首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contents of free sugars in nodules of chickpea (Cicer arietinum) were maximum around flowering. In stem and root tissues, the relative incorporation of 14C from [14C]-labelled sucrose or glucose into extracted sucrose was over 70 %. In the former tissue, the relative incorporation of 14C from glutamate into sucrose was about 50 % at 50 d after sowing (DAS) but the same decreased to about 25 % at 80 DAS. However, from glutamate, 63–68 % of 14C from extracted sugars of root tissue appeared in invert sugars. Feeding via stem [14C]-glutamate to intact nodules led to intense labelling of sucrose and invert sugars in nodule cytosol. Upon injecting labelled sugars or glutamate into isolated nodules, maximum 14C appeared in glucose of this nodule fraction. In bacteroids, incorporation of 14C from glutamate was much higher in amino acids. In the cytosol of younger (50 DAS) nodules, sucrose was cleaved largely by soluble alkaline invertase (EC 3.2.1.26). However, sucrose cleavage in this fraction of older (80 DAS) nodules was catalysed by this enzyme as well as sucrose synthase (reversal, EC 2.4.1.13) and such nodules also contained higher activity of nitrogenase. The bacteroid fraction, which contained 10–17 % of nodule sugars, lacked the activities of sucrose-cleaving enzymes. The activities of ATP-dependent phosphofructokinase (EC 2.7.1.11), glyceraldehyde-3-phosphate dehydrogenase (EC 1.1.1.12), NADP+-dependent isocitrate dehydrogenase (EC 1.1.1.41) and malate dehydrogenase (EC 1.1.1.37) were higher in cytosol than bacteroids. However, the reverse was true for glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44). The results suggest that in chickpea nodules sugar metabolism occurs largely via the glycolytic pathway in cytosol and the pentose phosphate pathway in bacteroids and there is some transport of glutamate from cytosol to bacteroids.  相似文献   

2.
Well-nodulated soybean ( Glycine max L. Merr. cv. Akisengoku) plants were allowed to assimilate 13CO2. Plant cytosol and bacteroid fractions were isolated from nodules, and the kinetics of [13C]-labelling of soluble carbohydrates, organic acids and amino acids were investigated.
The concentrations of all metabolites, with the exception of trehalose and 3-hydroxy-butyrate, were 10- to 1000-fold higher in plant cell cytosol than in bacteroids. The major portion of trehalose was found in bacteroids and 3-hydroxybutyrate only in bacteroids. Sucrose was most highly labelled with 13C in nodules, and the levels and time-course of labelling of sucrose were in good agreement with those of respired CO2 from the nodules. The levels and time-courses of labelling of sucrose were closely similar in cytosol and bacteroids. Glucose was less labelled than sucrose and the level of labelling was consistently higher in cytosol than in bacteroids. The levels of [13C]-labelling of organic acids and amino acids in nodules were lower than those of sucrose and of respired CO2. Tricarboxylic acid cycle intermediates, particularly succinate, were considerably less labelled in bacteroids than in the cytosol. All amino acids detected were also much more rapidly labelled in the cytosol. The results are discussed in relation to the utilization and possible compartmentation of carbon substrates in nodule tissues.  相似文献   

3.
Products of the nodule cytosol in vivo dark [14C]CO2 fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv “Bodil”) nodules. The distribution of the metabolites of the dark CO2 fixation products was compared in effective (fix+) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The 14C incorporation from [14C]CO2 was about threefold greater in the wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the 14C label in the cytosol was found in organic acids in both symbioses. Malate comprised about half of the total cytosol organic acid content on a molar basis, and more than 70% of the cytosol radioactivity in the organic acid fraction was detected in malate in both symbioses. Most of the remaining 14C was contained in the amino acid fraction of the cytosol in both symbioses. More than 70% of the 14C label found in the amino acids of the cytosol was incorporated in aspartate, which on a molar basis comprised only about 1% of the total amino acid pool in the cytosol. The extensive 14C labeling of malate and aspartate from nodule dark [14C]CO2 fixation is consistent with the role of phosphoenolpyruvate carboxlase in nodule dark CO2 fixation. Bacteroids from the effective wild-type symbiosis accumulated sevenfold more 14C than did the dicarboxylic acid transport defective bacteroids. The bacteroids of the effective MNF 300 symbiosis contained the largest proportion of the incorporated 14C in the organic acids, whereas ineffective MNF 3080 bacteroids mainly contained 14C in the amino acid fraction. In both symbioses a larger proportion of the bacteroid 14C label was detected in malate and aspartate than their corresponding proportions of the organic acids and amino acids on a molar basis. The proportion of 14C label in succinate, 2-oxogultarate, citrate, and fumarate in the bacteroids of the wild type greatly exceeded that of the dicarboxylate uptake mutant. The results indicate a central role for nodule cytosol dark CO2 fixation in the supply of the bacteroids with dicarboxylic acids.  相似文献   

