首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of culture variables on the specific content and activity of various enzymes of the drug mmetabolizing system were assessed in colon tumor cell line LS174T. The NADH reduced cytochrome b5 (cyt b5)4 spectrum of these cells was similar to rat liver cyt b5. When released from the membrane by trypsin and concentrated, the cyt b5 was found to cross react with rabbit antibody to rat liver cyt b5 and human liver cyt b5. The enzyme activities were found stable over limited cell passages with control values of 0.03 and 0.13 µol/min/mg protein for NADPH and NADH cytochrome c (cyt c) reducing activity, 0.05 nmol cyt b5 and 0.013 nmol cytochrome P450 per milligram of microsomal protein. Phenobarbital/hydrocortisone showed a consistent, but not always significant increase in the NADPH and NADH cyt c reduction and benzanthracene an increase in the NADH cyt c reducing activity and cyt b5 content. Griseofulvin lowered the NADH cyt c reducing activity. Delta-aminolevulinic acid (0.5 mM) caused a significant decrease in the specific activity of all enzymes, as judged by a student's t test, with a p<0.001.Abbreviations cyt b5 cytochrome b5 - cyt c cytochrome c - cyt P450 cytochrome P450 - PB Phenobarbital - HC Hydrocortisone - ALA -Aminolevulinic acid - GRIS Griseofulvin - PENT Pentagastrin - PASS Cell Passage - DMH Dimethylhydrazine - BA Benzanth Acene  相似文献   

2.
《Insect Biochemistry》1989,19(5):481-488
Cytochrome P-450, cytochrome b5 and cytochrome P-450 reductase were purified from house fly abdomens using high performance liquid chromatography (HPLC). Using a new technique, cytochrome P-450 was separated from the bulk of other proteins after polyethylene glycol fractionation and hydrophobic interaction chromatography (HIC) using a phenyl-5PW column. This technique resulted in 91% recovery of the cytochrome P-450s in a single concentrated fraction that also contained the remaining cytochrome b5 and cytochrome P-450 reductase activity. Further purification by anion exchange on a DEAE-5SW column resolved the cytochrome P-450s, cytochrome b5 and cytochrome P-450 reductase into individual fractions. The ion exchange step yielded one fraction that contained a high specific content of P-450 (14.4 nmol/mg protein). This cytochrome P-450 fraction ran as a single band at 54.3 kDa in sodium dodecyl sulfate polyacrylamide (SDS-PAGE) gel electrophoresis and had a carboxy ferrocytochrome absorbance maximum at 447 nm.Further purification of the anion exchange cytochrome b5 fraction, by C8 reverse phase HPLC, resulted in a cytochrome b5 fraction with a specific content of 51.8 nmol/mg protein and an apparent molecular mass of 19.7 kDa by SDS-PAGE. The anion exchange HPLC fraction containing the cytochrome P-450 reductase activity was further purified by NADP-agarose affinity chromatography. This step yielded cytochrome P-450 reductase with an apparent molecular mass of 72 kDa.  相似文献   

3.
Cytochrome b5 (cyt b5) is an amphipathic membrane-bound heme protein found in the endoplasmic reticulum of eukaryotes. It consists of three domains, an N-terminal cytosolic, hydrophilic domain containing the heme, a short flexible linker and an α-helical membrane-spanning domain. This study investigated whether there are specific side chain helix–helix packing interactions between the COOH-terminal membrane anchor of cyt b5 and cytochrome P450 (cyt P450) 2B4 in a purified reconstituted system. Alanine was inserted at six positions in the membrane anchor of cyt b5. Insertion of alanine into an α-helix causes all amino acids at its carboxyl terminus to be rotated by 100°. The ability of the alanine insertion mutants of cyt b5 to bind to cyt P450 2B4 was similar to that of the wild-type protein as was the ability of the mutant cyts b5 to stimulate the metabolism of the anesthetic, methoxyflurane. These results demonstrate that the C-terminal hydrophobic α-helix of cyt b5 does not interact with cyt P450 2B4 through a specific stereochemical fit of amino acid side chains, but rather through nonspecific interactions.  相似文献   

