首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
Two new steroid glycosides: distolasteroside D6, (24S)-24-O-(β-D-xylopyranosyl)-5α-cholestane-3β,6α,8,15β,16β,24-hexaol, and distolasteroside D7, (22E,24R)-24-O-(β-D-xylopyranosyl)-5α-cholest-22-ene-3β,6α,8,15β,24-pentaol were isolated along with the previously known distolasterosides D1, D2, and D3, echinasteroside C, and (25S)-5α-cholestane-3β4β,6α,7α,8,15α,16β,26-octaol from the Far Eastern starfish Distolasterias nipon. The structures of new compounds were elucidated by NMR spectroscopy and MALDI TOF mass spectrometry. Like neurotrophins, distolasterosides D1, D2, and D3 were shown to induce neuroblast differentiation in a mouse neuroblastoma C1300 cell culture.  相似文献   

2.
Three spirostanol and two furostanol glycosides were isolated from a methanol extract of the roots of Asparagus curillus and characterized as 3-O-[α-l-arabinopyranosyl (1→4)- β-d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-[{α-l-rhamnopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-(25S)-5β-spirostan- 3β-ol, 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β- d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]- 22α-methoxy-(25S)-5β-furostan-3β, 26-diol and 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]- (25S)-5β-furostan-3β, 22α, 26-triol respectively.  相似文献   

3.
5α,6-3H2-Solacongestidine and 5α,6-3 H2-(22S)-dihydrosolacongestidine administered to Solanum dulcamara as well as 16-3H2-(22S: 25R)-22,26-epimino- cholest-5-en-3β-ol (25-isodihydroverazine) and 7α-3H-(22S: 25R)-22,26-epimino-cholest-5-en-3β,16β-diol administered to Solanum laciniatum were converted to coladulcidine and solasodine, respectively. These results are discussed in relation to spirosolane alkaloid biosynthesis.  相似文献   

4.
α1-Adrenoceptor (α1-AR) antagonists are considered to be the most effective monotherapy agents for lower urinary tract symptoms associated with benign prostatic hyperplasia (LUTS/BPH). In this study, we synthesized compounds 217, which are novel piperazine derivatives that contain methyl phenylacetate. We then evaluated the vasodilatory activities of these compounds. Among them, we found that compounds 2, 7, 12, which contain 2-OCH3, 2-CH3 or 2, 5-CH3, respectively, exhibited potent α1-blocking activity similar to protype drug naftopidil (1). The antagonistic effects of 2, 7, and 12 on the (?)-noradrenaline-induced contractile response of isolated rat prostatic vas deferens (α1A), spleen (α1B) and thoracic aorta (α1D) were further characterized to assess the sub receptor selectivity. Compared with naftopidil (1) and terazosin, compound 12 showed the most desirable α1D/1A subtype selectivity, especially improved α1A subtype selectivity, and the ratios pA2 (α1D)/pA2 (α1B) and pA2 (α1A)/pA2 (α1B) were 17.0- and 19.5-fold, respectively, indicating less cardiovascular side effects when used to treat LUTS/BPH. Finally, we investigated the chiral pharmacology of 12. We found, however, that the activity of enantiomers (R)-12 and (S)-12 are not significantly different from that of rac-12.  相似文献   

5.
Four new patchoulol-type sesquiterpenoids, including 6α,9β-dihydroxypatchoulol 6-O-β-d-glucopyranoside (1), 6α-hydroxypatchoulol 6-O-β-d-glucopyranoside (2), 3α,9β-dihydroxypathoulol (3), and 4β-hydroxynorpatchoulol 4-O-β-d-glucopyranoside (10), were isolated from the roots of Pogostemon cablin (Blanco) Benth, together with eleven known sesquiterpenoids. Their structures were elucidated on the basis of extensive NMR spectral and high resolution mass spectrometry analysis. This is the second report of patchoulol glucopyranoside from P. cablin and compound 10 represented as the first example of nor-patchoulol glucopyranoside. The anti-influenza virus activities of 1–10 against A/WSN/33/2009 and A/Puerto Rico/8/1934 strains (tamiflu resistant viruses) were evaluated. Compounds 2β,12-dihydroxypathoulol (5) and (5R)-5-hydroxypatchoulol (8) exhibited moderate anti-influenza activity against A/WSN/33/2009 strain with EC50 value of 52.7 μM and 49.6 μM (positive control oseltamivir, EC50 = 6.75 μM). Compounds 8 and pogostol (12) showed potent anti-influenza activity against A/Puerto Rico/8/1934 strain with EC50 values of 3.06 μM and 0.07 μM, respectively, versus the postive control (amantadine, EC50 = 67.9 μM).  相似文献   