4.
The aim of the work reported here was to ascertain that the patterns of labeling seen in isolated bacteroids also occurred in bacteroids in intact nodules and to observe early metabolic events following exposure of intact nodules to 14CO2. Intact nodules of soybean (Glycine max L. Merr. cv Ripley) inoculated with Bradyrhizobium japonicum USDA 110 and pea (Pisum sativum L. cv Progress 9) inoculated with Rhizobium leguminosarum bv viciae isolate 128C53 were detached and immediately fed 14CO2 for 1 to 6 min. Bacteroids were purified from these nodules in 5 to 7 min after the feeding period. In the cytosol from both soybean and pea nodules, malate had the highest radioactivity, followed by citrate and aspartate. In peas, asparagine labeling equaled that of aspartate. In B. japonicum bacteroids, malate was the most rapidly labeled compound, and the rate of glutamate labeling was 67% of the rate of malate labeling. Aspartate and alanine were the next most rapidly labeled compounds. R. leguminosarum bacteroids had very low amounts of 14C and, after a 1-min feeding, malate contained 90% of the radioactivity in the organic acid fraction. Only a trace of activity was found in aspartate, whereas the rate of glutamate and alanine labeling approached that of malate after 6 min of feeding. Under the conditions studied, malate was the major form of labeled carbon supplied to both types of bacteroids. These results with intact nodules confirm our earlier results with isolated bacteroids, which showed that a significant proportion of provided labeled substrate, such as malate, is diverted to glutamate. This supports the conclusion that microaerobic conditions in nodules influence carbon metabolism in bacteroids.  相似文献   

5.
The metabolism of translocated photosynthate by soybean (Glycine max L. Merr.) nodules was investigated by 14CO2-labeling studies and analysis of nodule enzymes. Plants were exposed to 14CO2 for 30 minutes, followed by 12CO2 for up to 5 hours. The largest amount of radioactivity in nodules was recovered in neutral sugars at all sampling times. The organic acid fraction of the cytosol was labeled rapidly. Although cyclitols and malonate were found in high concentrations in the nodules, they accumulated less than 10% of the radioactivity in the neutral and acidic fractions, respectively. Phosphate esters were found to contain very low levels of total label, which prohibited analysis of the radioactivity in individual compounds. The whole nodule-labeling patterns suggested the utilization of photosynthate for the generation of organic acids (principally malate) and amino acids (principally glutamate).

The radioactivity in bacteroids as a percentage of total nodule label increased slightly with time, while the percentage in the cytosol fraction declined. The labeling patterns for the cytosol were essentially the same as whole nodule-labeling patterns, and they suggest a degradation of carbohydrates for the production of organic acids and amino acids. When it was found that most of the radioactivity in bacteroids was in sugars, the enzymes of glucose metabolism were surveyed. Bacteroids from nodules formed by Rhizobium japonicum strain 110 or strain 138 lacked activity for phosphofructokinase and NADP-dependent 6-phosphogluconate dehydrogenase, key enzymes of glycolysis and the oxidative pentose-phosphate pathways. Enzymes of the glycolytic and pentose phosphate pathways were found in the cytosol fraction.

In three experiments, bacteroids contained about 10 to 30% of the total radioactivity in nodules 2 to 5 hours after pulse-labeling of plants, and 60 to 65% of the radioactivity in bacteroids was in the neutral sugar fraction at all sampling times. This strongly suggests some absorption and metabolism of sugars by bacteroids in spite of the lack of key enzymes. Bacteroids did possess enzymes for the formation of hexose phosphates from glucose or fructose. Radioactivity in α,α-trehalose in bacteroids increased until, after 5 hours, trehalose was a major labeled compound in bacteroids. Thus, trehalose synthesis may be a major fate of sugars entering bacteroids.

