共查询到20条相似文献,搜索用时 15 毫秒
1.
Telomeres, comprised of short repetitive sequences, are essential for genome stability and have been studied in relation to cellular senescence and aging. Telomerase, the enzyme that adds telomeric repeats to chromosome ends, is essential for maintaining the overall telomere length. A lack of telomerase activity in mammalian somatic cells results in progressive shortening of telomeres with each cellular replication event. Mammals exhibit high rates of cell proliferation during embryonic and juvenile stages but very little somatic cell proliferation occurs during adult and senescent stages. The telomere hypothesis of cellular aging states that telomeres serve as an internal mitotic clock and telomere length erosion leads to cellular senescence and eventual cell death. In this report, we have examined telomerase activity, processivity, and telomere length in Daphnia, an organism that grows continuously throughout its life. Similar to insects, Daphnia telomeric repeat sequence was determined to be TTAGG and telomerase products with five-nucleotide periodicity were generated in the telomerase activity assay. We investigated telomerase function and telomere lengths in two closely related ecotypes of Daphnia with divergent lifespans, short-lived D. pulex and long-lived D. pulicaria. Our results indicate that there is no age-dependent decline in telomere length, telomerase activity, or processivity in short-lived D. pulex. On the contrary, a significant age dependent decline in telomere length, telomerase activity and processivity is observed during life span in long-lived D. pulicaria. While providing the first report on characterization of Daphnia telomeres and telomerase activity, our results also indicate that mechanisms other than telomere shortening may be responsible for the strikingly short life span of D. pulex. 相似文献
2.
Christopher J. Jones Anne Soley Julia W. Skinner Jyothi Gupta Michele F. Haughton Fiona S. Wyllie M. Schlumberger Silvia Bacchetti David Wynford-Thomas 《Experimental cell research》1998,240(2):333
Prevention of telomere erosion through acquisition of telomerase activity is thought to be an essential mechanism in most human cancer cells for avoidance of cellular senescence and crisis. It has been generally assumed that once telomerase has been activated, no further telomere shortening should ensue. We show here, however, that a much more complex pattern of telomere dynamics can exist in telomerase-positive immortal cancer cells. Using a panel of subclones derived from a human thyroid cancer cell line, K1E7, we found that some clones show persistent decline in mean telomere restriction fragment (TRF) length by up to 2 kb over 450 population doublings (pd), despite sustained high telomerase activity (as assessed by thein vitro“TRAP” assay). TRF length subsequently stabilized at around 5 kb, but with no corresponding increase in telomerase activity. One clone showed an even more unexpected biphasic time course, with the mean TRF length initially increasing by 1.5 kb over 90 pd, before “plateauing” and then returning over a similar period to its original value, again without any correlation to TRAP activity. Such dissociations between telomere dynamics and telomerase activity support the existence of additional controls on telomere length in the intact cell. Our observations are consistent with current negative-feedback models of telomere length regulation by telomere binding proteins and these cell lines should prove useful experimental tools for their further evaluation. 相似文献
3.
广义的端粒由帽子、双链的串联重复序列的DNA核心部分及亚端粒构成,其结合蛋白是一个复合体,由TRF1、TRF2、TIN2、Pot1、TPP1、RAP1 6个亚单位组成;另外,还结合组蛋白的特定成分H3K9三甲基聚合体和H4K20三甲基聚合体。端粒酶主要由hTerc、hTert、dyskerin构成。端粒的功能主要受端粒酶的活性调控;而端粒酶活性主要受hTert及hTerc的转录水平和转录后的剪切、hTert的翻译等因素的调控。端粒与端粒酶结构和功能的异常与细胞衰老及肿瘤的发生、发展关系密切。 相似文献
4.
5.