6.
In this work, the kinetics of ginsenosidase type IV hydrolyzing the 6-O-multi-glycosides of protopanaxatriol type ginsenosides (PPT) from Aspergillus sp.39g strain were investigated. The enzyme molecular weight was about 56 kDa. The enzyme hydrolyzes the 6-O-α-l-(1 → 2)-rhamnoside of ginsenoside Re and 6-O-β-d-(1 → 2)-xyloside of R1 into Rg1, and subsequently hydrolyzes 6-O-β-d-glucoside of Rg1 into F1. The enzyme hydrolyzes 6-O-α-l-(1 → 2)-rhamnoside of Rg2 and 6-O-β-d-(1 → 2)-glucoside of Rf into Rh1, and subsequently hydrolyzes 6-O-β-d-glucoside of Rh1 into its aglycone. The enzyme Km and Vmax for Re were 22.2 mM, and 7.94 mM/h; the Km and Vmax for R1 were 7.06 mM and 1.61 mM/h; the enzyme transformation velocity (V0) at 5 mM substrate was 1.46 mM/h for Re, and 0.67 mM/h for R1. Therefore, the enzyme hydrolysis on the Re rhamnoside was faster than that on R1 xyloside. The enzyme V0 on Rg1 was 0.05 mM/h that indicated the enzyme hardly hydrolyzed the 6-O-β-d-glucoside of Rg1. The enzyme kinetic parameters of Rg2 and Rf were 5.74 and 9.43 mM for Km; 2.70 and 2.84 mM/h for Vmax; 1.26 and 0.98 mM/h for V0 at 5 mM substrate, respectively. Thus the enzyme hydrolysis on Rg2 rhamnoside was faster than that on the glucoside of Rf.  相似文献   

7.
Eight non-irritant macrocyclic diterpene esters of the jatrophane type were obtained from an irritant acetone extract of latex and from an irritant methanol extract of roots of Euphorbia characias. They were shown to be diesters of the new parent alcohols characiol, characiol-5β,6β-oxide and 5β-hydroxyisocharaciol and pentaesters of 2,5β,8-trihydroxyisocharaciol.  相似文献   

8.
Eleven oleanane-type saponins (1-11) have been isolated from Microsechium helleri and Sicyos bulbosus roots and were evaluated for their antifeedant, nematicidal and phytotoxic activities. Saponins {3-O-β-d-glucopyranosyl (1 → 3)-β-d-glucopyranosyl-2β,3β,16α,23-tetrahydroxyolean-12-en-28-oic acid 28-O-α-l-rhamnopyranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)-[β-d-xylopyranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranoside} (1), and {3-O-β-d-glucopyranosyl-2β,3β,16α,23-tetrahydroxyolean-12-en-28-oic acid 28-O-α-l-rhamnopyranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)-[β-d-xylopyranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranoside} (2) were also isolated from M. helleri roots together with the two known compounds 3 and 4. Seven known structurally related saponins (5-11) were isolated from S. bulbosus roots. The structures of these compounds were established as bayogenin and polygalacic glycosides using one- and two-dimensional NMR spectroscopy and mass spectrometry. Compounds 7, 10, bayogenin (12) and polygalacic acid (13) showed significant (p < 0.05) postingestive effects on Spodoptera littoralis larvae, compounds 5-11 and 12 showed variable nematicidal effects on Meloydogyne javanica and all tested saponins had variable phytotoxic effects on several plant species (Lycopersicum esculentum, Lolium perenne and Lactuca sativa). These are promising results in the search for natural pesticides from the Cucurbitaceae family.  相似文献   

