首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A common property of G protein-coupled receptors is that they become less responsive with prolonged stimulation. Regulators of G protein signaling (RGS proteins) are well known to accelerate G protein GTPase activity and do so by stabilizing the transition state conformation of the G protein alpha subunit. In the yeast Saccharomyces cerevisiae there are four RGS-homologous proteins (Sst2, Rgs2, Rax1, and Mdm1) and two Galpha proteins (Gpa1 and Gpa2). We show that Sst2 is the only RGS protein that binds selectively to the transition state conformation of Gpa1. The other RGS proteins also bind Gpa1 and modulate pheromone signaling, but to a lesser extent and in a manner clearly distinct from Sst2. To identify other candidate pathway regulators, we compared pheromone responses in 4,349 gene deletion mutants representing nearly all nonessential genes in yeast. A number of mutants produced an increase (sst2, bar1, asc1, and ygl024w) or decrease (cla4) in pheromone sensitivity or resulted in pheromone-independent signaling (sst2, pbs2, gas1, and ygl024w). These findings suggest that Sst2 is the principal regulator of Gpa1-mediated signaling in vivo but that other proteins also contribute in distinct ways to pathway regulation.  相似文献   

2.
In the yeast Saccharomyces cerevisiae the accumulation of cAMP is controlled by an elaborate pathway. Only two triggers of the Ras adenylate cyclase pathway are known. Intracellular acidification induces a Ras-mediated long-lasting cAMP increase. Addition of glucose to cells grown on a non-fermentable carbon source or to stationary-phase cells triggers a transient burst in the intracellular cAMP level. This glucose-induced cAMP signal is dependent on the G alpha-protein Gpa2. We show that the G-protein coupled receptor (GPCR) Gpr1 interacts with Gpa2 and is required for stimulation of cAMP synthesis by glucose. Gpr1 displays sequence homology to GPCRs of higher organisms. The absence of Gpr1 is rescued by the constitutively activated Gpa2Val-132 allele. In addition, we isolated a mutant allele of GPR1, named fil2, in a screen for mutants deficient in glucose-induced loss of heat resistance, which is consistent with its lack of glucose-induced cAMP activation. Apparently, Gpr1 together with Gpa2 constitute a glucose-sensing system for activation of the cAMP pathway. Deletion of Gpr1 and/or Gpa2 affected cAPK-controlled features (levels of trehalose, glycogen, heat resistance, expression of STRE-controlled genes and ribosomal protein genes) specifically during the transition to growth on glucose. Hence, an alternative glucose-sensing system must signal glucose availability for the Sch9-dependent pathway during growth on glucose. This appears to be the first example of a GPCR system activated by a nutrient in eukaryotic cells. Hence, a subfamily of GPCRs might be involved in nutrient sensing.  相似文献   

3.
Sst2 is the prototype for the newly recognized RGS (for regulators of G-protein signaling) family. Cells lacking the pheromone-inducible SST2 gene product fail to resume growth after exposure to pheromone. Conversely, overproduction of Sst2 markedly enhanced the rate of recovery from pheromone-induced arrest in the long-term halo bioassay and detectably dampened signaling in a short-term assay of pheromone response (phosphorylation of Ste4, Gbeta subunit). When the GPA1 gene product (Galpha subunit) is absent, the pheromone response pathway is constitutively active and, consequently, growth ceases. Despite sustained induction of Sst2 (observed with specific anti-Sst2 antibodies), gpa1delta mutants remain growth arrested, indicating that the action of Sst2 requires the presence of Gpa1. The N-terminal domain (residues 3 to 307) of Sst2 (698 residues) has sequence similarity to the catalytic regions of bovine GTPase-activating protein and human neurofibromatosis tumor suppressor protein; segments in the C-terminal domain of Sst2 (between residues 417 and 685) are homologous to other RGS proteins. Both the N- and C-terminal domains were required for Sst2 function in vivo. Consistent with a role for Sst2 in binding to and affecting the activity of Gpa1, the majority of Sst2 was membrane associated and colocalized with Gpa1 at the plasma membrane, as judged by sucrose density gradient fractionation. Moreover, from cell extracts, Sst2 could be isolated in a complex with Gpa1 (expressed as a glutathione S-transferase fusion); this association withstood the detergent and salt conditions required for extraction of these proteins from cell membranes. Also, SST2+ cells expressing a GTPase-defective GPA1 mutant displayed an increased sensitivity to pheromone, whereas sst2 cells did not. These results demonstrate that Sst2 and Gpa1 interact physically and suggest that Sst2 is a direct negative regulator of Gpa1.  相似文献   