4.
Members of the cytochrome P450 (cyt P450) superfamily of enzymes oxidize a wide array of endogenous and xenobiotic substances to prepare them for excretion. Most of the drugs in use today are metabolized in part by a small set of human cyt P450 isozymes. Consequently, cyt P450s have for a long time received a lot of attention in biochemical and pharmacological research. Cytochrome P450 receives electrons from cytochrome P450 reductase and in selected cases from cytochrome b5 (cyt b5). Numerous structural studies of cyt P450s, cyt b5, and their reductases have given considerable insight into fundamental structure-function relationships. However, structural studies so far have had to rely on truncated variants of the enzymes to make conventional X-ray crystallographic and solution-state NMR techniques applicable. In spite of significant efforts it has not yet been possible to crystallize any of these proteins in their full-length membrane bound forms. The truncated parts of the enzymes are assumed to be α-helical membrane anchors that are essential for some key properties of cyt P450s. In the present contribution we set out with a basic overview on the current status of functional and structural studies. Our main aim is to demonstrate how advanced modern solid-state NMR spectroscopic techniques will be able to make substantial progress in cyt P450 research. Solid-state NMR spectroscopy has sufficiently matured over the last decade to be fully applicable to any membrane protein system. Recent years have seen a remarkable increase in studies on membrane protein structure using a host of solid-state NMR techniques. Solid-state NMR is the only technique available today for structural studies on full-length cyt P450 and full-length cyt b5. We aim to give a detailed account of modern techniques as applicable to cyt P450 and cyt b5, to show what has already been possible and what seems to be viable in the very near future.  相似文献   

5.
Hen liver microsomes contained 0.20 nmol of cytochromeb5 per mg of protein. Upon addition of NADH about 95% cytochrome b5 was reduced very fast with a rate constant of 206 s?1When ferricyanide was added to the reaction system the cytochrome stayed in the oxidized form until the ferricyanide reduction was almost completed. The reduced cytochrome b5 in microsomes was oxidized very rapidly by ferricyanide. The rate constant of 4.5 × 108m?1 s?1, calculated on the basis of assumption that ferricyanide reacts directly with the cytochrome, was found to be more than 100 times higher than that of the reaction between ferricyanide and soluble cytochrome b5. To explain the results, therefore, the reverse electron flow from cytochrome b5 to the flavin coenzyme in microsomes was assumed.By three independent methods the specific activity of the microsomes was measured at about 20 nmol of NADH oxidized per s per mg of protein and it was concluded that the reduction of the flavin coenzyme of cytochrome b5 reductase by NADH is rate-limiting in the NADH-cytochrome b5 and NADH-ferricyanide reductase reactions of hen liver microsomes. In the NADH-ferricyanide reductase reaction the apparent Michaelis constant for NADH was 2.8 μm and that for ferricyanide was too low to be measured. In the NADH-cytochrome c reductase reaction the maximum velocity was 2.86 nmol of cytochrome c reduced per s per mg of protein and the apparent Michaelis constant for cytochrome c was 3.8 μm.  相似文献   

6.
Rhodopseudomonas sphaerodes mutant H5 lacking 5-aminolevulinic acid synthase was grown phototrophically in chemostat cultures limited by malate. Tetrapyrrole formation was limited by 5-aminolevulinic acid. With variation of dilution rates the cultures exhibited two regions of almost constant cell protein, dry weight and bacteriochlorophyll levels suggesting the formation of two physiological modifications of the strain. These modifications were further characterized by differences in the rates of 5-aminolevulinic acid consumption, the production of reserve material, the stoichiometries of 5-aminolevulinic acid consumption and bacteriochlorophyll or cytochrome production, specific bacteriochlorophyll and cytochrome contents as well as the ratio of bacteriochlorophyll protein complexes. In contrast, cellular levels of coproporphyrin II stayed almost constant over the entire range of dilution rates employed. Bacteriochlorophyll and b-type cytochrome cellular levels exhibited hyperbolic dependencies on the specific rate of 5-aminolevulinic acid consumption, and c-type cytochrome levels a signmoidal dependency. Bacteriochlorophyll cellular levels showed a biphasic dependency with half maximal saturations at 2.6 and 15.4 nmol of 5-aminolevulinic acid consumed per mg of protein and h, and maximal levels of 15.2 and 21 nmol bacteriochlorophyll per mg of protein. Cellular levels of c- and b-type cytochromes were half maximally saturated at 19.5 and 14.5 nmol 5-aminolevulinic acid consumed per mg protein and h while maximal levels were reached at 0.5 and 0.17 nmol of c- and b-type cytochromes, respectively, per mg of protein.The data suggest that within the cell bacteriochlorophyll as well as c- and b-type cytochrome units are assembled according to a defined pattern of kinetics characteristic of each group of compounds. Under otherwise constant external conditions the expression of the pattern is controlled by the rate of 5-aminolevulinic acid supply.  相似文献   

