首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro phosphorylation of maize leaf phosphoenolpyruvate carboxylase   总被引:3,自引:2,他引:1  
Budde RJ  Chollet R 《Plant physiology》1986,82(4):1107-1114
Autoradiography of total soluble maize (Zea mays) leaf proteins incubated with 32P-labeled adenylates and separated by denaturing electrophoresis revealed that many polypeptides were phosphorylated in vitro by endogenous protein kinase(s). The most intense band was at 94 to 100 kilodaltons and was observed when using either [γ-32P]ATP or [β-32P]ADP as the phosphate donor. This band was comprised of the subunits of both pyruvate, Pi dikinase (PPDK) and phosphoenolpyruvate carboxylase (PEPCase). PPDK activity was previously shown to be dark/light-regulated via a novel ADP-dependent phosphorylation/Pi-dependent dephosphorylation of a threonyl residue. The identity of the acid-stable 94 to 100 kilodalton band phosphorylated by ATP was established unequivocally as PEPCase by two-dimensional gel electrophoresis and immunoblotting. The phosphorylated amino acid was a serine residue, as determined by two-dimensional thin-layer electrophoresis. While the in vitro phosphorylation of PEPCase from illuminated maize leaves by an endogenous protein kinase resulted in a partial inactivation (~25%) of the enzyme when assayed at pH 7 and subsaturating levels of PEP, effector modulation by l-malate and glucose-6-phosphate was relatively unaffected. Changes in the aggregation state of maize PEPCase (homotetrameric native structure) were studied by nondenaturing electrophoresis and immunoblotting. Enzyme from leaves of illuminated plants dissociated upon dilution, whereas the protein from darkened tissue did not dissociate, thus indicating a physical difference between the enzyme from light- versus dark-adapted maize plants.  相似文献   

2.
The kinetic mechanism of pyruvate phosphate dikinase (PPDK) from Bacteroides symbiosus was investigated with several different kinetic diagnostics. Initial velocity patterns were intersecting for AMP/PPi and ATP/Pi substrate pairs and parallel for all other substrate pairs. PPDK was shown to catalyze [14C]pyruvate in equilibrium phosphoenolpyruvate (PEP) exchange in the absence of cosubstrates, [14C]AMP in equilibrium ATP exchange in the presence of Pi/PPi but not in their absence, and [32P]Pi in equilibrium PPi exchange in the presence of ATP/AMP but not in their absence. The enzyme was also shown, by using [alpha beta-18O, beta, beta-18O2]ATP and [beta gamma-18O, gamma, gamma, gamma-18O3]ATP and 31P NMR techniques, to catalyze exchange in ATP between the alpha beta-bridge oxygen and the alpha-P nonbridge oxygen and also between the beta gamma-bridge oxygen and the beta-P nonbridge oxygen. The exchanges were catalyzed by PPDK in the presence of Pi but not in its absence. These results were interpreted to support a bi(ATP,Pi) bi(AMP,PPi) uni(pyruvate) uni(PEP) mechanism. AMP and Pi binding order was examined by carrying out dead-end inhibition studies. The dead-end inhibitor adenosine 5'-monophosphorothioate (AMPS) was found to be competitive vs AMP, noncompetitive vs PPi, and uncompetitive vs PEP. The dead-end inhibitor imidodiphosphate (PNP) was found to be competitive vs PPi, uncompetitive vs AMP, and uncompetitive vs PEP. These results showed that AMP binds before PPi. The ATP and Pi binding order was studied by carrying out inhibition, positional isotope exchange, and alternate substrate studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Incubation of rat liver parenchymal cells with 10?5m epinephrine or norepinephrine resulted in a rapid incorporation of 32P into pyruvate kinase. Inclusion of α-adrenergic blocking agents (phenoxybenzamine or phentolamine) in the hepatocyte incubation medium prior to addition of epinephrine suppressed the subsequent phosphorylation of pyruvate kinase. On the other hand, inclusion of the β-adrenergic antagonist, propranolol, in the hepatocyte incubation medium prior to addition of epinephrine did not suppress the epinephrine-elicited phosphorylation of pyruvate kinase. Exogenous addition of either cyclic AMP or cyclic GMP to the hepatocyte incubation medium also resulted in increased phosphorylation of pyruvate kinase. To investigate whether the same amino acid residue(s) of liver pyruvate kinase was being phosphorylated in each instance, 32P-labeled pyruvate kinase was isolated from hepatocytes after incubation in the presence or absence of either glucagon or epinephrine. In addition, purified liver pyruvate kinase was phosphorylated in vitro with a rat liver cyclic AMP-dependent protein kinase. Each 32P-labeled pyruvate kinase was then subjected to tryptic digestion, two-dimensional thin-layer peptide mapping, and autoradiography. Each 32P-labeled pyruvate kinase sample yielded 44 to 48 tryptic peptides upon staining with ninhydrin and 4 peptides that contain 32P as detected by autoradiography. Furthermore, the same 4 peptides of pyruvate kinase were radiolabeled in each instance. Thus phosphorylation of pyruvate kinase in vitro with [γ-32P]ATP or upon addition of either glucagon or epinephrine to hepatocytes incubated with 32Pi resulted in phosphorylation of the same amino acid residues.  相似文献   