亚硒酸钠对肝细胞L-02端粒酶活性和端粒长度的作用 总被引:3,自引:0,他引:3
通过研究硒对端粒酶活性和端粒长度的作用 ,探讨硒抗衰老的生物学机制。实验以人肝细胞株L 0 2为研究对象 ,分别补充 0 .5和 2 .5 μmol L亚硒酸钠 ,采用端粒重复序列扩增 焦磷酸根酶联发光法、逆转录聚合酶链式反应法及流式荧光原位杂交法 ,分别检测细胞的端粒酶活性、人端粒酶逆转录酶催化亚基基因 (hTERT)的表达及端粒长度的变化。结果表明 :常规培养的肝细胞株L 0 2的端粒酶活性和hTERT基因表达水平均较低。补充 0 .5和2 .5 μmol L亚硒酸钠三周后细胞生长状况良好、端粒酶活性和hTERT基因表达水平显著性增高 ,且呈一定的剂量 效应关系。细胞补充亚硒酸钠四周后端粒长度显著增长。说明营养浓度的亚硒酸钠可通过提高端粒酶活性和增长端粒长度来减缓L 0 2肝细胞衰老、延长细胞寿命。 相似文献
6.
端粒是真核细胞染色体末端的特有结构,是由端粒结合蛋白和一段重复序列的端粒DNA组成的一个高度精密的复合体,在维持染色体末端稳定性,避免染色体被核酸酶降解等方面起着重要的作用。端粒的长度、结构及组织形式受多种端粒结合因子的调控。由于端粒的重要性,在哺乳动物细胞里,端粒的长度或端粒结构变化与癌症发生及细胞衰老有密切的关系。由于末端复制问题的存在,随着细胞分裂次数的增加,端粒不断缩短,细胞不可避免的走向衰老或凋亡。由于在细胞分裂过程中端粒长度的不断缩短与细胞分裂代数增加具有相关性,即端粒长度反应了细胞的分裂次数,因此有人将端粒形象的比喻为生物时钟。在90%的癌细胞中,端粒酶被重新激活,以此来维持端粒的长度,使细胞走向永生化。简要综述了端粒、端粒酶及端粒酶结合蛋白的最新研究进展。 相似文献
7.
Chongxian Pan Bao-Hua Xue Thomas M. Ellis David J. Peace Manuel O. D?&#x;az 《Experimental cell research》1997,231(2):346
It has been proposed that telomeres shorten with every cell cycle because the normal mechanism of DNA replication cannot replicate the end sequences of the lagging DNA strand. Telomerase, a ribonucleoprotein enzyme that synthesizes telomeric DNA repeats at the DNA 3′ ends of eukaryotic chromosomes, can compensate for such shortening, by extending the template of the lagging strand. Telomerase activity has been identified in human germline cells and in neoplastic immortal somatic cells, but not in most normal somatic cells, which senesce after a certain number of cell divisions. We and others have found that telomerase activity is present in normal human lymphocytes and is upregulated when the cells are activated. But, unlike the immortal cell lines, presence of telomerase activity is not sufficient to make T cells immortal and telomeres from these cells shorten continuously duringin vitroculture. After senescence, telomerase activity, as detected by the TRAP technique, was downregulated. A cytotoxic T lymphocyte (CTL) cell line that was established in the laboratory has very short terminal restriction fragments (TRFs). Telomerase activity in this cell line is induced during activation and this activity is tightly correlated with cell proliferation. The level of telomerase activity in activated peripheral blood T cells, the CTL cell line, and two leukemia cell lines does not correlate with the average TRF length, suggesting that other factors besides telomerase activity are involved in the regulation of telomere length. 相似文献
8.
Yuwei Zhang Rodrigo Calado Mahadev Rao Julie A. Hong Alan K. Meeker Bogdan Dumitriu Scott Atay Peter J. McCormick Susan H. Garfield Danny Wangsa Hesed M. Padilla-Nash Sandra Burkett Mary Zhang Tricia F. Kunst Nathan R. Peterson Sichuan Xi Suzanne Inchauste Nasser K. Altorki Alan G. Casson David G. Beer Curtis C. Harris Thomas Ried Neal S. Young David S. Schrump 《PloS one》2014,9(7)
9.