  相似文献   

6.
More ethanol soluble material (carbohydrate and amino nitrogen) was found in both host cell and bacteroid components of Phaseolus vulgaris nodules from plants grown at 28 W/m2 than from plants grown at 7 W/m2. The range of compounds identified was similar at the two irradiances. On feeding 14CO2 to the plant tops at either irradiance the labelling patterns of carbohydrates and organic acids in the nodule host cells and bacteroids suggested that any or all of the following substances could be donated by the host to the bacteroids for general metabolism: sucrose, fructose, glucose, an unidentified carbohydrate, malic acid and an organic acid co-chromatographing with 6-phosphogluconate. Distribution and labelling patterns of nodule amino compounds were consistent with the hypothesis that ammonia is the primary product of nitrogen fixation within bacteroids, and that this ammonia is transported to host cells for assimilation, initially into glutamine and glutamate.  相似文献   

7.
Abstract: In the present work, we examined the effect of salinity on growth, N fixation and carbon metabolism in the nodule cytosol and bacteroids of Phaseolus vulgaris, and measured the O2 consumption by bacteroids incubated with or without the addition of exogenous respiratory substrates. The aim was to ascertain whether the compounds that accumulate under salt stress can increase bacteroid respiration and whether this capacity changes in response to salinity in root nodules of Phaseolus vulgaris. The plants were grown in a controlled environment chamber, and 50, 100 mM or no NaCl (control) was added to the nutrient solution. Two harvests were made, at the vegetative growth period and at the beginning of the reproductive period. The enzyme activities in the nodule cytosol were reduced by the salt treatments, while in the bacteroid cytosol the enzyme activities increased at high salt concentrations at the first harvest and for ADH in all treatments. The data presented here confirm that succinate and malate are the preferred substrates for bacteroid respiration in common bean, but these bacteroids may also utilize glucose, either in control or under saline conditions. The addition of proline or lactate to the incubation medium significantly raised oxygen consumption in the bacteroids isolated from plants treated with salt.  相似文献   

8.
The malate dehydrogenase present in the cytoplasmic fraction of plant origin and bacteroids from yellow lupine root nodules was investigated. The plant enzyme was 14 times more active in nodules than in roots and it contained 6 molecular forms in nodules compared with 3 forms detected in roots. The highest malate dehydrogenase activity in plant fraction and bacteroids was noted in 50-day old plants. Changes in the isoenzymatic patterns of malate dehydrogenase in plant fraction and bacteroids accompanying ageing of the lupine root nodules were observed. Possible physiological role of malate pathway in metabolism of lupine root nodules is discussed.  相似文献   

9.
Ethanol-soluble organic acid, carbohydrate, and amino acid constituents of alfalfa (Medicago sativa) roots and nodules (cytosol and bacteroids) have been identified by gas-liquid chromatography and high performance liquid chromatography. Among organic acids, citrate was the predominant compound in roots and cytosol, with malonate present in the highest concentration in bacteroids. These two organic acids together with malate and succinate accounted for more than 85% of the organic acid pool in nodules and for 97% in roots. The major carbohydrates in roots, nodule cytosol, and bacteroids were (descending order of concentration): sucrose, pinitol, glucose, and ononitol. Maltose and trehalose appeared to be present in very low concentrations. Asparagine, glutamate, alanine, γ-aminobutyrate, and proline were the major amino acids in cytosol and bacteroids. In addition to these solutes, serine and glutamine were well represented in roots. When alfalfa plants were subjected to 0.15 m sodium chloride stress for 2 weeks, total organic acid concentration in nodules and roots were depressed by more than 40%, whereas lactate concentration increased by 11, 27, and 94% in cytosol, roots, and bacteroids, respectively. In bacteroids, lactate became the most abundant organic acid and might contribute partly to the osmotic adjustment. On the other hand, salt stress induced a large increase in the amino acid and carbohydrate pools. Within the amino acids, proline showed the largest increase, 11.3-, 12.8-, and 8.0-fold in roots, cytosol, and bacteroids, respectively. Its accumulation reflected an osmoregulatory mechanism not only in roots but also in nodule tissue. In parallel, asparagine concentration was greatly enhanced; this amide remained the major nitrogen solute and, in bacteroids, played a significant role in osmoregulation. On the contrary, the salt treatment had a very limited effect on the concentration of other amino acids. Among carbohydrates, pinitol concentration was increased significantly, especially in cytosol and bacteroids (5.4- and 3.4-fold, respectively), in which this cyclitol accounted for more than 35% of the total carbohydrate pool; pinitol might contribute to the tolerance to salt stress. However, trehalose concentration remained low in both nodules and roots; its role in osmoregulation appeared unlikely in alfalfa.  相似文献   