7.
Solubilized components of the vitamin D3-25-hydroxylase, isolated from intact rat liver microsomes known to catalyze the C-25 oxidation of vitamin D3in vitro, have been separated into two submicrosomal fractions enriched in detergent-solubilized NADPH-cytochrome c reductase and cytochrome P-450 or P-448. The P-450 hemoprotein-containing fraction was obtained by solubilization with cholic acid followed by treatment with the nonionic detergent, Emulgen 911, yielding a final preparation with a specific content of 7.25 nmol/mg microsomal protein. The reduced triphosphopyridine nucleotide-dependent cytochrome P-450 reductase activity, as detected by its ability to reduce the artificial electron acceptor, cytochrome c, was isolated free of cytochromes b5 or P-450 by solubilization with deoxycholate and chromatography on DEAE-cellulose. The reductase component was found to exhibit kinetic properties with Michaelis constants: Km(NADPH) = 3.14 μM, Km(NADH) = 31.25 μM, and Km(cyt c) = 12.34 μM. The NADPH-cytochrome c reductase activity was sensitive to NADPH-reversible inhibition by NADP, but not rotenone or cyanide. When the isolated components were incubated in the presence of an NADPH-generating system and carbon monoxide under anaerobic conditions, enzymatic reduction of the P-450 hemoprotein was measured by the appearance of characteristic absorbances at 420 and 450 nm of the reduced carbon monoxide vs. reduced difference spectrum. Furthermore, when the soluble submicrosomal components were reconstituted with excess reduced triphosphopyridine nucleotide, 3H-labeled vitamin D3, and soluble cytosolic supernatant, full vitamin D3-25-hydroxylase activity was restored at rates of up to 7.68 pmol/h/mg protein, with an apparent turnover number of cytochrome P-450 of 1.16 to 1.20 under conditions where the concentrations of the hemoprotein were rate limiting for net product formation. These results strongly support the hypothesis that the rat liver microsomal mixed-function oxidase, vitamin D3-25-hydroxylase, consists of at least two membrane-bound protein components, NADPH-cytochrome c reductase and a cytochrome P-450 terminal oxidase, for the catalytic conversion of vitamin D3 to 25-hydroxyvitamin D3.  相似文献   

8.
Two central redox enzyme systems exist to reduce eukaryotic P450 enzymes, the P450 oxidoreductase (POR) and the cyt b5 reductase–cyt b5. In fungi, limited information is available for the cyt b5 reductase–cyt b5 system. Here we characterized the kinetic mechanism of (cyt b5r)–cyt b5 redox system from the model white-rot fungus Phanerochaete chrysosporium (Pc) and made a quantitative comparison to the POR system. We determined that Pc-cyt b5r followed a “ping-pong” mechanism and could directly reduce cytochrome c. However, unlike other cyt b5 reductases, Pc-cyt b5r lacked the typical ferricyanide reduction activity, a standard for cyt b5 reductases. Through co-expression in yeast, we demonstrated that the Pc-cyt b5r–cyt b5 complex is capable of transferring electrons to Pc-P450 CYP63A2 for its benzo(a)pyrene monooxygenation activity and that the efficiency was comparable to POR. In fact, both redox systems supported oxidation of an estimated one-third of the added benzo(a)pyrene amount. To our knowledge, this is the first report to indicate that the cyt b5r–cyt b5 complex of fungi is capable of transferring electrons to a P450 monooxygenase. Furthermore, this is the first eukaryotic quantitative comparison of the two P450 redox enzyme systems (POR and cyt b5r–cyt b5) in terms of supporting a P450 monooxygenase activity.  相似文献   

