wishboning of the macaque mandibular symphysis, we test the hypothesis that primates possessing a highly mobile mandibular symphysis do not exhibit the balancing-side deep masseter firing pattern that causes wishboning of the anthropoid mandible. Finally, we also test the hypothesis that balancing-side muscle recruitment patterns are importantly related to allometric constraints associated with the evolution of increasing body size. Electromyographic (EMG) activity of the left and right superficial and deep masseters were recorded and analyzed in baboons, macaques, owl monkeys, and thick-tailed galagos. The masseter was chosen for analysis because in the frontal projection its superficial portion exerts force primarily in the vertical (dorsoventral) direction, whereas its deep portion has a relatively larger component of force in the transverse direction. The symphyseal fusion-muscle recruitment hypothesis predicts that unlike anthropoids, galagos develop bite force with relatively little contribution from their balancing-side jaw muscles. Thus, compared to galagos, anthropoids recruit a larger percentage of force from their balancing-side muscles. If true, this means that during forceful mastication, galagos should have working-side/balancing-side (W/B) EMG ratios that are relatively large, whereas anthropoids should have W/B ratios that are relatively small. The EMG data indicate that galagos do indeed have the largest average W/B ratios for both the superficial and deep masseters (2.2 and 4.4, respectively). Among the anthropoids, the average W/B ratios for the superficial and deep masseters are 1.9 and 1.0 for baboons, 1.4 and 1.0 for macaques, and both values are 1.4 for owl monkeys. Of these ratios, however, the only significant difference between thick-tailed galagos and anthropoids are those associated with the deep masseter. Furthermore, the analysis of masseter firing patterns indicates that whereas baboons, macaques and owl monkeys exhibit the deep masseter firing pattern associated with wishboning of the macaque mandibular symphysis, galagos do not exhibit this firing pattern. The allometric constraint-muscle recruitment hypothesis predicts that larger primates must recruit relatively larger amounts of balancing-side muscle force so as to develop equivalent amounts of bite force. Operationally this means that during forceful mastication, the W/B EMG ratios for the superficial and deep masseters should be negatively correlated with body size. Our analysis clearly refutes this hypothesis. As already noted, the average W/B ratios for both the superficial and deep masseter are largest in thick-tailed galagos, and not, as predicted by the allometric constraint hypothesis, in owl monkeys, an anthropoid whose body size is smaller than that of thick-tailed galagos. Our analysis also indicates that owl monkeys have W/B ratios that are small and more similar to those of the much larger-sized baboons and macaques. Thus, both the analysis of the W/B EMG ratios and the muscle firing pattern data support the hypothesis that symphyseal fusion and transversely-directed muscle force in anthropoids are functionally linked. This in turn supports the hypothesis that the evolution of symphyseal fusion in anthropoids is an adaptation to strengthen the symphysis so as to counter increased wishboning stress during forceful unilateral mastication. (ABSTRACT TRUNCATED)  相似文献   

8.
9.
The aim of this study was to evaluate masticatory muscle activity and kinematics of mandible changes in children with unilateral posterior cross-bite (UPXB) after orthodontic treatment, and one year after retention. Twenty-five children with UPXB and functional mandibular shift were evaluated before treatment (mean age 12.5years), after treatment (mean age 14.9years), and one year after retention (mean age 16.8years). The same data were collected in a control group of thirty age-matched normocclusive children. Simultaneous bilateral surface electromyographic (sEMG) activity from anterior temporalis (AT), posterior temporalis (PT), masseter (MA), and supra-hyoid (SH) muscle areas were evaluated at rest, during swallowing, mastication and clenching. Kinematic records of rest position, mandibular lateral shift, swallowing and mastication were analyzed. Results showed a lateral shift of the mandible present at rest. During swallowing, sEMG activity of SH predominated before and post-treatment and retention. High frequency of immature swallowing was maintained post-treatment and retention. During mastication, MA activity increased significantly and its asymmetry was corrected post-treatment. During clenching, cross-bite side AT and MA activity increased significantly posttreatment and remained stable after retention, and MA/AT ratio reversed. These findings reinforce the advantages of treating children with UPXB and functional shift as early as possible.  相似文献   