10.
Acetylene reduction activity (ARA) and leghemoglobin (Lb) content in nodules were sigificantly reduced when pea ( Pisum sativum L. cv. Lincoln) plants were subjected to 50 m M sodium chloride stress for 3 weeks. C2H2 reduction activity by bacteriods isolated from pea nodules was drastically inhibited by saline stress, and malate appeared to be a more appropriate substrate than glucose or succinate in maintaining this activity. Salt added directly to the incubation mixture of bacteriods or to the culture medium of plants inhibited O2 uptake by bacteroids. Nodule cytosolic phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) and bacteriod malate dehydrogenase (MDH; EC 1.1.1.37) activities were strongly enhanced by salt stress. Under these conditions, malate concentration was depressed in bacteroids and cytosol, whereas total soluble sugar (TSS)content slightly increased in both fractions. The effect of salt stress on TSS and malate content suggests that the utilization of carbohydrate within nodules could be inhibited during salt stress. The inhibitory effect of NaCl on N2 fixation activity of bacteroids and to the decrease in bacteroid respiration. The stimulation of fermentative metabolism induced by salinity suggests some reduction in O2 availability within the nodule. Salt stress was also responsible for a decrease of the cytosolic protein content, specifically of leghemoglobin, in the nodules.  相似文献   

11.
Root nodules were harvested from chamber-grown soybean (Glycine max L. Merrill cv Woodworth) plants throughout development. Apparent nitrogenase activity (acetylene reduction) peaked before seeds began to develop, but a significant amount of activity remained as the seeds matured. Nodule senescence was defined as the period in which residual nitrogenase activity was lost. During this time, soluble protein and leghemoglobin levels in the host cell cytosol decreased, and proteolytic activity against azocasein increased. Degradative changes were not detected in bacteroids during nodule senescence. Total soluble bacteroid protein per gram of nodule remained constant, and an increase in proteolytic activity in bacteroid extracts was not observed. These results are consistent with the view that soybean nodule bacteroids are capable of redifferentiation into free-living bacteria upon deterioration of the legume-rhizobia symbiosis.  相似文献   

12.
A temporal pattern of the peribacteroid membrane (PBM) transport function was studied. Spectrophotometric recording was used for establishing the effect of carbon-and nitrogen-containing substrates (malate, succinate, and glutamate) on the acidification of the peribacteroid space and the intensity of light scattering in the symbiosome suspension from broad bean (Vicia faba L.) root nodules of different age. At the early stages of nodule formation and functioning, PBM is permeable not only for malate and succinate, but also for glutamate, and this permeability fully provides for the active bacteroid division and the nitrogenase complex synthesis in the bacteroids at the expense of the carbon-and nitrogen-containing substrates. Mature nodules are characterized by the greatest nitrogen-fixing activity. In these nodules, PBM is selectively permeable for malate and succinate, but constitutes a barrier for glutamate. Thereby, mutually beneficial relations between the symbiotic partners are achieved. In senescent nodules, a rearrangement of symbiotic interactions is directed toward a minimization of both carbon and nitrogen metabolite consumption by the bacteroids. It is concluded that, in the course of the development of the legume-rhizobia symbiosis, the PBM transport function is changed. This function determines a qualitatively different pattern of symbiotic partner interactions in the following sequence: parasitism-mutualism-commensalism.  相似文献   

