首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies addressing the ontogeny of the innate immune system in early life have reported mainly on Toll-like receptor (TLR) responses in infants living in high-income countries, with little or even no information on other pattern recognition receptors or on early life innate immune responses in children living under very different environmental conditions in less-developed parts of the world. In this study, we describe whole blood innate immune responses to both Toll-like and nucleotide-binding oligomerization domain (NOD)-like receptor agonists including the widely used vaccine adjuvant 'alum' in a group of Papua New Guinean infants aged 1-3 (n?=?18), 4-6 (n?=?18), 7-12 (n?=?21) and 13-18 (n?=?10) months old. Depending on the ligands and cytokines studied, different age-related patterns were found: alum-induced IL-1β and CXCL8 responses were found to significantly decline with increasing age; inflammatory (IL-6, IL-1β, IFN-γ) responses to TLR2 and TLR3 agonists increased; and IL-10 responses remained constant or increased during infancy, while TNF-α responses either declined or remained the same. We report for the first time that whole blood innate immune responses to the vaccine adjuvant alum decrease with age in infancy; a finding that may imply that the adjuvant effect of alum in pediatric vaccines could be age-related. Our findings further suggest that patterns of innate immune development may vary between geographically diverse populations, which in line with the 'hygiene hypothesis' particularly involves persistence of innate IL-10 responses in populations experiencing higher infectious pressure.  相似文献   

2.
Two types of synthetic peptidoglycan fragments, diaminopimelic acid (DAP)-containing desmuramylpeptides (DMP) and muramyldipeptide (MDP), induced secretion of interleukin (IL)-8 in a dose-dependent manner in human monocytic THP-1 cells, although high concentrations of compounds are required as compared with chemically synthesized Toll-like receptor (TLR) agonists mimicking bacterial components: TLR2 agonistic lipopeptide (Pam3CSSNA), TLR4 agonistic lipid A (LA-15-PP) and TLR9 agonistic bacterial CpG DNA. We found marked synergistic IL-8 secretion induced by MDP or DAP-containing DMP in combination with synthetic TLR agonists in THP-1 cells. Suppression of the mRNA expression of nucleotide-binding oligomerization domain (NOD)1 and NOD2 by RNA interference specifically inhibited the synergistic IL-8 secretion induced by DMP and MDP with these TLR agonists respectively. In accordance with the above results, enhanced IL-8 mRNA expression and the activation of nuclear factor (NF)-kappaB induced by MDP or DMP in combination with synthetic TLR agonists were markedly suppressed in NOD2- and NOD1-silenced cells respectively. These findings indicated that NOD2 and NOD1 are specifically responsible for the synergistic effects of MDP and DMP with TLR agonists, and suggested that in host innate immune responses to invading bacteria, combinatory dual signalling through extracellular TLRs and intracellular NODs might lead to the synergistic activation of host cells.  相似文献   

3.
Kim HS  Shin TH  Yang SR  Seo MS  Kim DJ  Kang SK  Park JH  Kang KS 《PloS one》2010,5(10):e15369
Toll-like receptors (TLRs) and Nod-like receptors (NLRs) are known to trigger an innate immune response against microbial infection. Although studies suggest that activation of TLRs modulate the function of mesenchymal stem cells (MSCs), little is known about the role of NLRs on the MSC function. In this study, we investigated whether NOD1 and NOD2 regulate the functions of human umbilical cord blood-derived MSCs (hUCB-MSCs). The genes of TLR2, TLR4, NOD1, and NOD2 were expressed in hUCB-MSCs. Stimulation with each agonist (Pam(3)CSK(4) for TLR2, LPS for TLR4, Tri-DAP for NOD1, and MDP for NOD2) led to IL-8 production in hUCB-MSC, suggesting the expressed receptors are functional in hUCB-MSC. CCK-8 assay revealed that none of agonist influenced proliferation of hUCB-MSCs. We next examined whether TLR and NLR agonists affect osteogenic-, adipogenic-, and chondrogenic differentiation of hUCB-MSCs. Pam(3)CSK(4) and Tri-DAP strongly enhanced osteogenic differentiation and ERK phosphorylation in hUCB-MSCs, and LPS and MDP also slightly did. Treatment of U0126 (MEK1/2 inhibitor) restored osteogenic differentiation enhanced by Pam(3)CSK(4). Tri-DAP and MDP inhibited adipogenic differentiation of hUCB-MSCs, but Pam(3)CSK(4) and LPS did not. On chondrogenic differentiation, all TLR and NLR agonists could promote chondrogenesis of hUCB-MSCs with difference in the ability. Our findings suggest that NOD1 and NOD2 as well as TLRs are involved in regulating the differentiation of MSCs.  相似文献   