4.
Lin YR  Kim K  Yang Y  Ivessa A  Sadoshima J  Park Y 《Aging cell》2011,10(3):438-447
Regulator of G-protein signaling (RGS) proteins contribute to G-protein signaling pathways as activators or repressors with GTPase-activating protein (GAP) activity. To characterize whether regulation of RGS proteins influences longevity in several species, we measured stress responses and lifespan of RGS-overexpressing and RGS-lacking mutants. Reduced expression of Loco, a RGS protein of Drosophila melanogaster, resulted in a longer lifespan for both male and female flies, also exhibiting stronger resistance to three different stressors (starvation, oxidation, and heat) and higher manganese-containing superoxide dismutase (MnSOD) activity. In addition, this reduction in Loco expression increased fat content and diminished cAMP levels. In contrast, overexpression of both genomic and cDNA loco gene significantly shortened the lifespan with weaker stress resistance and lower fat content. Deletion analysis of the Loco demonstrated that its RGS domain is required for the regulation of longevity. Consistently, when expression of RGS14, mammalian homologue of Loco, was reduced in rat fibroblast cells, the resistance to oxidative stress increased with higher MnSOD expression. The changes of yeast Rgs2 expression, which shares a conserved RGS domain with the fly Loco protein, also altered lifespan and stress resistance in Saccharomyces cerevisiae. Here, we provide the first evidence that RGS proteins with GAP activity affect both stress resistance and longevity in several species.  相似文献   

5.
G proteins orchestrate critical cellular functions by transducing extracellular signals into internal signals and controlling cellular responses to environmental cues. G proteins typically function as switches that are activated by G protein-coupled receptors (GPCRs) and negatively controlled by regulator of G protein signalling (RGS) proteins. In the human fungal pathogen Cryptococcus neoformans, three G protein alpha subunits (Gpa1, Gpa2 and Gpa3) have been identified. In a previous study, we identified the RGS protein Crg2 involved in regulating the pheromone response pathway through Gpa2 and Gpa3. In this study, a role for Crg2 was established in the Gpa1-cAMP signalling pathway that governs mating and virulence. We show that Crg2 physically interacts with Gpa1 and crg2 mutations increase cAMP production. crg2 mutations also enhance mating filament hyphae production, but reduce cell-cell fusion and sporulation efficiency during mating. Although crg2 mutations and the Gpa1 dominant active allele GPA1(Q284L) enhanced melanin production under normally repressive conditions, virulence was attenuated in a murine model. We conclude that Crg2 participates in controlling both Gpa1-cAMP-virulence and pheromone-mating signalling cascades and hypothesize it may serve as a molecular interface between these two central signalling conduits.  相似文献   

6.
B E Xu  K R Skowronek  J Kurjan 《Genetics》2001,159(4):1559-1571
The Saccharomyces cerevisiae RGS protein Sst2p is involved in desensitization to pheromone and acts as a GTPase-activating protein for the Galpha subunit Gpa1p. Other results indicate that Sst2p acts through Mpt5p and that this action occurs downstream of Fus3p and through Cln3p/Cdc28p. Our results indicate that the interaction of Sst2p with Mpt5p requires the N-terminal MPI (Mpt5p-interacting) domain of Sst2p and is independent of the C-terminal RGS domain. Overexpression of the MPI domain results in an Mpt5p-dependent increase in recovery from pheromone arrest. Overexpression of either intact Sst2p or the MPI domain leads to partial suppression of a gpa1 growth defect, and this suppression is dependent on Mpt5p, indicating that MPI function occurs downstream of Gpa1p and through Mpt5p. Combination of an mpt5 mutation with the GPA1(G302S) mutation, which uncouples Gpa1p from Sst2p, results in pheromone supersensitivity similar to the sst2 mutant, and promotion of recovery by overexpression of Sst2p is dependent on both Mpt5p and the Gpa1p interaction. These results indicate that Sst2p is a bifunctional protein and that the MPI domain acts through Mpt5p independently of the RGS domain. RGS family members from other fungi contain N-terminal domains with sequence similarity to the Sst2p MPI domain, suggesting that MPI function may be conserved.  相似文献   