9.
We have reported (Kominami S., Shinzawa K. and Takemori S. (1982) Biochem. Biophys. Res. Commun. 109, 916–921) that a cytochrome P-450 purified from guinea pig adrenal microsomes shows 17α-hydroxylase and C-17,20-lyase activities in a reconstituted system with NADPH-cytochrome P-450 reductase. The homogeneity of the purified cytochrome P-450 was examined with the following methods: isoelectric focusing, immunoelectrophoresis and affinity chromatography on cytochrome b5-immobilized Sepharose. It was found that progesterone competitively inhibited C-17,20-lyase reaction and that progesterone was converted into androstenedione by 17α-hydroxylation followed by the lyase reaction. These results indicate that the dual activities are carried out by a single enzyme (P-45017α,lyase). P-45017α,lyase had the maximum activity at pH 6.1 both for 17α-hydroxylation (6.0 nmol/min per nmol of P-450) and the lyase reaction (11.0 nmol/min per nmol of P-450). Upon addition of cytochrome b5 to the reconstituted system, the optimal pH for 17α-hydroxylation was shifted to 7.0 and that of the lyase reaction to 6.6. The maximum activities at these optimal pH values were almost the same in the presence or absence of cytochrome b5. With the addition of cytochrome b5, both the activities were stimulated above pH 6.3–6.5 and were suppressed below pH 6.3–6.5. These results indicate that cytochrome b5 plays some important role in controlling the dual activities of P-45017α,lyase.  相似文献   

10.
Protein deficiency was produced by feeding synthetic 8%-protein diet. Lithium carbonate at the dose level of 1.1g/kg diet was administered to normal and protein-deficient rats for a period of one mo. A significant inhibition in the levels of cytochrome (cyt) P450, cyt b5, glutathione (GSH), glutathione S-transferase (GST) and glutathione peroxidase (GPx), but an increase in γ-glutamyl transpeptidase (γ-GT), was observed in low-protein LP-fed rats. Lithium treatment to normal rats caused no significant change in the activities of cyt P450, cyt b5, GST, and GSH levels, whereas there was elevation in the activities of γ-GT and GPx and suppression in glutathione reductase (GRd) activity. Lithium administration to LP-fed rats resulted in significant increases in the hepatic γ-GT and GPx activities.  相似文献   

11.
  • 1.1. Cytochrome b5 was partially purified from sheep lung microsomes in the presence of detergents Emuigen 913 and cholate by three consecutive DEAE-cellulose and Sephadex G-100 gel filtration chromatographies.
  • 2.2. The specific content ofcytochrome b5 was 16.5 nmol/mg protein and purified cytochrome b5 fractions were free of cytochrome P450, NADPH-cytochrome P450 reductase and NADH-cytochrome b5 reductase activities.
  • 3.3. The influences of increasing concentrations of lung cytochrome b5 on benzphetamine N-demethylation reactions were examined in four different reconstitution systems containing lung cytochrome P 450 LgM2, lung cytochrome P450 reductase and lipid. In each system concentration of reductase was doubled with respect to former system.
  • 4.4. In all systems cytochrome b 5 stimulated benzphetamine Ndemethylase activity especially when cytochrome b5 was present at 0.5:1 molar ratio with respect to cytochrome /P450 LgM2.
  • 5.5. Besides, the greatest fold of increase in benzphetamine N-demethylation activity due to addition of cytochrome b5 was observed in System 1 with the lowest concentration of reductase.
  相似文献   