10.
The jaw‐closing muscles are responsible for generating many of the forces and movements associated with feeding. Muscle physiologic cross‐sectional area (PCSA) and fiber length are two architectural parameters that heavily influence muscle function. While there have been numerous comparative studies of hominoid and hominin craniodental and mandibular morphology, little is known about hominoid jaw‐muscle fiber architecture. We present novel data on masseter and temporalis internal muscle architecture for small‐ and large‐bodied hominoids. Hominoid scaling patterns are evaluated and compared with representative New‐ (Cebus) and Old‐World (Macaca) monkeys. Variation in hominoid jaw‐muscle fiber architecture is related to both absolute size and allometry. PCSAs scale close to isometry relative to jaw length in anthropoids, but likely with positive allometry in hominoids. Thus, large‐bodied apes may be capable of generating both absolutely and relatively greater muscle forces compared with smaller‐bodied apes and monkeys. Compared with extant apes, modern humans exhibit a reduction in masseter PCSA relative to condyle‐M1 length but retain relatively long fibers, suggesting humans may have sacrificed relative masseter muscle force during chewing without appreciably altering muscle excursion/contraction velocity. Lastly, craniometric estimates of PCSAs underestimate hominoid masseter and temporalis PCSAs by more than 50% in gorillas, and overestimate masseter PCSA by as much as 30% in humans. These findings underscore the difficulty of accurately estimating jaw‐muscle fiber architecture from craniometric measures and suggest models of fossil hominin and hominoid bite forces will be improved by incorporating architectural data in estimating jaw‐muscle forces. Am J Phys Anthropol 151:120–134, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The complex of motor disturbances arising under conditions of real and simulated microgravity that include decrease of contractile characteristics of postural muscles is likely to be a result of withdrawal of support stimuli. Artificial stimulation of support zones of feet is shown to diminish partially or prevent completely the negative effects of microgravity on the motor system. The aim of the study was to evaluate and compare the changes of contractile properties of extensors and flexors of knee joint measured in isokinetic and isotonic regimes under conditions of simulated microgravity (7 days dry immersion).  相似文献   

12.
As a negative regulator of muscle size, myostatin (Mstn) impacts the force-production capabilities of skeletal muscles. In the masticatory system, measures of temporalis-stimulated bite forces in constitutive myostatin KOs suggest an absolute, but not relative, increase in jaw-muscle force. Here, we assess the phenotypic and physiologic impact of postnatal myostatin inhibition on bite mechanics using an inducible conditional KO mouse in which myostatin is inhibited with doxycycline (DOX). Given the increased control over the timing of gene inactivation in this model, it may be more clinically-relevant for developing interventions for age-associated changes in the musculoskeletal system. DOX was administered for 12 weeks starting at age 4 months, during which time food intake was monitored. Sex, age and strain-matched controls were given the same food without DOX. Bite forces were recorded just prior to euthanasia after which muscle and skeletal data were collected. Food intake did not differ between control or DOX animals within each sex. DOX males were significantly larger and had significantly larger masseters than controls, but DOX and control females did not differ. Although there was a tendency towards higher absolute bite forces in DOX animals, this was not significant, and bite forces normalized to masseter mass did not differ. Mechanical advantage for incisor biting increased in the DOX group due to longer masseter moment arms, likely due to a more anteriorly-placed masseter insertion. Despite only a moderate increase in bite force in DOX males and none in DOX females, the increase in masseter mass in males indicates a potentially positive impact on jaw muscles. Our data suggest a sexual dimorphism in the role of mstn, and as such investigations into the sex-specific outcomes is warranted.  相似文献   

13.
The relationship between translation of the mandibular condyle during symmetrical mandibular rotation, i.e., symmetrical jaw depression and elevation, and the function of the superficial masseter muscle was examined in light of relative torque and the length-tension relationship for muscle. Lateral cephalograms of live adult rhesus monkeys (Macaca mulatta) were analyzed using two models: (1) Model A, normal symmetrical jaw rotation accompanied by condylar translation; and (2) Model B, mandibular rotation about an axis fixed at the position of the condyles during centric occlusion. The decrease in relative torque and the excursion of the superficial masseter at mouth-open positions are significantly greater in Model B than in Model A. Symmetrical rotation of the jaw about a fixed axis would result in a 35% greater loss of maximum producible tension at maximum gape than rotation associated with condylar translation. These results suggest that condylar translation during mandibular depression and elevation functions to minimize reduction in relative torque and excursion of superficial masseter muscle, thereby maintaining optimal potential for exerting maximum tension during jaw closure.  相似文献   