7.
The activity of adenylate cyclase in the yeast Saccharomyces cerevisiae is controlled by two G-protein systems, the Ras proteins and the Galpha protein Gpa2. Glucose activation of cAMP synthesis is thought to be mediated by Gpa2 and its G-protein-coupled receptor Gpr1. Using a sensitive GTP-loading assay for Ras2 we demonstrate that glucose addition also triggers a fast increase in the GTP loading state of Ras2 concomitant with the glucose-induced increase in cAMP. This increase is severely delayed in a strain lacking Cdc25, the guanine nucleotide exchange factor for Ras proteins. Deletion of the Ras-GAPs IRA2 (alone or with IRA1) or the presence of RAS2Val19 allele causes constitutively high Ras GTP loading that no longer increases upon glucose addition. The glucose-induced increase in Ras2 GTP-loading is not dependent on Gpr1 or Gpa2. Deletion of these proteins causes higher GTP loading indicating that the two G-protein systems might directly or indirectly interact. Because deletion of GPR1 or GPA2 reduces the glucose-induced cAMP increase the observed enhancement of Ras2 GTP loading is not sufficient for full stimulation of cAMP synthesis. Glucose phosphorylation by glucokinase or the hexokinases is required for glucose-induced Ras2 GTP loading. These results indicate that glucose phosphorylation might sustain activation of cAMP synthesis by enhancing Ras2 GTP loading likely through inhibition of the Ira proteins. Strains with reduced feedback inhibition on cAMP synthesis also display elevated basal and induced Ras2 GTP loading consistent with the Ras2 protein acting as a target of the feedback-inhibition mechanism.  相似文献   

8.
9.
Adenylate cyclase activity in Saccharomyces cerevisiae is dependent on Ras proteins. Both addition of glucose to glucose-deprived (derepressed) cells and intracellular acidification trigger an increase in the cAMP level in vivo. We show that intracellular acidification, but not glucose, causes an increase in the GTP/GDP ratio on the Ras proteins independent of Cdc25 and Sdc25. Deletion of the GTPase-activating proteins Ira1 and Ira2, or expression of the RAS2(val19) allele, causes an enhanced GTP/GDP basal ratio and abolishes the intracellular acidification-induced increase. In the ira1Delta ira2Delta strain, intracellular acidification still triggers a cAMP increase. Glucose also did not cause an increase in the GTP/GDP ratio in a strain with reduced feedback inhibition of cAMP synthesis. Further investigation indicated that feedback inhibition by cAPK on cAMP synthesis acts independently of changes in the GTP/GDP ratio on Ras. Stimulation by glucose was dependent on the Galpha-protein Gpa2, whose deletion confers the typical phenotype associated with a reduced cAMP level: higher heat resistance, a higher level of trehalose and glycogen and elevated expression of STRE-controlled genes. However, the typical fluctuation in these characteristics during diauxic growth on glucose was still present. Overexpression of Ras2(val19) inhibited both the acidification- and glucose-induced cAMP increase even in a protein kinase A-attenuated strain. Our results suggest that intracellular acidification stimulates cAMP synthesis in vivo at least through activation of the Ras proteins, while glucose acts through the Gpa2 protein. Interaction of Ras2(val19) with adenylate cyclase apparently prevents its activation by both agonists.  相似文献   