13.
Metabolites in Bradyrhizobium japonicum bacteroids and in Glycine max (L.) Merr. cytosol from root nodules were analyzed using an isolation technique which makes it possible to estimate and correct for changes in concentration which may occur during bacteroid isolation. Bacteroid and cytosol extracts were fractionated on ion-exchange columns and were analyzed for carbohydrate composition using gas-liquid chromatography and for organic acid and amino acid composition using high performance liquid chromatography. Analysis of organic acids in plant tissues as the phenacyl derivatives is reported for the first time and this approach revealed the presence of several unknown organic acids in nodules. The time required for separation of bacteroids and cytosol was varied, and significant change in concentration of individual compounds during the separation of the two fractions was estimated by calculating the regression of concentration on time. When a statistically significant slope was found, the true concentration was estimated by extrapolating the regression line to time zero. Of 78 concentration estimates made, there was a statistically significant (5% level) change in concentration during sample preparation for only five metabolites: glucose, sucrose, and succinate in the cytosol and d-pinitol and serine in bacteroids. On a mass basis, the major compounds in bacteroids were (descending order of concentration): myo-inositol, d-chiro-inositol, alpha,alpha-trehalose, sucrose, aspartate, glutamate, d-pinitol, arginine, malonate, and glucose. On a proportional basis (concentration in bacteroid as percent of concentration in bacteroid + cytosol fractions), the major compounds were: alpha-aminoadipate (94), trehalose (66), lysine (58), and arginine (46). The results indicate that metabolite concentrations in bacteroids can be reliably determined.  相似文献   

14.
Leaves and nodules (bacteroids and cytosol) of alfalfa (Medicago sativa L. cv Aragon) plants inoculated with Rhizobium meliloti strain 102F51 have been analyzed for the presence of the enzymes superoxide dismutase (SOD, EC 1.15.1.1), catalase (EC 1.11.1.6), and peroxidase (EC 1.11.1.7). All three fractions investigated (leaves, bacteroids, and nodular cytosol) show Cu,Zn-SOD activity. Besides, the bacteroids and cytosol of nodules possess CN-insensitive SOD activities. Studies of SOD inactivation with H2O2 indicate that, very likely, a Mn-SOD is present in the bacteroids, and suggest that the cytosol contain both Mn-SOD and Fe-SOD. Bacteroids show high catalase activity but lack peroxidase. By contrast, the nodule cytosol exhibits an elevated peroxidase activity as compared with the foliar tissue; this activity was completely inhibited by 50 to 100 micromolar KCN. The significantly lower contents of H2O2 and malondialdehyde (a product of lipid peroxidation) in nodules with respect to those in leaves reveal that the above-mentioned bacteroid and cytosol enzymes act in an efficient and combined manner to preserve integrity of nodule cell membranes and to keep leghemoglobin active.  相似文献   

15.
Changes in the isoenzymatic patterns of alcohol dehydrogenase (EC 1.1.1.1) accompanying ageing of the lupine root nodules were observed. Ethanol and other products of anaerobic metabolic pathways (lactate and malate) are better respiratory substrates for bacteroids and symbiosomes (peribacteroid units, PBUs) than glucose and pyruvate. It is postulated that fermentative processes in lupine root nodule provide energy and substrates for bacteroids.  相似文献   

16.
The lupin root nodule homogenate was separated by centrifugation in the Percoll density gradient into the Rhizobium bacteroid fraction and plant subcellular components. High activities of alcohol dehydrogenase and lactate dehydrogenase in the soluble fraction of host plant, and high capability of the isolated bacteroids to oxidize ethanol, malate, lactate and acetaldehyde evidence functional interrelationship between the plant and bacteroids.  相似文献   