4.
The recognition of peptidoglycan by cells of the innate immune system has been controversial; both TLR2 and nucleotide-binding oligomerization domain-2 (NOD2) have been implicated in this process. In the present study we demonstrate that although NOD2 is required for recognition of peptidoglycan, this leads to strong synergistic effects on TLR2-mediated production of both pro- and anti-inflammatory cytokines. Defective IL-10 production in patients with Crohn's disease bearing loss of function mutations of NOD2 may lead to overwhelming inflammation due to a subsequent Th1 bias. In addition to the potentiation of TLR2 effects, NOD2 is a modulator of signals transmitted through TLR4 and TLR3, but not through TLR5, TLR9, or TLR7. Thus, interaction between NOD2 and specific TLR pathways may represent an important modulatory mechanism of innate immune responses.  相似文献   

5.
Toll-like receptors (TLRs), which are mainly expressed in antigen presenting cells, perform a critical role in innate immunity by recognizing the specific structural patterns of pathogens and transducing signals to induce an inflammatory reaction. Although it has been reported that various solid cancers express endosomal TLRs, TLR3, 7, 8, and 9, the cellular and molecular function of TLRs in tumorigenesis has not yet been elucidated. In this report, we identified the expression of TLR3 and TLR7 in the human breast cancer cell line MCF-7 and found that TLRs stimulated with their specific ligand induced an anti-tumoral effect in this cell line. Among four synthetic commercial agonists of TLR3 and 7, Poly(I:C) and imiquimod (IMQ) proved to have superior anti-tumoral activity over the other agonists. A decreased growth rate was observed in MCF-7 cells treated with either TLR agonist. The decreased growth rate was due to autophagy and autophagy-induced cell death because treatment with 3-methyladenine, inhibitor of autophagy rescued the growth rate and increased the expression levels of autophagy-related genes. Moreover, survival of MCF-7 cells significantly decreased when the cells were stimulated simultaneously with TLR agonists and radiation exposure. Therefore, this study can be applied to developing a therapeutic adjuvant of TLR agonists in radiotherapy for radio-resistant breast cancer treatment.  相似文献   

6.
Engagement of toll-like receptors (TLRs) serve to link innate immune responses with adaptive immunity and can be exploited as powerful vaccine adjuvants for eliciting both primary and anamnestic immune responses. TLR7 agonists are highly immunostimulatory without inducing dominant proinflammatory cytokine responses. We synthesized a dendrimeric molecule bearing six units of a potent TLR7/TLR8 dual-agonistic imidazoquinoline to explore if multimerization of TLR7/8 would result in altered activity profiles. A complete loss of TLR8-stimulatory activity with selective retention of the TLR7-agonistic activity was observed in the dendrimer. This was reflected by a complete absence of TLR8-driven proinflammatory cytokine and interferon (IFN)-γ induction in human PBMCs, with preservation of TLR7-driven IFN-α induction. The dendrimer was found to be superior to the imidazoquinoline monomer in inducing high titers of high-affinity antibodies to bovine α-lactalbumin. Additionally, epitope mapping experiments showed that the dendrimer induced immunoreactivity to more contiguous peptide epitopes along the amino acid sequence of the model antigen.  相似文献   