端粒是真核细胞染色体末端的DNA序列,在维持染色体的稳定中起着重要的作用。快速生长的细胞通过端粒酶来合成端
粒重复序列以弥补其损耗。在人类恶性肿瘤细胞中,85%以上能检测到端粒酶的活性,使其成为一个几乎普遍的癌标志物,而在大
多数正常体细胞中,端粒酶是阴性的。端粒酶与肿瘤之间的最新研究已经在肿瘤生物学领域开辟了新的途径,可能会彻底改变抗
癌疗法。在这篇文章中,我们将会总结端粒和端粒酶在癌细胞中的作用。随着科技的发展,端粒和端粒酶拥有巨大的潜力,必将能
够为肿瘤的治疗带来更多的方法。 相似文献
10.
目的:克隆端粒、端粒酶结合因子hPinx1基因的启动子,分析并鉴定其活性调控元件。方法:采用PCR技术从人肝癌细胞系HepG2基因组中扩增出hPinx1启动子,构建到萤光素酶报告基因载体pGL3-basic中,确定所扩增的DNA序列,在HepG2细胞中检测其活性。结果:克隆了hPinx1基因转录起始位点上游4661bp且序列正确;活性分析表明hPinx1启动子含有多个调控元件,其中核心序列位于530bp内,在1329-2174bp间存在正调控序列,在2174-4661 bp间存在负调控序列。结论:构建的hPinx1启动子具有活性,为hPinx1的功能研究提供了重要基础。 相似文献
11.
Evert van den Broek Maurits J. J. Dijkstra Oscar Krijgsman Daoud Sie Josien C. Haan Joleen J. H. Traets Mark A. van de Wiel Iris D. Nagtegaal Cornelis J. A. Punt Beatriz Carvalho Bauke Ylstra Sanne Abeln Gerrit A. Meijer Remond J. A. Fijneman 《PloS one》2015,10(9)
Background
Cancer is caused by somatic DNA alterations such as gene point mutations, DNA copy number aberrations (CNA) and structural variants (SVs). Genome-wide analyses of SVs in large sample series with well-documented clinical information are still scarce. Consequently, the impact of SVs on carcinogenesis and patient outcome remains poorly understood. This study aimed to perform a systematic analysis of genes that are affected by CNA-associated chromosomal breaks in colorectal cancer (CRC) and to determine the clinical relevance of recurrent breakpoint genes.Methods
Primary CRC samples of patients with metastatic disease from CAIRO and CAIRO2 clinical trials were previously characterized by array-comparative genomic hybridization. These data were now used to determine the prevalence of CNA-associated chromosomal breaks within genes across 352 CRC samples. In addition, mutation status of the commonly affected APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, BRAF and NRAS genes was determined for 204 CRC samples by targeted massive parallel sequencing. Clinical relevance was assessed upon stratification of patients based on gene mutations and gene breakpoints that were observed in >3% of CRC cases.Results
In total, 748 genes were identified that were recurrently affected by chromosomal breaks (FDR <0.1). MACROD2 was affected in 41% of CRC samples and another 169 genes showed breakpoints in >3% of cases, indicating that prevalence of gene breakpoints is comparable to the prevalence of well-known gene point mutations. Patient stratification based on gene breakpoints and point mutations revealed one CRC subtype with very poor prognosis.Conclusions
We conclude that CNA-associated chromosomal breaks within genes represent a highly prevalent and clinically relevant subset of SVs in CRC. 相似文献12.
13.
14.
15.
研究外源端粒片段植入胃癌7901细胞后对细胞生长、端粒长度和端粒酶活性的影响.采用lipofectTM2000介导的转染方式,将含有端粒片段质粒pSXneo-1.6-T2AG3转染胃癌细胞SGC7901,PCR在基因水平上鉴定外源性端粒片段的植入后,采用TRAP法检测转染细胞端粒酶活性变化,TRF法检测转染细胞端粒长度变化,MTT法检测细胞生长曲线,RT-PCR测定转染细胞hTERT表达变化.染色体核型分析细胞染色体变化.结果显示端粒片段成功导入SGC7901细胞后获得稳定的细胞株,端粒片段植入后细胞生长变慢,端粒长度延长不明显,端粒酶活性明显降低,hTERT mRNA表达水平下降,核型分析显示转染前后细胞染色体数目无明显变化.实验成功将携带了1600 bp端粒TTAGGG重复序列的真核表达载体pSX-T2AG3-neo稳定转染至人胃癌7901细胞中,端粒植入降低细胞端粒酶的活性和下调端粒酶活性亚单位hTERT的表达,但对端粒长度无明显影响. 相似文献
16.