10.
11.
We investigated the role in cell morphogenesis and pathogenicity of the Candida albicans GPR1 gene, encoding the G protein-coupled receptor Gpr1. Deletion of C. albicans GPR1 has only minor effects in liquid hypha-inducing media but results in strong defects in the yeast-to-hypha transition on solid hypha-inducing media. Addition of cAMP, expression of a constitutively active allele of the Galpha protein Gpa2 or of the catalytic protein kinase A subunit TPK1 restores the wild-type phenotype of the CaGPR1-deleted strain. Overexpression of HST7, encoding a component of the mitogen-activated protein kinase pathway, does not suppress the defect in filamentation. These results indicate that CaGpr1 functions upstream in the cAMP-protein kinase A (PKA) pathway. We also show that, in the presence of glucose, CaGpr1 is important for amino acid-induced transition from yeast to hyphal cells. Finally, as opposed to previous reports, we show that CaGpa2 acts downstream of CaGpr1 as activator of the cAMP-PKA pathway but that deletion of neither CaGpr1 nor CaGpa2 affects glucose-induced cAMP signaling. In contrast, the latter is abolished in strains lacking CaCdc25 or CaRas1, suggesting that the CaCdc25-CaRas1 rather than the CaGpr1-CaGpa2 module mediates glucose-induced cAMP signaling in C. albicans.  相似文献   

12.
Control of chondrocyte differentiation is attained, in part, through G-protein signaling, but the functions of the RGS family of genes, well known to control G-protein signaling at the Galpha subunit, have not been studied extensively in chondrogenesis. Recently, we have identified the Rgs2 gene as a regulator of chondrocyte differentiation. Here we extend these studies to additional Rgs genes. We demonstrate that the Rgs4, Rgs5, Rgs7, and Rgs10 genes are differentially regulated during chondrogenic differentiation in vitro and in vivo. To investigate the roles of RGS proteins during cartilage development, we overexpressed RGS4, RGS5, RGS7, and RGS10 in the chondrogenic cell line ATDC5. We found unique and overlapping effects of individual Rgs genes on numerous parameters of chondrocyte differentiation. In particular, RGS5, RGS7, and RGS10 promote and RGS4 inhibits chondrogenic differentiation. The identification of Rgs genes as novel regulators of chondrogenesis will contribute to a better understanding of both normal cartilage development and the etiology of chondrodysplasias and osteoarthritis.  相似文献   

13.
The regulators of G protein signaling (RGS) protein superfamily negatively controls G protein-coupled receptor signal transduction pathways. RGS16 is enriched in activated/effector T lymphocytes. In this paper, we show that RGS16 constrains pulmonary inflammation by regulating chemokine-induced T cell trafficking in response to challenge with Schistosoma mansoni. Naive Rgs16(-/-) mice were "primed" for inflammation by accumulation of CCR10(+) T cells in the lung. Upon pathogen exposure, these mice developed more robust granulomatous lung fibrosis than wild-type counterparts. Distinct Th2 or putative Th17 subsets expressing CCR4 or CCR10 accumulated more rapidly in Rgs16(-/-) lungs following challenge and produced proinflammatory cytokines IL-13 and IL-17B. CCR4(+)Rgs16(-/-) Th2 cells migrated excessively to CCL17 and localized aberrantly in challenged lungs. T lymphocytes were partially excluded from lung granulomas in Rgs16(-/-) mice, instead forming peribronchial/perivascular aggregates. Thus, RGS16-mediated confinement of T cells to Schistosome granulomas mitigates widespread cytokine-mediated pulmonary inflammation.  相似文献   

14.
15.
Regulators of G-protein Signalling (RGS) regulate the functional lifetime of G-Protein Coupled Receptor (GPCR)-activated heterotrimeric G-protein by serving as GTPase Accelerating Proteins (GAPs) for the G(alpha) subunit. A number of mammalian RGSs can functionally replace the yeast RGS containing SST2 gene and inhibit GPCR signalling. Using yeast strains harbouring a G(betagamma)-responsive FUS1-LacZ reporter gene, we demonstrate that heterologously expressed mammalian RGS1 also serves to decrease basal signalling in the absence of agonist. Although this effect was dependent on the expression of a GPA1-encoded functional G(alpha) protein, the GPCR itself was nevertheless not required. Using the GAL1 inducible promoter to express RGS1, we further demonstrate that in addition to serving as a GAP for Gpa1p in yeast, RGS1 is a dosage-dependent inhibitor of growth. This effect is specific to RGS1 since growth is not altered in cells expressing either mammalian RGS2 or RGS5. We further demonstrate that neither of the two yeast G(alpha) proteins is responsible for mediating this growth inhibitory effect of RGS1. Taken together, our results indicate that RGS1 can function in both G-protein-dependent and -independent manners in yeast.  相似文献   

