首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many of the effects of 1α,25-(OH)2D3 and 24R,25-(OH)2D3 on costochondral chondrocytes are mediated by the protein kinase C (PKC) signal transduction pathway. 1α,25-(OH)2D3 activates PKC in costochondral growth zone chondrocytes through a specific membrane receptor (1α,25-mVDR), involving rapid increases in diacylglycerol via a phospholipase C (PLC)-dependent mechanism. 24R,25-(OH)2D3 activates PKC in resting zone chondrocytes. Although diacylglycerol is increased by 24R,25-(OH)2D3, PLC is not involved, suggesting a phospholipase D (PLD)-dependent mechanism. Here, we show that resting zone and growth zone cells express mRNAs for PLD1a, PLD1b, and PLD2. Both cell types have PLD activity, but levels are higher in resting zone cells. 24R,25-(OH)2D3, but not 24S,25-(OH)2D3 or 1α,25-(OH)2D3, stimulates PLD activity in resting zone cells within 3 min via nongenomic mechanisms. Neither 1α,25-(OH)2D3 nor 24R,25-(OH)2D3 affected PLD in growth zone cells. Basal and 24R,25-(OH)2D3-stimulated PLD were inhibited by the PLD inhibitors wortmannin and EDS. Inhibition of phosphatidylinositol 3-kinase (PI 3-kinase), PKC, phosphatidylinositol-specific PLC (PI-PLC), and phosphatidylcholine-specific PLC (PC-PLC) had no effect on PLD activity. Thus, 24R,25-(OH)2D3 stimulates PLD, and PI 3-kinase, PI-PLC and PKC are not involved, whereas PLD is required for stimulation of PKC by 24R,25-(OH)2D3. Pertussis toxin, GDPβS, and GTPγS had no effect on 24R,25-(OH)2D3-dependent PLD when added to cell cultures, indicating that G-proteins are not involved. These data show that PKC activation in resting zone cells is mediated by PLD and suggest that a functional 24R,25-(OH)2D3-mVDR is required. The results also support the conclusion that the 24R,25-(OH)2D3-responsive PLD is PLD2, since this PLD isoform is G-protein-independent.  相似文献   

2.
Three new withanolides have been isolated from hybrids obtained by crossing a chemotype of Withania somnifera received from South Africa and chemotype II originating in Israel. The compounds have been characterized as 4β,20α-dihydroxy-1-oxo-5β,6β-epoxy-20R,22R-witha-24-enolide, 20α-hydroxy-1,4-dioxo-5β,6β-epoxy-20R,22R-witha-2,24-dienolide, and 20α-hydroxy-1,4-dioxo-5β,6β-epoxy-20R,22R-witha-2-enolide. The major steroid of the plant is withanolide D, while the other known withanolides present are 4β,20α-dihydroxy-1-oxo-5β,6β-epoxy-20R,22R,24S,25R-witha-2-enolide and withaferin A. The structures assigned to the new compounds are based on spectral evidence, analysis of their fragmentation under electron impact, and on chemical correlation with known compounds. The formation of these withanolides in this new hybrid is discussed briefly.  相似文献   

3.
《Phytochemistry》1987,26(2):503-506
Two brassinosteroids, (24S)-24-ethylbrassinone [(22R,23R,24S)-2α,3α,22,23-tetrahydroxy-24-ethyl-5α-cholestan-6-one] and 24-epicastasterone [(22R,23R,24R)-2α,3α,22,23-tetrahydroxy-24-methyl-5α-cholestan-6-one] have been identified from Hydrodictyon reticulatum. Examination of the sterols of this alga has established that 24-ethylcholesterol is predominantly the 24α-epimer, but 24-methylcholesterol is a mixture of the 24α- and 24β-epimers. Thus, similarity with respect to the C-24 configuration was observed between the brassinosteroids and 4-demethylsterols.  相似文献   

4.
(22R,23R)-22,23-dihydroxystigmast-4-en-3-one, (22R,23R)-22,23-dihydroxystigmast-4-en-3,6-dione, (22R,23R)-3β,5α,6β,22,23-pentahydroxystigmastane, (22R,23R)-5α,6α-oxido-3β,22,23-trihydroxystigmastane, (22R,23R)-5β,6β-oxido-3β,22,23-trihydroxystigmastane, and (22R,23R)-3β,6β,22,23-tetrahydroxystigmast-4-ene were synthesized. Their cytotoxicities were comparatively studied using the MCF-7 line of carcinoma cells of human mammary gland and cells of human hepatoma of the Hep G2 line.  相似文献   