9.
Two new tridesmosidic cycloartane-type triterpene glycosides (1 and 2) were isolated from the methanolic extract of the roots of Astragalus brachycalyx FISCHER (A. brachycalyx) along with ten (3–12) known cycloartane-type triterpene glycosides. Structures of the new compounds were established as 3-O-β-d-xylopyranosyl-6-O-β-d-glucopyranosyl-16-O-β-d-glucopyranosyl-3β,6α,16β,24(S)-25-pentahydroxycycloartane (1), 3-O-[α-l-arabinopyranosyl-(1→2)-β-d-xylopyranosyl]-6-O-β-d-glucopyranosyl-16-O-β-d-glucopyranosyl-3β,6α,16β,24(S)-25-pentahydroxycycloartane (2), by using 1D and 2D-NMR techniques and mass spectrometry.In vitro immunomodulatory effects and hemolytic activities of the new saponins (1 and 2) and acetylated form of 1 (1a) were studied together with the BuOH and MeOH extracts of Astragalus brachycalyx. The results have proven that tridesmosidic Astragalus cycloartanes are noteworthy immunomodulatory compounds via induction of cytokine production, namely IL-2 and IFN-γ. The test compounds also resulted slight hemolysis at very high doses substantiating a safer profile compared to the positive control QS-21.  相似文献   

10.
Chemical investigation of an acidic methanol extract of the whole plants of Datura metel resulted in the isolation of two new guainane sesquiterpenes, 1β,5α,7β-guaiane-4β,10α,11-triol (1) and 1α,5α,7α-11-guaiene-2α,3β,4α,10α,13-pentaol (2), along with eight known compounds: pterodontriol B (3), disciferitriol (4), scopolamine (5), kaempferol 3-O-β-d-glucosyl(1  2)-β-d-galactoside 7-O-β-d-glucoside (6), kaempferol 3-O-β-glucopyranosyl(1  2)-β-glucopyranoside-7-O-α-rhamnopyranoside (7), pinoresinol 4′′-O-β-d-glucopyranoside (8), (7R,8S,7′S,8′R)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxy-lignan-4-O-β-d-glucopyranoside (9), and (7S,8R,7′S,8′S)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxylignan-4-O-β-d-glucopyranoside (10). Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D NMR and MS spectra. Compounds 2-4 and 6-10 were shown to have modest anti-inflammatory effects through inhibition of NO production in LPS-stimulated BV cells.  相似文献   

11.
Two previously undescribed steroidal alkaloids, compounds 1–2, were isolated from the ripe fruits of Solanum nigrum, along with seven known metabolites (3–9). Based on spectroscopic and chemical evidence, including IR, NMR, and HR-ESI-MS analyses, the structures of the isolated compounds were elucidated as 12β-hydroxy-(3β,22α,25R)-spirosol-5-en-27-acid-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyl-(1→3)]-β-D-galacopyranoside and 12β-hydroxy-(3β,22α,25R)-spirosol-5-en-27-acid-3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside. Four steroidal alkaloids (compounds 1–2 and 4–5) were tested for their anti-proliferative effects against the HT-29, A549, and Lewis cell lines. Both of the previously isolated compounds inhibited the proliferation of these three cell lines in a dose-dependent manner, with the most significant effect being in the A549 cells, but neither reached IC50 at 50 μM. These results revealed that S. nigrum had weak cytotoxicity, indicating its clinical safety as a traditional anti-tumor herbal medicine.  相似文献   

12.
Shi-Biao Wu 《Steroids》2009,74(9):761-18673
Three new (1-3) and several known (4-6) steroids were isolated from the leaves of Chinese Melia azedarach. The structures of the new compounds were elucidated by means of spectroscopic methods including 2D NMR techniques and mass spectrometry to be (20S)-5,24(28)-ergostadiene-3β,7α,16β,20-tetrol (1), (20S)-5-ergostene-3β,7α,16β,20-tetrol (2), and 2α,3β-dihydro-5-pregnen-16-one (3). The cytotoxicities of the isolated compounds against three human cancer cell lines (A549, H460, U251) were evaluated; only compounds 1, 2, and (20S)-5-stigmastene-3β,7α,20-triol (4) were found to show significant cyctotoxic effects with IC50s from 12.0 to 30.1 μg/mL.  相似文献   