7.
The TLRs 7, 8, and 9 stimulate innate immune responses upon recognizing pathogen nucleic acids. U-rich RNA sequences were recently discovered that stimulate human TLR7/8-mediated or murine TLR7-mediated immune effects. In this study we identified single-stranded RNA sequences containing defined sequence motifs that either preferentially activate human TLR8-mediated as opposed to TLR7- or TLR7/8-mediated immune responses. The identified TLR8 RNA motifs signal via TLR8 and fail to induce IFN-alpha from TLR7-expressing plasmacytoid dendritic cells but induce the secretion of Th1-like and proinflammatory cytokines from TLR8-expressing immune cells such as monocytes or myeloid dendritic cells. In contrast, RNA sequences containing the TLR7/8 motif signal via TLR7 and TLR8 and stimulate cytokine secretion from both TLR7- and TLR8-positive immunocytes. The TLR8-specific RNA sequences are able to trigger cytokine responses from human and bovine but not from mouse, rat, and porcine immune cells, suggesting that these species lack the capability to respond properly to TLR8 RNA ligands. In summary, we describe two classes of single-stranded TLR7/8 and TLR8 RNA agonists with diverse target cell and species specificities and immune response profiles.  相似文献   

8.
Although TLR7 and TLR8 are phylogenetically and structurally related, their relative functions are largely unknown. The role of TLR7 has been established using TLR7-deficient mice and small molecule TLR7 agonists. The absence of TLR8-selective agonists has hampered our understanding of the role of TLR8. In this study TLR agonists selective for TLR7 or TLR8 were used to determine the repertoire of human innate immune cells that are activated through these TLRs. We found that TLR7 agonists directly activated purified plasmacytoid dendritic cells and, to a lesser extent, monocytes. Conversely, TLR8 agonists directly activated purified myeloid dendritic cells, monocytes, and monocyte-derived dendritic cells (GM-CSF/IL-4/TGF-beta). Accordingly, TLR7-selective agonists were more effective than TLR8-selective agonists at inducing IFN-alpha- and IFN-regulated chemokines such as IFN-inducible protein and IFN-inducible T cell alpha chemoattractant from human PBMC. In contrast, TLR8 agonists were more effective than TLR7 agonists at inducing proinflammatory cytokines and chemokines, such as TNF-alpha, IL-12, and MIP-1alpha. Thus, this study demonstrated that TLR7 and TLR8 agonists differ in their target cell selectivity and cytokine induction profile.  相似文献   

9.
Toll-like receptors (TLRs) play important roles in initiation of innate and adaptive immune responses. Emerging evidence suggests that TLR agonists can serve as potential adjuvant for vaccination. Heat shock proteins (HSPs), functionally serving as TLR4 agonists, have been proposed to act as Th1 adjuvant. We have identified a novel Hsp70 family member, termed Hsp70-like protein 1 (Hsp70L1), shown that Hsp70L1 is a potent T helper cell (Th1) polarizing adjuvant that contributes to antitumor immune responses. However, the underlying mechanism for how Hsp70L1 exerts its Th1 adjuvant activity remains to be elucidated. In this study, we found that Hsp70L1 binds directly to TLR4 on the surface of DCs, activates MAPK and NF-κB pathways, up-regulates I-a(b), CD40, CD80, and CD86 expression and promotes production of TNF-α, IL-1β, and IL-12p70. Hsp70L1 failed to induce such phenotypic maturation and cytokine production in TLR4-deficient DCs, indicating a role for TLR4 in mediating Hsp70L1-induced DC activation. Furthermore, more efficient induction of carcinoembryonic antigen (CEA)-specific Th1 immune response was observed in mice immunized by wild-type DCs pulsed with Hsp70L1-CEA(576-669) fusion protein as compared with TLR4-deficient DCs pulsed with same fusion protein. In addition, TLR4 antagonist impaired induction of CEA-specific human Th1 immune response in a co-culture system of peripheral blood lymphocytes (PBLs) from HLA-A2.1(+) healthy donors and autologous DCs pulsed with Hsp70L1-CEA(576-669) in vitro. Taken together, these results demonstrate that TLR4 is a key receptor mediating the interaction of Hsp70L1 with DCs and subsequently enhancing the induction of Th1 immune response by Hsp70L1/antigen fusion protein.  相似文献   