14.
Gerodontology 2010; doi: 10.1111/j.1741‐2358.2010.00374.x
Clinical feasibility of mandibular implant overdenture retainers submitted to immediate load Introduction: Millions of people around the world do not have access to the benefits of osseointegration. Treatments involving oral rehabilitation with overdentures have been widely used by specialists in the oral medicine field. This is an alternative therapy for retention and stability achievement in total prosthesis with conventional treatment, and two implants are enough to establish a satisfactory overdenture. Objective: The objectives of the study were to evaluate 16 patients of both sexes, with an average age of 47.4 ± 4 years, using electromyographic analysis of masseter and temporal muscles and analyse the increase of incisive and molar maximal bite force with their existing complete dentures and following mandibular implant overdenture therapy to assess the benefits of this treatment. Materials and methods: For these tests, the Myosystem‐BR1 electromyograph and the IDDK Kratos dynamometer were used. Statistical analysis was performed using the repeated measures test (SPSS 17.0). Results: A decrease in electromyographic activity during the rest, lateral and protrusion movements and increase of the maximal incisive and molar bite force after 15 months with a mandibular implant overdenture was observed. Conclusion: All the patients in this study reported a considerable improvement in the masticatory function and prostheses stability following treatment. It is possible to propose that the use of mandibular implants overdenture should become the selected treatment for totally edentulous patients to facilitate oral function and quality of life.  相似文献   

15.
The relationship between human craniofacial morphology and the biomechanical efficiency of bite force generation in widely varying muscular and skeletal types is unknown. To address this problem, we selected 22 subjects with different facial morphologies and used magnetic resonance imaging, cephalometric radiography, and data from dental casts to reconstruct their craniofacial tissues in three dimensions. Conventional cephalometric analyses were carried out, and the cross-sectional sizes of the masseter and medial pterygoid muscles were measured from reconstituted sections. The potential abilities of the muscles to generate bite forces at the molar teeth and mandibular condyles were calculated according to static equilibrium theory using muscle, first molar, and condylar moment arms. On average, the masseter muscle was about 66% larger in cross section than the medial pterygoid and was inclined more anteriorly relative to the functional occlusal plane. There was a significant positive correlation (P less than 0.01) between the cross-sectional areas of the masseter and medial pterygoid muscles (r = 0.75) and between the bizygomatic arch width and masseter cross-sectional area (r = 0.56) and medial pterygoid cross-sectional area (r = 0.69). The masseter muscle was always a more efficient producer of vertically oriented bite force than the medial pterygoid. Putative bite force from the medial pterygoid muscle alone correlated positively with mandibular length and inversely with upper face height. When muscle and tooth moment arms were considered together, a system efficient at producing force on the first molar was statistically associated with a face having a large intergonial width, small intercondylar width, narrow dental arch, forward maxilla, and forward mandible. There was no significant correlation between muscle cross-sectional areas and their respective putative bite forces. This suggests that there is no simple relationship between the tension-generating capacity of the muscles and their mechanical efficiency as described by their spatial arrangement. The study shows that in a modern human population so many combinations of biomechanically relevant variables are possible that subjects cannot easily be placed into ideal or nonideal categories for producing molar force. Our findings also confirm the impression that similar bite-force efficiencies can be found in subjects with disparate facial features.  相似文献   

16.
The functional state of external respiration and the features of its regulation in healthy persons were studied under conditions of microgravity simulated using dry immersion. The lung volume, the ratio of thoracic and abdominal components during quiet breathing and performing various respiratory maneuvers, as well as the parameters that characterize the regulation of breathing (the duration of breath holding and the ability to voluntarily control respiratory movements), were recorded during the baseline period, on days 2 and 4 of dry immersion, and after the end of the dry immersion. It has been shown that the breathing pattern did not significantly change under conditions of dry immersion compared to the baseline period; however, the inspiratory reserve volume increased (p < 0.05), while the expiratory reserve volume decreased (p < 0.01). Dry immersion did not alter pulmonary ventilation, yet most of the subjects trended toward an increase in the contribution of the abdominal component of breathing movements during quiet breathing and demonstrated a statistically significant increase in this parameter during the lung vital capacity maneuver. The durations of the inspiratory and expiratory maximal breath holding under conditions of immersion did not differ from the background values. During the immersion, the accuracy of voluntary control of breathing increased. We believe that immersion, similar to microgravity, leads to changes in the reserve lung volume, which are partly because of changes in the body position; changes in relative contributions of the thoracic and abdominal components in the breathing movements; and changes in voluntary breath regulation.  相似文献   

17.
The aims of this study were: (1) to develop and assess reproducibility of a new method for measuring masticatory force in the intercuspal position; (2) to test the reproducibility of surface EMG signal amplitude and spectral variables in constant force contractions of jaw elevator muscles and its dependency on inter-electrode distance. The study was performed on the masseter and temporalis anterior muscles of both sides of nine healthy volunteers. An intraoral compressive-force sensor was used to measure maximal voluntary contraction forces in the intercuspal position and to provide a visual feedback on sub-maximal forces to the subject. Three experimental sessions were performed in three days. In each session, three isometric contractions at 80% of the maximal force were sustained by the subjects for 30s. The intra-class correlation coefficient (ICC) of the maximal force measure was 71.9%. ICC of average rectified value and mean power spectral frequency of the EMG signal increased with inter-electrode distance, with values larger than 70% with 30 mm inter-electrode distance. It was concluded that surface EMG variables measured in isometric contractions of the jaw elevator muscles with the proposed force recording system show good reproducibility for clinical applications when a 30 mm inter-electrode distance is considered.  相似文献   