16.
The pheromone response ofSaccharomyces cerevisiae is mediated by a receptor-coupled heterotrimeric G protein. The βγ subunit of the G protein stimulates a PAK/MAP kinase cascade that leads to cellular changes preparatory to mating, while the pheromone-responsive Gα protein, Gpa1, antagonizes the Gβγ-induced signal. In its inactive conformation, Gpa1 sequesters Gβγ and tethers it to the receptor. In its active conformation, Gpa1 stimulates adaptive mechanisms that downregulate the mating signal, but which are independent of α-βγ binding. To elucidate these potentially novel signaling functions of Gα in yeast, epistasis analyses were performed using N388D, a hyperadaptive mutant form of Gpa1, and null alleles of various loci that have been implicated in adaptation. The results of these experiments indicate the existence of signaling thresholds that affect the yeast mating reaction. At low pheromone concentration, the Regulator of G Protein Signaling (RGS) homologue and putative guanosine triphosphatase (GTPase) activating protein, Sst2, appears to stimulate sequestration of Gβγ by Gpa1. Throughout the range of pheromone concentrations sufficient to cause cell cycle arrest, Gpa1 stimulates adaptive mechanisms that are partially dependent on Msg5 and Mpt5. Gpa1-mediated adaptation appears to be independent of Afr1, Akr1, and the carboxy-terminus of the pheromone receptor.  相似文献   

17.
18.
19.
G protein-coupled receptors (GPCRs) mediate cellular responses to a variety of stimuli, but how specific responses are regulated has been elusive, as the types of GPCRs vastly outnumber the classes of G protein heterotrimers available to initiate downstream signaling. In our analysis of signaling proteins containing DEP domains ( approximately 90 residue sequence motifs first recognized in fly Dishevelled, worm EGL-10, and mammalian Pleckstrin), we find that DEP domains are responsible for specific recognition of GPCRs. We examined the yeast regulator of G protein signaling (RGS) protein Sst2 and demonstrate that the DEP domains in Sst2 mediate binding to its cognate GPCR (Ste2). DEP-domain-mediated tethering promotes downregulation by placing the RGS protein in proximity to its substrate (receptor-activated Galpha subunit). Sst2 docks to the Ste2 cytosolic tail, but only its unphosphorylated state, allowing for release and recycling of this regulator upon receptor desensitization and internalization. DEP-domain-mediated targeting of effectors and regulators to specific GPCRs provides a means to dictate the nature, duration, and specificity of the response.  相似文献   

20.
Shen G  Wang YL  Whittington A  Li L  Wang P 《Eukaryotic cell》2008,7(9):1540-1548
Crg1 and Crg2 are regulators of G-protein signaling homologs found in the human fungal pathogen Cryptococcus neoformans. Crg1 negatively regulates pheromone responses and mating through direct inhibition of Galpha subunits Gpa2 and Gpa3. It has also been proposed that Crg2 has a role in mating, as genetic crosses involving Deltacrg2 mutants resulted in formation of hyperfilaments. We found that mutation of Gpa2 and Gpa3 partially suppressed the hyperfilamentation, mutation of Gpa3 alleviated Deltacrg2-specfic cell swelling, and mutation of the mitogen-activated protein kinase Cpk1 blocked both processes. These findings indicate that Gpa2 and Gpa3 function downstream of Crg2 and that Gpa3 is also epistatic to Crg2 in a Cpk1-dependent morphogenesis process linked to mating. Significantly, we found that Deltacrg2 mutants formed enlarged capsules that mimic cells expressing a constitutively active GPA1(Q284L) allele and that the levels of intracellular cyclic AMP (cAMP) were also elevated, suggesting that Crg2 also negatively regulates the Gpa1-cAMP signaling pathway. We further showed that Crg2 interacted with Gpa3 and Gpa1, but not Gpa2, in a pulldown assay and that Crg2 maintained a higher in vitro GTPase-activating protein activity toward Gpa3 and Gpa1 than to Gpa2. Finally, we found that dysregulation of cAMP due to the Crg2 mutation attenuated virulence in a murine model of cryptococcosis. Taken together, our study reveals Crg2 as an RGS (regulator of G-protein signaling) protein of multiregulatory function, including one that controls mating distinctly from Crg1 and one that serves as a novel inhibitor of Gpa1-cAMP signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号