10.
Complexing TLR9 agonists such as plasmid DNA to cationic liposomes markedly potentiates their ability to activate innate immunity. We therefore reasoned that liposomes complexed with DNA or other TLR agonists could be used as effective vaccine adjuvants. To test this hypothesis, the vaccine adjuvant effects of liposomes complexed to TLR agonists were assessed in mice. We found that liposomes complexed to nucleic acids (liposome-Ag-nucleic acid complexes; LANAC) were particularly effective adjuvants for eliciting CD4(+) and CD8(+) T cell responses against peptide and protein Ags. Notably, LANAC containing TLR3 or TLR9 agonists effectively cross-primed CD8(+) T cell responses against even low doses of protein Ags, and this effect was independent of CD4(+) T cell help. Ag-specific CD8(+) T cells elicited by LANAC adjuvants were functionally active and persisted for long periods of time in tissues. In a therapeutic tumor vaccine model, immunization with the melanoma peptide trp2 and LANAC adjuvant controlled the growth of established B16 melanoma tumors. In a prophylactic vaccine model, immunization with the Mycobacterium tuberculosis protein ESAT-6 with LANAC adjuvant elicited significant protective immunity against aerosol challenge with virulent M. tuberculosis. These results suggest that certain TLR agonists can be combined with cationic liposomes to produce uniquely effective vaccine adjuvants capable of eliciting strong T cell responses against protein and peptide Ags.  相似文献   

11.
《Autophagy》2013,9(6):816-818
Autophagy, a specialized lysosomal degradation pathway, has proven to be a potent cell-autonomous defense mechanism against a range of intracellular microbes. In addition, autophagy emerged recently as a critical regulator of innate and adaptive immune responses. Links between autophagy and innate immunity are being progressively unveiled. For instance, several TLR (Toll-Like Receptor) agonists upregulate autophagy flux in immune cell types such as DC (dendritic cells) or macrophages. Conversely, and perhaps surprisingly, is the observation that TLR7-mediated responses might depend on autophagy in plasmacytoid DC, thus suggesting a more complex link between TLR-dependent responses and autophagy. Recently, the demonstration that NOD2 increases autophagy suggests that innate immune responses initiated via a broad range of pathogen recognition receptors can regulate autophagy. In addition to its involvement in innate immune responses, autophagy regulates adaptive immune responses via both MHC class I and class II molecules depending on the cellular context and the nature of the antigen.  相似文献   

12.
Mother-to-child transmission (MTCT) of HIV-1 has been significantly reduced with the use of antiretroviral therapies, resulting in an increased number of HIV-exposed uninfected infants. The consequences of HIV infection on the innate immune system of both mother-newborn are not well understood. In this study, we analyzed peripheral blood and umbilical cord blood (CB) collected from HIV-1-infected and uninfected pregnant women. We measured TNF-α, IL-10 and IFN-α secretion after the stimulation of the cells with agonists of both extracellular Toll-like receptors (TLRs) (TLR2, TLR4 and TLR5) and intracellular TLRs (TLR7, TLR7/8 and TLR9). Moreover, as an indicator of the innate immune response, we evaluated the responsiveness of myeloid dendritic cells (mDCs) and plasmacytoid DCs (pDCs) to TLRs that are associated with the antiviral response. Our results showed that peripheral blood mononuclear cells (PBMCs) from HIV-1-infected mothers and CB were defective in TNF-α production after activation by TLR2, TLR5, TLR3 and TLR7. However, the TNF-α response was preserved after TLR7/8 (CL097) stimulation, mainly in the neonatal cells. Furthermore, only CL097 activation was able to induce IL-10 and IFN-α secretion in both maternal and CB cells in the infected group. An increase in IFN-α secretion was observed in CL097-treated CB from HIV-infected mothers compared with control mothers. The effectiveness of CL097 stimulation was confirmed by observation of similar mRNA levels of interferon regulatory factor-7 (IRF-7), IFN-α and TNF-α in PBMCs of both groups. The function of both mDCs and pDCs was markedly compromised in the HIV-infected group, and although TLR7/TLR8 activation overcame the impairment in TNF-α secretion by mDCs, such stimulation was unable to reverse the dysfunctional type I IFN response by pDCs in the HIV-infected samples. Our findings highlight the dysfunction of innate immunity in HIV-infected mother-newborn pairs. The activation of the TLR7/8 pathway could function as an adjuvant to improve maternal-neonatal innate immunity.  相似文献   