4.
A new sensitive method for adenine nucleotide analysis is described. The key reaction is the phosphorylation of ADP by [32P]PEP in a reaction catalyzed by pyruvate kinase, with the extent of transfer of 32P to ADP being determined by adsorbing the nucleotides onto charcoal. The nonadenine nucleoside diphosphates which also react in the pyruvate kinase reaction are corrected for by determining the 32P retained in the nucleotide fraction after a second incubation with hexokinase and excess glucose. ATP is determined as ADP, after it is quantitatively converted by hexokinase in the presence of excess glucose. Similarly, AMP is analyzed by its conversion to ADP in an incubation with excess ATP and adenylate kinase. The sensitivity of the method for ADP and ATP is 0.05–0.5 pmoles while for AMP it is 5 pmoles.  相似文献   

5.
Assimilatory nitrate reductase activity (NRA) in crude spinach leaf (Spinacia oleracea) extracts undergoes rapid changes following fluctuations in photosynthesis brought about by changes in external CO2 or by water stress (WM Kaiser, E Brendle-Behnisch [1991] Plant Physiol 96:363-367). A modulation of NRA sharing several characteristics (stability, response to Mg2+ or Ca2+, kinetic constants) with the in vivo modulation was obtained in vitro by preincubating desalted leaf extracts with physiological concentrations of Mg2+ and ATP (deactivating) or AMP (activating). When nitrate reductase (NR) was inactivated in vivo by illuminating leaves at the CO2 compensation point, it could be reactivated in vitro by incubating leaf extracts with AMP. For the in vitro inactivation, ATP could be replaced by GTP or UTP. Nonhydrolyzable ATP analogs (β, γ-imido ATP, β, γ-methyl-ATP) had no effect on NR, whereas γ-S-ATP caused an irreversible inactivation. This suggests that NR modulation involves ATP hydrolysis. In contrast to NR in crude leaf extracts, partially purified NR did not respond to ATP or AMP. ATP and AMP levels in whole leaf extracts changed in the way predicted by the modulation of NRA when leaves were transferred from photosynthesizing (low ATP/AMP) to photorespiratory (high ATP/AMP) conditions. Adenine nucleotide levels in leaves could be effectively manipulated by feeding mannose through the leaf petiole. NRA followed these changes as expected from the in vitro results. This suggests that cytosolic ATP/AMP levels are indeed the central link between NRA in the cytosol and photosynthesis in the chloroplast. Phosphorylation/dephosphorylation of NR or of NR-regulating protein factors is discussed as a mechanism for a reversible modulation of NR by ATP and AMP.  相似文献   