12.
A highly purified (12 nmol of P-450-heme per milligram of protein) bovine adrenal cortex mitochondrial cytochrome P-450, termed P-450sce, which cleaves the side chain of cholesterol to yield pregnenolone, is obtained in the substrate-bound ferric form with observed absorption maxima at 393 nm and 645 nm and a shoulder around 540 nm. The absorption spectra of the P-450scc, whether in the substrate-bound ferric form or in the CO-complexed ferrous form, are subject to environmental perturbation. The addition of adrenal ferredoxin readily restores full ferric high spin type spectrum of the substrate-bound P-450scc or, together with cholesterol and Tween 20, restores the CO-spectrum of the P-450scc, exhibiting stable and typical spectra of cytochrome P-450. Tween 20, at concentration of 0.3%, remarkably increases the P-450scc-catalyzed cholesterol side chain cleavage activity. Based on these findings, a highly reactive and reliable assay has been developed for the conversion of cholesterol to pregnenolone. The specific activity of the P-450scc, thus determined in the presence of NADPH, NADPH:adrenal ferredoxin oxidoreductase (EC 1.6.7.1), adrenal ferredoxin, cholesterol, and molecular oxygen, is 16 mol of pregnenolone formed per minute per mole of P-450-heme and V of enzyme catalyzed reaction was 30 mol/min/mol of P-450-heme. Apparent Km values are 120 μm for cholesterol and 1.5 μm for adrenal ferredoxin. The P-450scc has a pH optimum at pH 7.2 and is most active at ionic strength of 0.1.  相似文献   

13.
Liver microsomes of adult rats produce, by an NADPH-dependent pathway, O2? radicals, as detected by the epinephrine cooxidation to adrenochrome (24.8 nmol/min/mg of protein). This production has also been measured during liver development (from 1 to 20 days after birth) and correlated to the enzyme content (NADPH-cytochrome c reductase, cytochrome b5, and cytochrome P-450), with the aim of establishing the level at which Superoxide radicals are formed in the electron transport system. At 1 day the adrenochrome formation and the activity of NADPH-cytochrome c reductase are about 50 and 40% of those of the adult, respectively, whereas those of cytochromes b5 and P-450 are approximately 10%. After 20 days of development cytochrome b5 and the dehydrogenase reach the adult level, while cytochrome P-450 is about 80%. At this age O2? radicals have a 30% increment and reach only 60% of those of the adult; H2O2 production is also 60% and the N-demethylation of aminopyrine is only 30%. Thus, at birth the formation of O2? radicals is almost entirely dependent on the activity of the flavoprotein. The close correlation between the slight increase in the demethylase activity and adrenochrome formation from 1 to 20 days suggests that a portion of O2? radicals produced by the NADPH-dependent electron transfer is directly involved in the mixed function oxidation. Since about 50% of the radicals are formed at the flavoprotein level, these results indicate that in the adult liver the remaining amount may be generated at the level of cytochrome P-450.  相似文献   