5.
Fourteen 4α-methyl sterols have been isolated from the gorgonians Briareum asbestinum, Gorgonia mariae, Muriceopsis flavida and Pseudoplexaura wagenaari, including the following five new sterols: 4α-methyl-24-methylene-5α-cholestan-3β-ol, (24R)-4α, 24-dimethyl-5α-cholesta-7,22-dien-3,β-ol, 4α,24S(or 23ξ)-dimethyl-5α-cholest-7-en-3β-ol, (22E, 24R)-4α,23,24-trimethyl-5α-cholesta-7,22-dien-3β-ol and (24R)-4α,24-dimethyl-5α-cholesta-8(14),22-dien-3β-ol. There is strong evidence that these 4α-methyl sterols are synthesized by the algal (dinoflagellate) symbionts (zooxanthellae) of the gorgonians. It is suggested that analysis of 4Δ-methyl sterol mixtures isolated from a zooxanthellae-bearing invertebrate, collected in several different geographic locations, might give information on the specificity of the symbiotic association between a given animal species and a particular strain of zooxanthellae.  相似文献   

6.
Two hitherto unknown brassinolide analogues, (22R,23R)-2α,3α,22,23-tetrahydroxy-B-homo-7-oxa-24-nor-5α-cholestan-6-one (9b) and (22R,23R)-2α,3α,22,23-tetrahydroxy-24-nor-5α-cholestan-6-one (8a), were stereoselectively synthesized. In both the Raphanus and rice-lamina inclination tests, 9b exhibited almost the same activity as brassinolide (1) and 8a also showed ca 10–50% of the activity of 1.  相似文献   

7.
The [PdII{(R,R)-chxn}(OH)2] reagent (chxn = 1,2-diaminocyclohexane) is introduced as a metal probe for the detection of the bidentate chelating sites of a glycose. Two moles of hydroxide per mole palladium support double deprotonation of potentially chelating diol functions at a glycose’s backbone. The individual chelating sites are detected using one- and two-dimensional NMR techniques. At equimolar amounts of palladium(II) and aldose, the metal-binding sites include mostly the hydroxy function at the anomeric carbon atom. Chelators are derived from both the pyranose and the furanose isomers. Most pyranose-based chelators form five-membered chelate rings by using their 1,2-diol function. Though 1,2-diolate bonding is also common to the furanoses, the formation of six-membered chelate rings by 1,3-bonding is more significant for them. Metal-excess conditions provoke mostly bis-bidentate 1,2;3,4-chelation but unusual isomers form also: thus d-xylose is dimetallated in its all-axial β-pyranose form, and erythrose’s dimetallation results in the formation of two isomers of a metal derivative of the open-chain hydrate. The spectroscopic results are supported by crystal-structure determinations on [Pd{(R,R)-chxn}(α-d-Xylp1,2H−2O1,2)]·H2O (Xyl = xylose), [Pd{(R,R)-chxn}(α-d-Ribp1,2H−2O1,2)]·2.25H2O (Rib = ribose), [Pd{(R,R)-chxn}(α-l-Thrf1,3H−2O1,3)]·2H2O (Thr = threose) and [Pd{(R,R)-chxn}(α-d-Eryf1,3H−2O1,3)]·3H2O (Ery = erythrose).  相似文献   

8.
Phytochemical investigation of the ethanolic extract from the leaves of Cinnamomum parthenoxylon (Jack) Meisn. led to the isolation of (3R, 4R, 3′R, 4′R)-6,6′-dimethoxy-3, 4, 3′, 4′-tetrahydro-2H, 2′H-[3, 3′]bichromenyl-4, 4′-diol (1), 4-hydroxybenzaldehyde (2), 1,2,4-trihydroxybenzene (3), kaempferol-3-O-α-l-rhamnoside (4), herbacetin (5), quercetin-3-O-α-l-rhamnoside (6), daucosterol (7), and β-sitosterol (8). The structures were established by extensive analysis of their MS and NMR spectroscopic data and comparison with literature data. In the present research, all of the isolated compounds 18 are reported for the first time in the species C. parthenoxylon. Compounds 16 were firstly isolated from genus Cinnamomum. Compounds 1, 3, 5 and 6 have not been reported from any species in Lauraceae family. The chemotaxonomic significance of the isolated compounds is discussed.  相似文献   