13.
《Carbohydrate research》1987,162(2):199-207
The 2,1′-O-isopropylidene derivative (1) of 3-O-acetyl-4,6-O-isopropylidene-α-d-glucopyranosyl 6-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside and 2,3,4-tri-O-acetyl-6-O-trityl-α-d-glucopyranosyl 3,4-anhydro-1,6-di-O-trityl-β-d-lyxo-hexulofuranoside have been synthesised and 1 has been converted into 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside (2). The SN2 reactions of 2 with azide and chloride nucleophiles gave the corresponding 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-azido-4-deoxy-β-d-fructofuranoside (6) and 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-chloro-4-deoxy-β-d-fructofuranoside (8), respectively. The azide 6 was catalytically hydrogenated and the resulting amine was isolated as 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 4-acetamido-1,3,6-tri-O-acetyl-4-deoxy-β-d-fructofuranoside. Treatment of 5 with hydrogen bromide in glacial acetic acid followed by conventional acetylation gave 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-bromo-4-deoxy-β-d-fructofuranoside. Similar SN2 reactions with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-ribo-hexulofuranoside (12) resulted in a number of 4′-derivatives of α-d-glucopyranosyl β-d-sorbofuranoside. The regiospecific nucleophilic substitution at position 4′ in 2 and 12 has been explained on the basis of steric and polar factors.  相似文献   

14.
S.C. Sharma  O.P. Sati 《Phytochemistry》1982,21(7):1820-1821
A new steroidal saponin has been isolated from the ethanolic extract of the roots of Agave cantata and shown to be 3-O-[β-d-glucopyranosyl]-6O-[β-d-glucopyranosyl]-(25R)-5α-22α-O- spirostan-3β, 6α-diol.  相似文献   

15.
Five C-glycosylflavone were isolated from Vaccaria hispanica (Miller) Rauschert seeds. Their NMR spectra showed separate signals because of the existence of rotational isomers, which is an unusual phenomenon. The spectroscopic data revealed that compounds 15 were identified as apigenin 6-C-[α-l-arabinopyranosyl-(1′′′→2′′)-β-d-glucopyranosyl]-7-O-β-d-glucopyranoside (1), apigenin 6-C-[α-l-arabinopyranosyl-(1′′′→2′′)-β-d-glucopyranosyl]-7-O-(6′′′′-O-dihydroferuloyl)-β-d-glucopyranoside (2), apigenin 6-C-β-d-glucopyranosyl-7-O-(6′′′-O-dihydroferuloyl)-β-d-glucopyranoside (3) and isovitexin-2′′-O-arabinoside (4) and saponarin (5), respectively. The structure of ‘vaccarin’ was revised to apigenin 6-C-[α-l-arabinopyranosyl-(1′′′→2′′)-β-d-glucopyranosyl]-7-O-β-d-glucopyranoside and consequently 1 should be named ‘vaccarin’. Among the isolated compounds, 2 and 3 are new and named vaccarin E and vaccarin F, respectively.  相似文献   

16.
Four cycloartane glycosides, 3-O-[α-l-arabinopyranosyl-(1 → 2)-β-d-xylopyranosyl]-3β,6α,16β,23α,25-pentahydroxy-20(R),24(S)-epoxycycloartane (1), 3-O-[α-l-arabinopyranosyl-(1 → 2)-β-d-xylopyranosyl]-16-O-hydroxyacetoxy-23-O-acetoxy-3β,6α,25-trihydroxy-20(R),24(S)-epoxycycloartane (2), 3-O-[α-l-arabinopyranosyl-(1 → 2)-β-d-xylopyranosyl]-3β,6α,23α,25-tetrahydroxy-20(R),24(R)-16β,24;20,24-diepoxycycloartane (3), 3-O-[α-l-arabinopyranosyl-(1 → 2)-β-d-xylopyranosyl]-25-O-β-d-glucopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),24(S)-epoxycycloartane (4), along with three known cycloartane glycosides were isolated from the MeOH extract of the roots of Astragalus campylosema ssp. campylosema. Their structures were established by the extensive use of 1D- and 2D-NMR experiments along with ESIMS and HRMS analysis. The occurrence of the hydroxyl function at position 23 (1-2) and of the ketalic function at C-24 (3) are very unusual findings in the cycloartane class.  相似文献   