6.
A simple, single-tube radiolsotopic method has been developed to assay the relative phosphorylation (inaetivation) activity of the bifunctional regulatory protein (RP) of C4-leaf pyruvate,orthophosphate dikinase (PPDK) in desalted leaf homogenates and partially purified preparations. RP catalyzes the inactivation of maize PPDK by phosphorylation of Thr-456, utilizing [-P]ADP as the specific phosphoryl donor. Existing spectrophotometric and radioisotopic assays for the detection of RP activity are either relatively insensitive or labor-intensive and timeconsuming. We describe a modified radioisotopic assay that couples the synthesis of [-32P]ADP by exogenous adenylate kinase with the subsequent RP-catalyzed [-32P]ADP-dependent phosphorylation of exogenous maize PPDK. The incorporation of [-32P] is dependent on the initial concentrations of ATP and PPDK, as well as the presence of active RP. Desalted leaf homogenates of C3 species fail to catalyze 32P incorporation into exogenous maize PPDK. Conversely, heterologous systems containing the maize target enzyme and leaf homogenats of other C4 species result in PPDK-specific 32P-incorporation. This simple radioisotopic assay is at least 40-times more sensitive than the routine spectrophotometric assay, and qualitatively exhibits comparable sensitivity and requires significantly less time than the currently available radioisotopic RP assay. The present assay reliably generates [-32P]ADP and as such may be useful for studies of other systems requiring -labeled ADP, which is not commercially available.Abbrevlations Ap5A P1, P5-di(adenosine-5)-pentaphosphate - Bicine N,N-bis[2-hydroxyethyl]glycine - DTT dithiothreitol - PEI poly(ethyleneimine) - PEP phosphoenolpyruvate - PEPC PEP carboxylase (E.C.4.1.1.31) - PPDK pyruvate,orthophosphate dikinase (E.C.2.7.9.1) - RP PPDK regulatory protein  相似文献   

7.
F. hepatica pyruvate kinase and phosphoenolpyruvate (PEP) carboxykinase were found to have properties of regulatory enzymes in the dissimilation of PEP and the control of metabolic flow. Mn2+ and K+ were required for pyruvate kinase activity. In the presence of fructose-1, 6-diphosphate (FDP), Mg2+ could substitute for Mn2+. FDP caused a 4-fold increase in the Mn2+ activated pyruvate kinase activity. This was accompanied by a 12-fold decrease in apparent Km(PEP) and a 3-fold decrease in apparent Km (ADP). ATP markedly inhibited F. hepatica pyruvate kinase, but this inhibition was relieved by FDP. Estimates of metabolic levels indicated that the pyruvate kinase is saturated with PEP and ADP in vivo, but will be highly sensitive to fluctuations in the physiological concentrations of FDP and ATP. NADH doubled the activity of the PEP carboxykinase reaction and decreased the apparent Km (PEP) for this enzyme 3-fold. While the maximal activity of the PEP carboxykinase reaction was substantially higher than the pyruvate kinase reaction, the steady state concentration of PEP suggests that the PEP carboxykinase will not be saturated with this substrate.  相似文献   

8.
Succinyl-CoA synthetase and the alpha-subunit of pyruvate dehydrogenase are phosphorylated after incubation of mitochondria from brain, heart, and liver with [gamma-32P]ATP. Dichloroacetate, a known specific inhibitor for pyruvate dehydrogenase kinase, inhibits not only the phosphate incorporation into the alpha-subunit of pyruvate dehydrogenase but also the autophosphorylation of succinyl-CoA synthetase. AMP also inhibits the phosphorylation of both proteins. Phosphorylation of the alpha-subunit of pyruvate dehydrogenase in liver mitochondria is significantly lower than in mitochondria from other tissues.  相似文献   

9.
Cell-free extracts of peanut (Arachis hypogaea L., cv. Shulamit)seeds, incubated with various substrates, synthesized ATP. Significantsynthesis occurred in the presence of AMP + PEP, NADH2 + PEPand NAD + PEP. When the activities were examined in extractsprepared with 0.3 M mannitol, the rates were 0.6, 0.1 and 0.04nmol min–1 mg–1 protein, respectively. The activitiesunder such conditions were linear with time up to 90 min incubationat 30 °C. In the presence of PEP + NADH2 there was a higherspecific activity in extracts from non-dormant seeds than fromdormant seeds. No such difference was found when PEP + AMP orNAD + PEP was used as the substrate. The temperature dependenceof the activity showed a relatively high energy of activation(Ea) for AMP + PEP and a low one if NADH2 + PEP or NAD + PEPwas used as substrate. In buffer extracts of seeds ATP was synthesizedin the presence of the above-mentioned substrate combinationsbut the rate of activity exhibited a lag phase at the earlytime of incubation, after which higher rates of activities (ascompared with mannitol extracts) were obtained. The activitieswere Co+-dependent, with a Km of about 0.7 mM. In the bufferextracts relatively high activities of adenylate kinase (EC2.7.4.3 [EC] (AK) and pyruvate kinase (EC 2.7.1.50 [EC] ) (PK) were found.AK was stimulated by ethephon (ethylene). This effect is temperature-dependentand occurs in both directions: in the presence of ADP (ATP +AMP) as well as if ATP + AMP is used as substrate to synthesizeADP. PK is Co+-dependent, and unaffected by ethephon. Both activitieswere stimulated by malonate. Key words: Adenylate Kinase, Arachis hypogaea, ATP synthesis, Peanut, Pyruvate kinase, Seed  相似文献   