18.
Mandibular distraction osteogenesis will lead to a change in muscle coordination and load transfer to the temporomandibular joints (TMJ). The objective of this work is to present and validate a rigid-body musculo-skeletal model of the mandible based on inverse dynamics for calculation of the muscle activations, muscle forces and TMJ reaction forces for different types of clenching tasks and dynamic tasks. This approach is validated on a symmetric mandible model and an application will be presented where the TMJ reaction forces during unilateral clenching are estimated for a virtual distraction patient with a shortened left ramus. The mandible model consists of 2 rigid segments and has 4 degrees-of-freedom. The model was equipped with 24 hill-type musculotendon actuators. During the validation experiment one subject was asked to do several tasks while measuring EMG activity, bite force and kinematics. The bite force and kinematics were used as input for the simulations of the same tasks after which the estimated muscle activities were compared with the measured muscle activities. This resulted in an average correlation coefficient of 0.580 and an average of the Mean Absolute Error of 0.109. The virtual distraction model showed a large difference in the TMJ reaction forces between left and right compared with the symmetric model for the same loading case. The present work is a step in the direction of building patient-specific mandible models, which can assess the mechanical effects on the TMJ before mandibular distraction osteogenesis surgery.  相似文献   

19.
Haitian species of the extinct ground sloth genus Neocnus (Mammalia: Pilosa: Megalonychidae) have previously been hypothesized to have a much reduced jugal bone and a correspondingly reduced masseter musculature but a paucity of specimens has prevented further investigation of this hypothesis. Recent discovery of jugal bones belonging to Haitian specimens of Neocnus within the University of Florida Museum collections enables the element to be more accurately described. The discovery also makes it possible to explore mastication in these sloths. Osteological characters related to feeding were examined, along with comparative estimations of bite force with the extant tree sloths, Bradypus and Choloepus, and their known dietary habits as a means to infer aspects of the paleodiet of Neocnus. There is a significant difference in moment arm calculations for m. masseter between predicted and actual jugals, but the overall significance for bite force is lost and hampered by small sample size. Neocnus demonstrates a variety of characters that are similar to those of Bradypus and not to Choloepus, which is a close phylogenetic relative. The masticatory musculature of Neocnus enabled a chewing cycle emphasizing a grinding combination of mesiodistal and linguobuccal movements of the molariform dentition. The orientations of m. masseter and m. temporalis are estimated to produce relatively high bite force ratios that imply a masticatory system with stronger versus faster components. Because of the similarity of bite forces and jaw mechanics to those of Bradypus, in addition to a number of osteological adaptations indicative of herbivorous grazers (elevated mandibular condyle, large and complex masseter, and robust angular process), the Haitian forms of Neocnus are considered to have been selective feeders with a folivorous diet. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

20.
Healthy male volunteers (n = 5) aged 27–42 years participated in experimental studies (7-day immersion) designed to simulate the effects of microgravity. To study the metabolic changes caused by decreased weight bearing on the musculoskeletal system and a change in the position of the body relative to the gravity vector, a 15-min load test before and after immersion was used. A wide set of biochemical parameters characterizing the state of the energy metabolism, substrate levees, and enzyme activities, as well as the blood level of hormones, was measured in the blood plasma. Multifactor analysis was used in processing the experimental data. After immersion, a significant decrease in the blood plasma activity of isocitrate dehydrogenase, creatine phosphokinase, and lactate dehydrogenase was noted, whereas the growth hormone and insulin levels exceeded the baseline values. The physical exercise test increased the differences in the metabolic status before and after 7 days of immersion. The factor analysis allowed us to reveal the most significant biochemical variables for identifying a new metabolic state of the physiological systems after exposure to short-term simulated microgravity. Changes in the creatine phosphokinase activity and the human blood plasma levels of cortisol, triglycerides, insulin, and inorganic phosphate made the most significant contributions to these differences, and the direction of biochemical shifts in response to exercise was different before and after immersion. The results obtained are indicate that energy and substrate metabolism changes in response to a decrease in weight bearing and an altered body position relative to the gravity vector and that these changes are especially pronounced when an exercise test is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号