9.
Roots of Podophyllum hexandrum and P. peltatum both contain (1R,2R,3R)-desoxypodophyllotoxin [(1α,2α,3β)- desoxypodophyllotoxin] and the previously unreported (1R,2R,3R)-podophyllotoxone [(1α,2α,3α)-podophyllotoxone]. Thermal isomerization of (loc,2ct,3fl)-podophyllotoxone readily occurs to yield (1α,2α,3α)-podophyllotoxone (isopicropodophyllone) with traces of (1α,2β,3β)-podophyllotoxone (picropodophyllone). Small amounts of (1α,2α,3α)-podophyllotoxone were also present in dried roots of P. hexandrum and P. peltatum. A more systematic nomenclature for podophyllotoxin derivatives and other aryltetralin lignans using α,β conventions is proposed.  相似文献   

10.
The biological activity of 1α,24R,25-trihydroxyvitamin D3 [1α,24R,25(OH)3D3] was elevated in comparison to the hormonally active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], in the rachitic chick in terms of its ability to (a) stimulate intestinal calcium absorption, (b) mobilize bone calcium, (c) induce intestinal calcium binding protein, (d) modulate the level of enzyme activity of the renal 25-OH-D3-1-hydroxylase system, and (e) interact with the intestinal cystosol-chromatin receptor system for the 1α,25(OH)2D3 receptor system. In each of these assays, the relative ratio of activity of 1α,24R,25(OH)3D3 to 1α,25(OH)2D3was (a) 25–50, (b) ca. 20, (c) 10, (d) 50, and (e) 36%, respectively.  相似文献   

11.
A new sesquiterpene alcohol isolated from the red alga Laurencia nipponica has been characterized as (5S,7R,10R)-selin-4(14)-en-5α-ol by spectral and chemical methods.  相似文献   

12.
Six new natural compounds were isolated from two Far Eastern starfish species, Henricia aspera and H. tumida, collected in the Sea of Okhotsk. Two new glycosylated steroid polyols were obtained from H. aspera: asperoside A and asperoside B, which were shown to be (20R,24R, 25S)-3-O-(2,3-di-O-methyl-β -D-xylopyranosyl)-24-methyl-5α-cholest-4-ene-3β, 6β,8,15α,16β,26-hexaol and (20R, 24R,25S,22E)-3-O-(2,4-di-O-methyl-β-D-xylopyranosyl)-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,26-hexaol, respectively. Two other glycosylated polyols, tumidoside A, with the structure elucidated as (20R, 22E)-3-O-(2,4-di-O-methyl-β -D-xylopyranosyl)-26,27-dinor-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,25-hexaol, and tumidoside B, whose structure was elucidated as (20R,24S)-3-O-(2,3-di-O-methyl-β-D-xylopyranosyl)-5α-cholestan-3β,4β,6β,8,15α,24-hexaol, were isolated from the two starfish species. (20R, 24S)-5α-Cholestan-3β,6β,15α,24-tetraol and (20R, 24S)-5α-cholestan-3β,6β,8,15α,24-pentaol were identified only in H. tumida. The known monoglycosides henricioside H1 and laeviuscolosides H and G were also identified in both species.  相似文献   

13.
The effects of 1α,25-dihydroxyvitamin D3, 24R,25-dihydroxyvitamin D3 and 1α,24R,25-trihydroxyvitamin D3 on active calcium and phosphate transport by rat duodenum were studied in vitamin D-deficient rats that either underwent sham surgery or were bilaterally nephrectomized. Both 1α, 25-dihydroxy- and 1α,24R,25-trihydroxyvitamin D3 markedly stimulated calcium and phosphate absorption with similar effects in shamoperated and nephrectomized rats. A 10-fold higher dose of 24R,25-dihydroxyvitamin D3 was required for an equivalent stimulation of absorption in sham-operated rats, and this compound had no effect on duodena from nephrectomized rats. These data provide the first evidence that 24R,25-dihydroxy- and 1α,24R,25-trihydroxyvitamin D3 can stimulate the active intestinal absorption of phosphate. The lack of response to 24R,25-dihydroxyvitamin D3 in nephrectomized rats confirms prior results which indicated that renal metabolism of this secosteroid to 1α,24,25-trihydroxyvitamin D3 is required for biological activity. In addition, we describe a simple bioassay technique which apparently reflects, with reasonable accuracy, the changes in duodenal calcium and phosphate absorption which occur under more rigorous short-circuited conditions and, in particular, can be used for screening putative 1α-hydroxyl analogs of vitamin D in nephrectomized rats.  相似文献   