10.
Brain and liver cytosol extracts from mice of different ages were incubated with (γ-32P)ATP. The phosphorylated substrates were separated by gel electrophoresis and examined by autoradiography. The amount of P32 that could be incorporated into a 49,000 M.W. protein (called protein 49) postnatally increased in brain but decreased in liver. Cyclic AMP stimulated both the phosphorylation and dephosphorylation of liver protein 49 to a greater extent in adults than in neonates. Brain protein 49 phosphorylation was more sensitive to cyclic AMP in neonates than in adults.  相似文献   

11.
A procedure for the purification of cholesterol ester hydrolase from bovine adrenal cortical 105000 x g supernatant is described. Preincubation of a crude enzyme extract with [gamma-32P]ATP followed by purification resulted in the isolation of a phosphorylated preparation of cholesterol ester hydrolase. The phosphorylated cholesterol ester hydrolase appeared to be composed of 4 subunits, each having a molecular weight of 41000 +/- 280, only one of which may be phosphorylated. Preincubation of the crude enzyme preparation with [alpha-32P]ATP followed by purification did not produce a phosphorylated preparation of cholesterol ester hydrolase. Cyclic-AMP-dependent protein kinase, cyclic AMP, ATP and magnesium ions were required for activation of purified cholesterol ester hydrolase in vitro and the time course of activation closely paralleled the time course of phosphorylation of the enzyme. The addition of ATP, cyclic AMP and magnesium ions to the bovine adrenal cortical 105000 x g supernatant produced a 2.5-fold stimulation in cholesterol ester hydrolase activity. This stimulation was abolished if protein kinase inhibitor was added prior to the addition of ATP cyclic AMP and magensium ions. The addition of magnesium ions or calcium ions to a crude preparation of cholesterol ester hydrolase was found to inhibit activity; however the same additions made to a purified preparation of cholesterol ester hydrolase were not inhibitory. The decrease in cholesterol ester hydrolase activity on incubation with magnesium ion was accompanied by a loss of 32P radioactivity from the protein. Preincubation of a crude preparation of cholesterol ester hydrolase with alkaline phosphatase resulted in a deactivation of cholesterol ester hydrolase. It is suggested that bovine adrenal cortex cholesterol ester hydrolase is activated by a phosphorylation catalysed by a cyclic-AMP-dependent protein kinase. Deactivation of cholesterol ester hydrolase is accomplished by dephosphorylation catalysed by a phosphoprotein phosphatase, dependent on magnesium or calcium ions.  相似文献   

12.
The enzyme responsible for the direct phosphorylation of pyruvate during gluconeogenesis in Acetobacter xylinum has been purified 46-fold from ultrasonic extracts and freed from interfering enzyme activities. The enzyme was shown to catalyze the reversible Mg(2+) ion-dependent conversion of equimolar amounts of pyruvate, adenosine triphosphate (ATP), and orthophosphate (P(i)) into phosphoenolpyruvate (PEP), adenosine monophosphate (AMP), and pyrophosphate (PP). The optimal pH for PEP synthesis was pH 8.2; for the reversal it was pH 6.5. The ratio between the initial rates of the reaction in the forward and reverse directions was 5.1 at pH 8.2 and 0.45 at pH 6.5. The apparent K(m) values of the components of the system in the forward reaction were: pyruvate, 0.2 mm; ATP, 0.4 mm; P(i), 0.8 mm; Mg(2+), 2.2 mm; and for the reverse reaction: PEP, 0.1 mm; AMP, 1.6 mum; PP, 0.067 mm; Mg(2+), 0.87 mm. PEP formation was inhibited by AMP and PP. The inhibition by AMP was competitive with regard to ATP (K(i) = 0.2 mm). The reverse reaction was inhibited competitively by ATP and noncompetitively by pyruvate. The enzyme was strongly inhibited by p-hydroxymercuribenzoate. The inhibition was reversed by dithiothreitol and glutathione. The properties of the enzyme are discussed in relation to the regulation of the opposing enzymatic activities involved in the interconversion of PEP and pyruvate in A. xylinum.  相似文献   