14.
A minor form of hepatic microsomal cytochrome P-450 has been purified to apparent homogeneity from rats treated with the polychlorinated biphenyl mixture, Aroclor 1254. This newly isolated hemoprotein, cytochrome P-450e, is inducible in rat liver by Aroclor 1254 and phenobarbital, but not by 3-methylcholanthrene. Two other hemoproteins, cytochromes P-450b and P-450c, have also been highly purified during the isolation of cytochrome P-450e based on chromatographic differences among these proteins. By Ouchterlony double-diffusion analysis with antibody to cytochrome P-450b, highly purified cytochrome P-450e is immunochemically identical to cytochrome P-450b but does not cross-react with antibodies prepared against other rat liver cytochromes P-450 (P-450a, P-450c, P-450d) or epoxide hydrolase. Purified cytochrome P-450e is a single protein-staining band in sodium dodecyl sulfate-polyacrylamide gels with a minimum molecular weight (52,500) slightly greater than cytochromes P-450b or P-450d (52,000) but clearly distinct from cytochromes P-450a (48,000) and P-450c (56,000). The carbon monoxide-reduced difference spectral peak of cytochrome P-450e is at 450.6 nm, whereas the peak of cytochrome P-450b is at 450 nm. Ethyl isocyanide binds to ferrous cytochromes P-450e and P-450b to yield two spectral maxima at 455 and 430 nm. At pH 7.4, the 455:430 ratio is 0.7 and 1.4 for cytochromes P-450b and P-450e, respectively. Metyrapone binds to reduced cytochromes P-450e and P-450b (absorption maximum at 445–446 nm) but not cytochromes P-450a, P-450c, or P-450d. Metabolism of several substrates catalyzed by cytochrome P-450e or P-450b reconstituted with NADPH-cytochrome c reductase and dilauroylphosphatidylcholine was compared. The substrate specificity of cytochrome P-450e usually paralleled that of cytochrome P-450b except that the rate of metabolism of benzphetamine, benzo[a]pyrene, 7-ethoxycoumarin, hexobarbital, and testosterone at the 16α-position catalyzed by cytochrome P-450e was only 15–25% that of cytochrome P-450b. In contrast, cytochrome P-450e catalyzed the 2-hydroxylation of estradiol-17β more efficiently (threefold) than cytochrome P-450b. Cytochrome P-450d, however, catalyzed the metabolism of estradiol-17β at the greatest rate compared to cytochromes P-450a, P-450b, P-450c, or P-450e. The peptide fragments of cytochromes P-450e and P-450b, generated by either proteolytic or chemical digestion of the hemoproteins, were very similar but not identical, indicating that these two proteins show minor structural differences.  相似文献   

15.
1. Cytochrome P-450 was purified from microsomes of the midgut of the earthworm Lumbricus terrestris up to a maximal specific content of 5.5 nmol P-450/mg protein.2. At least 3 different cytochromes P-450 with apparent molecular weights of 48,000, 51,000 and 53,000 were identified by SDS-PAGE.3. Western blot analysis with various polyclonal antibodies did not show structural epitopes common to the cytochromes P-450 of rodents or yeast and L. terrestris.4. The microsomes contained about 43 pmol P-450/mg protein corresponding to 0.51 nmol P-450/g midgut and 64 pmol P-450/g body weight, respectively, and converted benzyloxyresorufin into resorufin with a Vmax, of 2.12 pmol resorufin/min.mg protein and a Km of 770 nM benzyloxyresorufin at 25°C, pH 8.O.5. The microsomes exhibited a NADPH-cytochrome P-450 reductase activity of 9.4 nmol cytochrome c/min.mg protein.6. The apparent molecular weight of the threefold-purified reductase was 63,000.  相似文献   

16.
The development of the stearyl-CoA desaturase system was studied in newly hatched chicks. The desaturation activity was very low in hepatic microsomes from chick embryos, less than 0.05 nmol of oleate formed min?1 (mg of protein)?1. After hatching and feeding, the desaturation activity gradually increased to 4–5 nmol of oleate formed min?1 (mg of protein)?1 in 6-day-old chicks. This increase could be prevented by administration of cycloheximide or actinomycin D. Measurement of the microsomal electron transfer components throughout the induction period showed no significant changes in the NADH- or NADPH-specific reductases or in the concentrations of cytochromes b5 and P-450. However, the activity of the terminal component of the desaturase system (the desaturase enzyme) increased in parallel with the desaturation activity. Supplementing the liver microsomes from chick embryos with isolated desaturase enzyme resulted in the formation of an active desaturation system. It is proposed that the induction of the stearyl-CoA desaturase system during development of newly hatched chicks is dependent on the synthesis of the terminal desaturase enzyme.  相似文献   

17.
Cytochrome P-450 was purified from microsomes of anaerobically grown yeast to a specific content of 12–15 nmoles per mg of protein with a yield of 10–30%. Upon sodium dodecylsulfate/polyacrylamide gel electrophoresis, the purified preparation yielded a major protein band having a molecular weight of about 51,000 together with a few faint bands. It was free from cytochrome b5, NADH-cytochrome b5 reductase, and NADPH-cytochrome c (P-450) reductase. In the oxidized state it exhibited a low-spin type absorption spectrum, and its reduced CO complex showed a Soret peak at 447–448 nm. It was reducible by NADPH in the presence of an NADPH-cytochrome c reductase preparation purified from yeast microsomes. Its conversion to the cytochrome P-420 form was much slower than that of hepatic cytochrome P-450.  相似文献   