14.
N-(Pyren-1-yl)-(3R,4S)-4-[(1S,2R)-1,2,3-trihydroxypropyl]pyrrolidin-3-ol (4) was obtained in 36% yield from 3-deoxy-3-C-formyl-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (3) by combined hydrolysis and aminoalkylation reactions with 1-aminopyrene in a one-pot reaction. Cleavage reactions of the exocyclic triol chain in 4 with NaIO4 and NaBH4 resulted in iminosugars 7 and 8, which are analogues of the furanose forms of 2-deoxy-d-allose and of 2-deoxy-d-ribose, the latter analogue N-(pyren-1-yl)-(3R,4R)-4-(hydroxymethyl)pyrrolidin-3-ol (8) being formed in 83% yield.  相似文献   

15.
Recently Dhar et al. reported the isolation of two new steroidal lactones from the leaves of Datura quercifolia HBK and formulated them as 5α,12α,17α-trihydroxy-1-oxo-6α, 7α-epoxy-22 S-witha-2,24-dienolide and 5α,17α-dihydroxy-1, 12-dioxo-6α,7α-epoxy-22 S-witha-2,24-dienolide on the basis of UV, IR, NMR and MS studies. Further detailed chemical and spectral studies have led to revised structures, namely 5α, 12α-dihydroxy-1-oxo-6α,7α: 24α, 25α-diepoxy-20 S, 22 R-with-2-enolide and 5α-hydroxy-1, 12-dioxo-6α, 7α: 24α, 25α-diepoxy-20 S, 22 R-with-2-enolide, respectively, for the above two compounds.  相似文献   

16.
Seven steroidal lactones of the withanolide series have been isolated as minor constituents of the leaves of Withania somnifera Dun. (Solanaceae) chemotype I, along with the major component withaferin A. Structures have been assigned to the new compounds: withanolide N (17α,27-dihydroxy-1-oxo-20R,22R-witha-2,5,14,24-tetraenolide) (6a) and withanolide O (4β,17α-dihydroxy-1-oxo-20R,22R-witha-2,5,8(14),24-tetraenolide) (7a). Similarly the leaves of W. somnifera chemotype II afforded three new withanolides along with the major component withanolide D (9a) and trace amounts of withanolide G (10). The new compounds are: 27-hydroxywithanolide D(4β,20α,27-trihydroxy-1-oxo-5β,6β-epoxy-20R,22R-witha-2,24-dienolide) (11a), 14α-hydroxywithanolide D (4β,14α,20α-trihydroxy-1-oxo-5β,6β-epoxy-20R,22R-witha-2,24-dienolide) (12a) and 17α-hydroxywithanolide D (4β,17β,20α-trihydroxy-1-oxo-5β,6β-epoxy-20S,22R-witha-2,24-dienolide) (13a). Whereas all the withanolides of chemotype I are unsubstituted at C-20 (20α-H), those of chemotype II possess an OH at this position (20α-OH).  相似文献   

17.
Two new steroid glycosides: distolasteroside D6, (24S)-24-O-(β-D-xylopyranosyl)-5α-cholestane-3β,6α,8,15β,16β,24-hexaol, and distolasteroside D7, (22E,24R)-24-O-(β-D-xylopyranosyl)-5α-cholest-22-ene-3β,6α,8,15β,24-pentaol were isolated along with the previously known distolasterosides D1, D2, and D3, echinasteroside C, and (25S)-5α-cholestane-3β4β,6α,7α,8,15α,16β,26-octaol from the Far Eastern starfish Distolasterias nipon. The structures of new compounds were elucidated by NMR spectroscopy and MALDI TOF mass spectrometry. Like neurotrophins, distolasterosides D1, D2, and D3 were shown to induce neuroblast differentiation in a mouse neuroblastoma C1300 cell culture.  相似文献   