17.
The effect of NO3 (0–20 mM for 7 days) upon NO3 and H2O2 metabolism in lucerne (medicago sativa L. ev. Aragón) nodules initiated by Rhizobium meliloti strain 102F51 has been examines. Ty;pical nitrate reductase, (NR) activities of bacteroids (EC 1.7.99.4) and cytosol (EC 1.6.6.1) of nodules not treated with NO3 were 60 and 45 nmol NO2 formed (mg protein)1h?1 respectively, Inductin of bacteroid NR took place in nodules exposed ot concentrations above 5 mM No3 whereas cytosol NR was induced at 5 mM No3 decreasint at greater NO3 concentrations. In resonse to NO3 additin, NO2 increasingly accumulated in the nodule cytosol at quantities commensurate with those needed to oxidise leghaemoglobin (Lb) in vitro. A comparison of patterns of NO2 accumulation and activities of NRs expressed on a nodule weight basis indicates that plant NR contributes decisively to NO2 production at the earlier phass of nodule senescence (5–10mM No3 while bacteroid NR becomes increasingly important in generating NO2 at nore advanced stages (10–20mM NO3). Specific superoxide dismutase (SOD; EC 1.15.1.1) and catalase (EC 1.11.1.6) activities of bacteroids remained constant during the NO3 induced senescence of nodules whereas SOD activity of cytosol increased 1.5-fold and catalase activity ws inhibited by 20% at 20 mM NO3 substantial peroxidase (EC 1.11.1.7) activity was found in the plant but none in the bacteroid fraction of nodules. Peroxidase activity increased significantly only at 20 mM NO3 concomitantly with malondialdephyde content. concentrations. Free H2O2 interferes wihjt Lb function in vivo is suggested.  相似文献   

18.
Malate oxidation supported C2H2 reduction by bacteroids isolated from Sesbania rostrata stem nodules. Optimal activity reached 7.5 nanomoles per minute per milligram of dry weight and was in the same order of magnitude as that observed with succinate but always required a lower O2 tension. Malate dehydrogenase (EC 1.1.1.37), purified 66-fold from bacteroids, actively oxidized malate (Km = 0.19 millimolar). Malic enzyme (EC 1.1.1.39) from Sesbania bacteroids had a lower affinity for malate (Km = 2.32 millimolar). Both enzymes exclusively required NAD+ as cofactor and required an alkaline pH for optimal activity. 2-Oxoglutarate and oxalate, inhibiting malate dehydrogenase and malic enzyme, respectively, were used to specifically block each malate oxidation pathway in bacteroids. The predominance of malate dehydrogenase activity to support bacteroid N2 fixation was demonstrated. The inhibition of O2 consumption by 2-oxoglutarate confirmed the importance of the malate dehydrogenase pathway in malate oxidation. It is proposed that the utilization of malate, with regard to O2, is important in a general strategy of this legume to maintain N2 fixation under O2 limited conditions.  相似文献   

19.
Characteristics of pyrroline-5-carboxylate reductase (P5CR) from Bradyrhizobium japonicum bacteroids and cultured rhizobia were compared with those of the enzyme in soybean nodule host cytosol. Reductase from host cytosol differed from that in bacteroids in: (a) the effect of pH on enzymic activity, (b) the capacity to catalyze both reduction of pyrroline-5-carboxylic acid and NAD+-dependent proline oxidation, (c) apparent affinities for pyrroline-5-carboxylic acid, and (d) sensitivities to inhibition by NADP+ and proline. The K1 for proline inhibition of P5CR in bacteroid cytosol was 1.8 millimolar. The properties of P5CR in B. japonicum and bacteroid cytosol were similar. The specific activities of P5CR in the cytosolic fractions of the nodule host and the bacteroid compartment were also comparable.  相似文献   

20.
Allantoic acid production from IMP, XMP, inosine, xanthosine, hypoxanthine, xanthine, uric acid and allantoin was investigated by incubating each of these substrates withCajanus cajan cytosol and bacteroid fractions separately in the presence and absence of NAD+ and allopurinol. Allantoic acid synthesis by bacteroid fraction could only be observed with uric acid and allantoin as substrates. Addition of NAD+ or allopurinol to the reaction mixtures had no effect. However, with cytosol fraction, allantoic acid was produced by each of these substrates, with maximum rate with allantoin. With NAD+ or with allopurinol, allantoic acid was produced only with uric acid and allantoin as substrates. NADH production with cytosol fraction could again be observed with all the substrates. Except with uric acid and allantoin, allopurinol completely inhibited NADH formation. Regardless of the presence or absence of allopurinol, none of the substrates exhibited significant activity with bacteroid fraction. Based on the activities of glutamine synthetase, glutamate synthase, glutamate dehydrogenase, aspartate aminotransferase, asparagine synthetase, nucleotidase, nucleosidase, xanthine de-hydrogenase, uricase and allantoinase and their intracellular localisation in various nodule fractions, a probable pathway for the biogenesis of ureides in pigeonpea nodules has been proposed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号