17.
Phytochemical research of Pteris multifida Poir. led to the isolation of fifteen compounds, including six flavonoids (16) and nine sesquiterpenoids (715). Their structures were characterized by NMR, MS, ORD and CD data. Compounds kaempferol 3-O-α-L-rhamnoside-7-O-β-D-glucoside (1), myricetin 3-O-β-D-glucoside (2), kaempferol 3-O-β-D-glucoside (4), luteolin-7-O-β-D-rutinoside (5), quercetin-3-O-α-L-rhamnopyranoside (6), (2S,3S)-12-hydroxypterosin Q (7), (2S,3S)-pterosin Q (8), 2-hydroxypterosin C (9) and (2S)-12-hydroxypterosin A (10) were first isolated from P. multifida, and compounds 12 and 10 were first isolated from the family Pteridaceae. Furthermore, the chemotaxonomic significance of the isolates was discussed.  相似文献   

18.
Chemical investigation of Chrozophora tinctoria (L.) A. Juss. growing in Saudi Arabia revealed the isolation of two new acylated flavonoids identified as acacetin-7-O-β-d-[α-l-rhamnosyl(1  6)]3″-E-p-coumaroyl glucopyranoside (4) and apigenin-7-O-(6″-Z-p-coumaroyl)-β-d-glucopyranoside (5), in addition to amentoflavone (1), apigenin-7-O-β-d-glucopyranoside (2), apigenin-7-O-6″-E-p-coumaroyl-β-d-glucopyranoside (3) and rutin (6). The structures of isolated compounds were established by 1D, 2D NMR and HRESIMS spectral data, in addition to comparison with literature data. The anti-inflammatory activities of isolated compounds were assessed by measuring the levels of IL-1β, IL-6, TNF-α and PGE2 in the supernatant media of human peripheral blood mononuclear cells (PBMCs) stimulated by phytohaemagglutinin (PHA). At a concentration of 100 μM, compounds 1, 2, 4 and 6 significantly decreased Il-1β, Il-6 and PGE2 to nearly normal values. All tested compounds caused a dose-dependent decrease in TNF-α level but failed to reach that of the control values.  相似文献   

19.
Dried aerial parts of Tetragonia tetragonoides were extracted with 70% EtOH, and the evaporated residue was successively separated into EtOAc, n-BuOH, and H2O fractions. As a result of repeated SiO2, ODS, and Sephadex LH-20 column chromatography, four new 6-methoxyflavonol glycosides (24, 8) along with four known ones (1, 57) were isolated. Several spectroscopic data led to determination of chemical structures for four new 6-methoxyflavonol glycosides (24, 8) and four known ones, 6-methoxykaempferol 3-O-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl-7-O-(6‴′-(E)-caffeoyl)-β-d-glucopyranoside (1), 6-methoxyquercetin (5), 6-methoxykaempferol (6), and 6-methoxykaempferol 7-O-β-d-glucopyranoside (7). Methoxyflavonol glycosides 28 also have never been reported from T. tetragonoides in this study. 6-Methoxyflavonols 5 and 6 showed high radical scavenging potential in DPPH and ABTS test. Also, all compounds showed significant anti-inflammatory activities such as reduction of NO and PGE2 formation and suppression of TNF-α, IL-6, IL-1β, iNOS, and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. In general, the aglycones exhibited higher activity than the glycosides. In addition, quantitative analysis of 6-methoxyflavonols in the T. tetragonoides aerial parts extract was conducted through HPLC.  相似文献   

20.
For the first time, it is experimentally established that the dietary cholesterol and cholesterol sulfate are biosynthetic precursors of polyhydroxysteroids and related low molecular weight glycosides in starfishes. These deuterium labeled precursors were converted into partly deuterated 5α-cholestane-3β,6α,7α,8,15α,16β,26-heptaol, 5α-cholestane-3β,4β,6α,7α,8,15β,16β,26-octaol, and steroid monoside asterosaponin P1 in result of feeding experiments on the Far Eastern starfish Patiria (=Asterina) pectinifera. The incorporations of deuterium were established by MS and NMR spectroscopy. Scheme of the first stages of biosynthesis of polar steroids in these animals was suggested on the basis of inclusion of three from six deuterium atoms and determination of their positions in biosynthetic products, when [2,2,3,4,4,6-2H6]cholesterol 3-sulfate was used as precursor. It was also shown that labeled cholesterol is transformed into Δ7-cholesterol (lathosterol) in digestive organs and gonads of the starfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号