13.
丙酮酸磷酸双激酶(pyruvate phosphate dikinase, PPDK; EC 2.7.9.1)能够可逆催化磷酸烯醇式丙酮酸(phosphoenolpyruvate, PEP)、单磷酸腺苷(adenosine monophosphate, AMP)和焦磷酸盐(pyrophosphate, PPi)生成三磷酸腺苷(adenosine triphosphate, ATP)、无机磷酸盐(orthophosphate, Pi)和丙酮酸(pyruvate).以热玫瑰小双孢菌基因组DNA为模板,PCR扩增得到了编码PPDK的基因,将此基因片段插入表达载体pET24a (+),在大肠杆菌中表达C端融合His-Tag的重组PPDK.与我们先前表达的N端融合His-Tag的PPDK相比,酶的活性提高了20倍,提示该酶的N端对活性十分重要.重组PPDK单体分子量为98 kD.经过镍亲和层析和超滤后,重组PPDK基本达到电泳纯.重组PPDK与荧光素酶偶联能够形成1个ATP-AMP循环反应,在该循环反应中,荧光素酶催化ATP生成的AMP和PPi能够被PPDK重新转化成ATP,产生一个持续稳定的信号.  相似文献   

14.
Chen LS  Nose A 《Annals of botany》2004,94(3):449-455
Background and Aims Plants with crassulacean acid metabolism (CAM) can be divided into two groups according to the major carbohydrates used for malic acid synthesis, either polysaccharide (starch) or monosaccharide (hexose). This is related to the mechanism and affects energy metabolism in the two groups. In Kalanchoë pinnata and K. daigremontiana, which utilize starch, ATP-dependent phosphofructokinase (tonoplast inorganic pyrophosphatase) activity is greater than inorganic pyrophosphate-dependent phosphofructokinase (tonoplast adenosine triphosphatase) activity, but the reverse is the case in pineapple (Ananas comosus) utilizing hexose. To test the hypothesis that the energy metabolism of the two groups differs, day-night changes in the contents of ATP, ADP, AMP, inorganic phosphate (Pi), phosphoenolpyruvate (PEP) and inorganic pyrophosphate (PPi) in K. pinnata and K. daigremontiana leaves and in pineapple chlorenchyma were analysed.• Methods The contents of energy-rich compounds were measured spectrophotometrically in extracts of tissue sampled in the light and dark, using potted plants, kept for 15 d before the experiments in a growth chamber.• Key Results In the three species, ATP content and adenylate energy charge (AEC) increased in the dark and decreased in the light, in contrast to ADP and AMP. Changes in ATP and AEC were greater in Kalanchoë leaves than in pineapple chlorenchyma. PPi content in the three species increased in the dark, but on illumination it decreased rapidly and substantially, remaining little changed through the rest of the light period. Pi content of Kalanchoë leaves did not change between dark and light, whereas Pi in pineapple chlorenchyma increased in the dark and decreased in the light, and the changes were far greater than in Kalanchoë leaves. Light-dark changes in PEP content in the three species were similar.• Conclusions These results corroborate our hypothesis that day–night changes in the contents of energy-rich compounds differ between CAM species and are related to the carbohydrate used for malic acid synthesis.Key words: Ananas comosus, ATP, chlorenchyma, crassulacean acid metabolism, inorganic pyrophosphate, Kalanchoë daigremontiana, Kalanchoë pinnata, phosphoenolpyruvate  相似文献   