18.
Six new cycloartane-type triterpene glycosides named 3-O-[β-d-glucopyranosyl(1  2)-β-d-xylopyranosyl]-3β,16β,23(R),24(R),25-pentahydroxycycloartane (1), 3-O-[β-d-glucopyranosyl(1  2)-β-d-xylopyranosyl]-3β,16β,23(R),24(R)-tetrahydroxy-25-dehydrocycloartane (2), 3-O-[β-d-xylopyranosyl]-6α-acetoxy-23α-methoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (3), 3-O-[β-d-xylopyranosyl]-6α-acetoxy-23α-butoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (4), 3-O-[β-d-glucopyranosyl(1  2)]-β-d-xylopyranosyl]-6α-acetoxy-23α-methoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (5), 3-O-[β-d-glucopyranosyl(1  2)]-β-d-xylopyranosyl]-23α-methoxy-16β,23(R)-epoxy-4,25,26,27-tetranorcycloartane (6), in addition to three known secondary metabolites consisting of another cycloartane triterpene glycoside and two flavonol glycosides, were isolated from the aerial parts of Astragalus gombo Coss. & Dur. (Fabaceae). The structures of the isolated compounds were established by spectroscopic methods, including 1D and 2D-NMR, mass spectrometry and comparison with literature data.  相似文献   

19.
Three new polar steroids identified as trofoside A, 20R,24S)-24-O-(3-O-methyl-β-D-xylopyranosyl)-3β,6α,8,15β,24-pentahydroxy-5α-cholestane, its 22(23)-dehydro derivative (trofoside B), and 15-sulfooxy-(20R,24S)-5α-cholestane-3β,6β,8,15α,24-pentaol sodium salt, were isolated fromTrofodiscus über starfish extracts collected in the Sea of Ohotsk. Two known compounds, trofoside A aglycone, (20R,24S)-3β,6α,8,15β,24-pentahydroxy-5α-cholestane, and triseramide, (20R,24R,25S,22E)-24-methyl-3β6α,8,15β-tetrahydroxy-5α-cholest-22-en-27-oic acid (2-sulfoethyl)amide sodium salt, were also found. The structures of the isolated polyoxysteroids were established from their spectra. Minimal concentrations causing degradation of unfertilized egg-cells of the sea-urchin Strongylocentrotus intermedius(C min) and terminating the cell division at the stage of the first division (C min embr.), as well as the concentrations causing 50% immobilization of sperm cells (OC50) and inhibiting their ability to fertilize egg-cells by 50% (IC50) were determined for the isolated compounds. Of three compounds highly toxic in embryos and sea-urchin sperm cells, the polyol with a sulfo group in the steroid core was the most active; two glycosides with monosaccharide chains located at C3 and C24 atoms were less toxic. Note that all the compounds with the spermiotoxic activities differently affected the embryo development. The positions of monosaccharide residues in the core considerably influence the compound activity. For example, both mono-and double chained glycosides with the monosaccharide fragment at C3 and fragments at C3 and C4 atoms are active against sea-urchin sperm cells and embryos, whereas the C24 glycosylated trofoside A does not affect embryos and displays a poor spermiotoxicity.  相似文献   

20.
The stem of Cabralea canjerana (Vell.) Mart. yielded three new dammarane triterpenes 20S,24S-epoxy-7β,25-dihydroxy-3,4-secodammar-4(28)-en-3-oic acid, 20S,24S-epoxy-7β,15α,25-trihydroxy-3,4-secodammar-4(28)-en-3-oic acid and 20S,24R-epoxy-7β,22ξ,25-trihydroxy-3,4-secodammar-4(28)-en-3-oic acid, which were identified on the basis of spectroscopic methods. The known dammarane triterpenes ocotillone, eichlerianic acid, shoreic acid and the sterols sitosterol, campesterol, stigmasterol, sitostenone and stigmast-5-en-3-one were also isolated and identified. The branches yielded the above three known dammaranes and eichlerialactone. The dammaranes in C. canjerana display strong similarities with Trichilieae tribe, which contains several dammaranes. The data reported herein thus provide firm support for placing Cabralea within the subfamily Melioideae, Trichilieae tribe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号