目的:克隆端粒、端粒酶结合因子hPinx1基因的启动子,分析并鉴定其活性调控元件。方法:采用PCR技术从人肝癌细胞系HepG2基因组中扩增出hPinx1启动子,构建到萤光素酶报告基因载体pGL3-basic中,确定所扩增的DNA序列,在HepG2细胞中检测其活性。结果:克隆了hPinx1基因转录起始位点上游4661bp且序列正确;活性分析表明hPinx1启动子含有多个调控元件,其中核心序列位于530bp内,在1329-2174bp间存在正调控序列,在2174-4661 bp间存在负调控序列。结论:构建的hPinx1启动子具有活性,为hPinx1的功能研究提供了重要基础。 相似文献
17.
18.
Mads H. Haugen Harald T. Johansen Solveig J. Pettersen Rigmor Solberg Klaudia Brix Kjersti Flatmark Gunhild M. Maelandsmo 《PloS one》2013,8(1)
The cysteine protease legumain is involved in several biological and pathological processes, and the protease has been found over-expressed and associated with an invasive and metastatic phenotype in a number of solid tumors. Consequently, legumain has been proposed as a prognostic marker for certain cancers, and a potential therapeutic target. Nevertheless, details on how legumain advances malignant progression along with regulation of its proteolytic activity are unclear. In the present work, legumain expression was examined in colorectal cancer cell lines. Substantial differences in amounts of pro- and active legumain forms, along with distinct intracellular distribution patterns, were observed in HCT116 and SW620 cells and corresponding subcutaneous xenografts. Legumain is thought to be located and processed towards its active form primarily in the endo-lysosomes; however, the subcellular distribution remains largely unexplored. By analyzing subcellular fractions, a proteolytically active form of legumain was found in the nucleus of both cell lines, in addition to the canonical endo-lysosomal residency. In situ analyses of legumain expression and activity confirmed the endo-lysosomal and nuclear localizations in cultured cells and, importantly, also in sections from xenografts and biopsies from colorectal cancer patients. In the HCT116 and SW620 cell lines nuclear legumain was found to make up approximately 13% and 17% of the total legumain, respectively. In similarity with previous studies on nuclear variants of related cysteine proteases, legumain was shown to process histone H3.1. The discovery of nuclear localized legumain launches an entirely novel arena of legumain biology and functions in cancer. 相似文献
19.
The serum muramidase levels were measured in 128 patients with primary or metastatic colorectal cancer, 166 tumour-free patients after resection of a colorectal cancer, and 172 controls. Muramidase levels over 10 μg/ml were detected in 30%-39% of the tumour-bearing patients, in 8·2% of the tumour free, and in only 1·7% of the controls (normal level 6·68 ± 1·42 μg/ml). Long-term follow up indicated that raised levels may occur as a transient phenomenon in recurrent or metastatic disease. The likely relation of abnormal serum muramidase activity and stimulation of the reticuloendothelial system is discussed. 相似文献
20.
端粒及端粒酶的研究进展 总被引:13,自引:0,他引:13
端粒是染色体末端独特的蛋白质-DNA结构,在保护染色体的完整性和维持细胞的复制能力方面起着重要的作用.端粒酶则是由RNA和蛋白质亚基组成的、能够延长端粒的一种特殊反转录酶.端粒长度和端粒酶活性的变化与细胞衰老和癌变密切相关.端粒结合蛋白可能通过调节端粒酶的活性来调节端粒长度,进而控制细胞的衰老、永生化和癌变.研制端粒酶的专一性抑制剂在肿瘤治疗方面有着广阔的前景. 相似文献