13.
Bone marrow-derived immunomodulatory cytokines impart a critical function in the regulation of innate immune responses and hemopoiesis. However, the source of immunomodulatory cytokines in murine bone marrow and the cellular immune mechanisms that control local cytokine secretion remain poorly defined. Herein, we identified a population of resident murine bone marrow myeloid DEC205(+)CD11c(-)B220(-)Gr1(+)CD8alpha(-)CD11b(+) cells that respond to TLR2, TLR4, TLR7, TLR8, and TLR9 agonists as measured by the secretion of proinflammatory and anti-inflammatory cytokines in vitro. Phenotypic and functional analyses revealed that DEC205(+)CD11b(+)Gr-1(+) bone marrow cells consist of heterogeneous populations of myeloid cells that can be divided into two main cell subsets based on chemokine and TLR gene expression profile. The DEC205(+)CD11b(+)Gr-1(low) cell subset expresses high levels of TLR7 and TLR9 and was the predominant source of IL-6, TNF-alpha, and IL-12 p70 production following stimulation with the TLR7 and TLR9 agonists CpG and R848, respectively. In contrast, the DEC205(+)CD11b(+)Gr-1(high) cell subset did not respond to CpG and R848 stimulation, which correlated with their lack of TLR7 and TLR9 expression. Similarly, a differential chemokine receptor expression profile was observed with higher expression of CCR1 and CXCR2 found in the DEC205(+)CD11(+)Gr-1(high) cell subset. Thus, we identified a previously uncharacterized population of resident bone marrow cells that may be implicated in the regulation of local immune responses in the bone marrow.  相似文献   

14.
Until recently, the development of new human adjuvants was held back by a poor understanding of their mechanisms of action. The field was revolutionized by the discovery of the toll-like receptors (TLRs), innate immune receptors that directly or indirectly are responsible for detecting pathogen-associated molecular patterns (PAMPs) and respond to them by activating innate and adaptive immune pathways. Hundreds of ligands targeting various TLRs have since been identified and characterized as vaccine adjuvants. This work has important implications not only for the development of vaccines against infectious diseases but also for immuno-therapies against cancer, allergy, Alzheimer's disease, drug addiction and other diseases. Each TLR has its own specific tissue localization and downstream gene signalling pathways, providing researchers the opportunity to precisely tailor adjuvants with specific immune effects. TLR agonists can be combined with other TLR or alternative adjuvants to create combination adjuvants with synergistic or modulatory effects. This review provides an introduction to the various classes of TLR adjuvants and their respective signalling pathways. It provides an overview of recent advancements in the TLR field in the past 2–3 years and discusses criteria for selecting specific TLR adjuvants based on considerations, such as disease mechanisms and correlates of protection, TLR immune biasing capabilities, route of administration, antigen compatibility, new vaccine technology platforms, and age- and species-specific effects.  相似文献   