18.
19.
The interactions between purified microsomal cytochrome P-450 and cytochrome b5 has been demonstrated by aqueous two-phase partition technique. Major forms of cytochrome P-450 induced by phenobarbital (P-450LM2) and β-naphthoflavone (P-450LM4) are almost exclusively distributed in the dextran-rich bottom phase (partition coefficient, K = 0.06), whereas NADPH-cytochrome P-450 reductase and cytochrome b5 are mainly distributed in the polyethylene glycol-rich top phase (K = 3.5 and 2.5, respectively), when these enzymes were partitioned separately in the dextran-polyethylene glycol two-phase system. The mixing of P-450LM with cytochrome b5 changes the partition coefficients of both P-450LM and cytochrome b5 indicating that molecular interaction between P-450LM and cytochrome b5 occurred. Complex formation was also confirmed by optical absorbance difference spectral titration, and the stimulation of the P-450LM-dependent 7-ethoxycoumarin and p-nitrophenetole O-deethylase activities by equal molar quantity of detergent-solubilized cytochrome b5, but not trypsin-solubilized enzyme, in the reconstituted system. Cytochrome b5 decreases the Km's of both substrates for P-450LM2-dependent O-deethylations and increases the V's of both reactions by two- to three-fold. This stimulatory effect requires the presence of phospholipid in the reconstituted enzyme system. These results suggest that cytochrome b5 plays a role in some reconstituted drug oxidation enzyme systems and that molecular interactions among cytochrome P-450, reductase, and cytochrome b5 are catalytically competent in the electron transport reactions.  相似文献   

20.
Hepatic microsomes prepared from 10 fish species from Bermuda were studied to establish features of cytochrome P450 (CYP) systems in tropical marine fish. The majority (7/10) of the species had total P450 content between 0.1 and 0.5 nmol/mg, and cytochrome b5 content between 0.025 and 0.25 nmol/mg. Ethoxycoumarin O-deethylase (ECOD) and aminopyrine N-demethylase (APND) rates in these 7 species were 0.23–2.1 nmol/min/mg and 0.5–11 nmol/min/mg, respectively, similar to rates in many temperate fish species. In contrast to those 7 species, sergeant major (Abudefduf saxatilis) and Bermuda chub (Kyphosus sectatrix) had microsomal P450 contents near 1.7 nmol/mg, among the highest values reported in untreated fish, and had greater rates of ECOD, APND, ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-depentylase than did most of the other species. Freshly caught individuals of all species had detectable levels of EROD and aryl hydrocarbon hydroxylase (AHH) activities. Those individuals with higher rates of EROD activity had greater content of immunodetected CYP1A protein, consistent with Ah-receptor agonists acting to induce CYP1A in many fish in Bermuda waters. Injection of tomtate and blue-striped grunt with β-naphthoflavone (BNF; 50 or 100 mg/kg) induced EROD rates by 25 to 55-fold, suggesting that environmental induction in some fish was slight compared with the capacity to respond. AHH rates were induced only 3-fold in these same fish. The basis for disparity in the degree of EROD and AHH induction is not known. Rates of APND and testosterone 6β- and 16β-hydroxylase were little changed by BNF, indicating that these are not CYP1A activities in these fish. Antibodies to phenobarbital-inducible rat CYP2B1 or to scup P450B, a putative CYP2B, detected one or more proteins in several species, suggesting that CYP2B-like proteins are highly expressed in some tropical fishes. Generally, species with greater amounts of total P450 had greater amounts of proteins related to CYP2B. These species also had appreciable amounts of CYP3A-like proteins. Thus, many fishes in Bermuda appear to have induced levels of CYP1A; some also have unusually high levels of total P450 and of CYP2B-like and CYP3A-like proteins. These species may be good models for examining the structural, functional and regulatory properties of teleost CYP and the environmental or ecological factors contributing to high levels of expression of CYP in some fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号