15.
TLRs are important sensors of the innate immune system that serve to identify conserved microbial components to mount a protective immune response. They furthermore control the survival of the challenged cell by governing the induction of pro- and antiapoptotic signaling pathways. Pathogenic Yersinia spp. uncouple the balance of life and death signals in infected macrophages, which compels the macrophage to undergo apoptosis. The initiation of apoptosis by Yersinia infection specifically involves TLR4 signaling, although Yersinia can activate TLR2 and TLR4. In this study we characterized the roles of downstream TLR adapter proteins in the induction of TLR-responsive apoptosis. Experiments using murine macrophages defective for MyD88 or Toll/IL-1R domain-containing adapter inducing IFN-beta (TRIF) revealed that deficiency of TRIF, but not of MyD88, provides protection against Yersinia-mediated cell death. Similarly, apoptosis provoked by treatment of macrophages with the TLR4 agonist LPS in the presence of a proteasome inhibitor was inhibited in TRIF-defective, but not in MyD88-negative, cells. The transfection of macrophages with TRIF furthermore potently promoted macrophage apoptosis, a process that involved activation of a Fas-associated death domain- and caspase-8-dependent apoptotic pathway. These data indicate a crucial function of TRIF as proapoptotic signal transducer in bacteria-infected murine macrophages, an activity that is not prominent for MyD88. The ability to elicit TRIF-dependent apoptosis was not restricted to TLR4 activation, but was also demonstrated for TLR3 agonists. Together, these results argue for a specific proapoptotic activity of TRIF as part of the host innate immune response to bacterial or viral infection.  相似文献   

16.
One strategy to induce optimal cellular and humoral immune responses following immunization is to use vaccines or adjuvants that target dendritic cells and B cells. Activation of both cell types can be achieved using specific TLR ligands or agonists directed against their cognate receptor. In this study, we compared the ability of the TLR7/8 agonist R-848, which signals only via TLR7 in mice, with CpG oligodeoxynucleotides for their capacity to induce HIV-1 Gag-specific T cell and Ab responses when used as vaccine adjuvants with HIV-1 Gag protein in mice. Injection of R-848 and CpG oligodeoxynucleotides alone enhanced the innate immune responses in vivo as demonstrated by high serum levels of inflammatory cytokines, including IL-12p70 and IFN-alpha, and increased expression of CD80, CD86, and CD40 on CD11c(+) dendritic cells. By contrast, R-848 was a relatively poor adjuvant for inducing primary Th1 or CD8(+) T cell responses when administered with HIV-1 Gag protein. However, when a TLR7/8 agonist structurally and functionally similar to R-848 was conjugated to HIV-1 Gag protein both Th1 and CD8(+) T cells responses were elicited as determined by intracellular cytokine and tetramer staining. Moreover, within the population of HIV-1 Gag-specific CD8(+) CD62(low) cells, approximately 50% of cells expressed CD127, a marker shown to correlate with the capacity to develop into long-term memory cells. Overall, these data provide evidence that TLR7/8 agonists can be effective vaccine adjuvants for eliciting strong primary immune responses with a viral protein in vivo, provided vaccine delivery is optimized.  相似文献   

17.
Toll-like receptors (TLRs) are a type of pattern recognition receptors (PRRs), which are activated by recognizing pathogen-associated molecular patterns (PAMPs). The activation of TLRs initiates innate immune responses and subsequently leads to adaptive immune responses. TLR agonists are effective immuomodulators in vaccine adjuvants for infectious diseases and cancer immunotherapy. In exploring hydrophilic small molecules of TLR7 ligands using the cell-targeted property of a vaccine adjuvant, we conjugated 1V209, a small TLR7 ligand molecule, with various low or middle molecular weight sugar molecules that work as carriers. The sugar-conjugated 1V209 derivatives showed increased water solubility and higher immunostimulatory activity in both mouse and human cells compared to unmodified 1V209. The improved immunostimulatory potency of sugar-conjugates was attenuated by an inhibitor of endocytic process, cytochalasin D, suggesting that conjugation of sugar moieties may enhance the uptake of TLR7 ligand into the endosomal compartment. Collectively our results support that sugar-conjugated TLR7 ligands are applicable to novel drugs for cancer and vaccine therapy.  相似文献   

18.

Background

Waddlia chondrophila (W. chondrophila) is an emerging agent of respiratory and reproductive disease in humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial agents, such as Chlamydia abortus (C. abortus). The current study investigated the growth characteristics and innate immune responses of human and ruminant epithelial cells in response to infection with W. chondrophila.

Methods

Human epithelial cells (HEp2) were infected with W. chondrophila for 24h. CXCL8 release was significantly elevated in each of the cell lines by active-infection with live W. chondrophila, but not by exposure to UV-killed organisms. Inhibition of either p38 or p42/44 MAPK significantly inhibited the stimulation of CXCL8 release in each of the cell lines. To determine the pattern recognition receptor through which CXCL8 release was stimulated, wild-type HEK293 cells which express no TLR2, TLR4, NOD2 and only negligible NOD1 were infected with live organisms. A significant increase in CXCL8 was observed.

Conclusions/Significance

W. chondrophila actively infects and replicates within both human and ruminant epithelial cells stimulating CXCL8 release. Release of CXCL8 is significantly inhibited by inhibition of either p38 or p42/44 MAPK indicating a role for this pathway in the innate immune response to W. chondrophila infection. W. chondrophila stimulation of CXCL8 secretion in HEK293 cells indicates that TLR2, TLR4, NOD2 and NOD1 receptors are not essential to the innate immune response to infection.  相似文献   

19.
TLRs initiate the host immune response to microbial pathogens by activating cells of the innate immune system. Dendritic cells (DCs) can be categorized into two major groups, conventional DCs (including CD8(+) and CD8(-) DCs) and plasmacytoid DCs. In mice, these subsets of DCs express a variety of TLRs, with conventional DCs responding in vitro to predominantly TLR3, TLR4, TLR5, and TLR9 ligands, and plasmacytoid DCs responding mainly to TLR7 and TLR9 ligands. However, the in vivo requirement of DCs to initiate immune responses to specific TLR agonists is not fully known. Using mice depleted of >90% of CD11c(+) MHC class II(+) DCs, we demonstrate that cellular recruitment, including CD4(+) T cell and CX5(+)DX5(+) NK cell recruitment to draining lymph nodes following the footpad administration of TLR4 and TLR5 agonists, is dramatically decreased upon reduction of DC numbers, but type I IFN production can partially substitute for DCs in response to TLR3 and TLR7 agonists. Interestingly, TLR ligands can activate T cells and NK cells in the draining lymph nodes, even with reduced DC numbers. The findings reveal considerable plasticity in the response to TLR agonists, with TLR4 and TLR5 agonists sharing the requirement of DCs for subsequent lymph node recruitment of NK and T cells.  相似文献   

20.
NOD2, a protein associated with susceptibility to Crohn's disease, confers responsiveness to bacterial preparations of lipopolysaccharide and peptidoglycan, but the precise moiety recognized remains elusive. Biochemical and functional analyses identified muramyl dipeptide (MurNAc-L-Ala-D-isoGln) derived from peptidoglycan as the essential structure in bacteria recognized by NOD2. Replacement of L-Ala for D-Ala or D-isoGln for L-isoGln eliminated the ability of muramyl dipeptide to stimulate NOD2, indicating stereoselective recognition. Muramyl dipeptide was recognized by NOD2 but not by TLR2 or co-expression of TLR2 with TLR1 or TLR6. NOD2 mutants associated with susceptibility to Crohn's disease were deficient in their recognition of muramyl dipeptide. Notably, peripheral blood mononuclear cells from individuals homozygous for the major disease-associated L1007fsinsC NOD2 mutation responded to lipopolysaccharide but not to synthetic muramyl dipeptide. Thus, NOD2 mediates the host response to bacterial muropeptides derived from peptidoglycan, an activity that is important for protection against Crohn's disease. Because muramyl dipeptide is the essential structure of peptidoglycan required for adjuvant activity, these results also have implications for understanding adjuvant function and effective vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号