15.
Properties and reaction mechanism of C4 leaf pyruvate,Pi dikinase   总被引:3,自引:0,他引:3  
The properties and reaction mechanism of maize leaf pyruvate,Pi dikinase are described. Km values were determined for the forward reaction substrates, pyruvate, ATP, and Pi, at pH 7.4 and 8.0 and for reverse reaction substrates at pH 7.4. Enzyme activity was almost totally dependent on added monovalent cations in both directions. NH+4 was most effective, with Ka values of about 0.38 mM for the forward reaction and 2 mM for the reverse reaction. K+ also completely activated the enzyme in the forward direction (Ka = 8 mM) but only partially activated in the reverse direction. Na+ had little effect on either reaction. The pH optimum for the forward reaction was about 8.2; the reverse reaction optimum was about 6.9. Maximum activity for the reverse direction was about twice the maximum forward direction rate. From data on the requirements for the ATP-AMP exchange reaction, on the mechanism of inhibition of the forward reaction by PEP, AMP, and PPi, and from the kinetics of the interaction of varying certain substrate pairs, it was concluded that the maize leaf pyruvate,Pi dikinase reaction proceeded by the two-step Bi Bi Uni Uni mechanism. This differs from the mechanism of catalysis by the bacterial enzyme.  相似文献   

16.
Maize scutellum slices incubated in water utilized sucrose at a maximum rate of 0.12,μmol/min per g fr. wt of slices. When slices were incubated in DNP, there was a three-fold increase in the rate of sucrose utilization. Sucrose breakdown in higher plants can be achieved by pathways starting with either invertase or sucrose synthase (SS). Invertase activity in scutellum homogenates was found only in the cell wall fraction, indicating that SS was responsible for sucrose breakdown in vivo. SS in crude scutellum extracts broke down sucrose to fructose and UDPG at 0.39,μmol/min per g fresh wt of slices. The UDPG formed was not converted to UDP + glucose, UMP + glucose-1-P, UDP + glucose-1-P or broken down by any other means by the crude extract in the absence of PPi. In the presence of PPi, UDPG was broken down by UDPG pyrophosphorylase which had a maximum activity of 26 μmol/min per g fr. wt of slices. Levels of PPi in the scutellum could not be measured using the UDPG pyrophosphorylase: phosphoglucomutase: glucose-6-P dehydrogenase assay because they were too low relative to glucose-6-P which interferes in the assay. An active inorganic pyrophosphatase was present in the scutellum extract which could prevent the accumulation of PPi in the cytoplasm. ATP pyrophosphohydrolase, which hydrolyses ATP to AMP and PPi, was found in the soluble portion of the scutellum extract. The enzyme activity was increased by fructose-2,6-bisP and Ca2+. In the presence of both activators, enzyme activity was 1.1 μmol/min per g fr. wt of slices, a rate sufficient to supply PPi for the breakdown of UDPG. These results indicate that sucrose breakdown in maize scutellum cells occurs via the SS: UDPG pyrophosphorylase pathway.  相似文献   

17.
Phosphoenolpyruvate (PEP) generated from pyruvate is required for de novo synthesis of glycerol and glycogen in skeletal muscle. One possible pathway involves synthesis of PEP from the citric acid cycle intermediates via PEP carboxykinase, whereas another could involve reversal of pyruvate kinase (PK). Earlier studies have reported that reverse flux through PK can contribute carbon precursors for glycogen synthesis in muscle, but the physiological importance of this pathway remains uncertain especially in the setting of high plasma glucose. In addition, although PEP is a common intermediate for both glyconeogenesis and glyceroneogenesis, the importance of reverse PK in de novo glycerol synthesis has not been examined. Here we studied the contribution of reverse PK to synthesis of glycogen and the glycerol moiety of acylglycerols in skeletal muscle of animals with high plasma glucose. Rats received a single intraperitoneal bolus of glucose, glycerol, and lactate under a fed or fasted state. Only one of the three substrates was 13C-labeled in each experiment. After 3 h of normal awake activity, the animals were sacrificed, and the contribution from each substrate to glycogen and the glycerol moiety of acylglycerols was evaluated. The fraction of 13C labeling in glycogen and the glycerol moiety exceeded the possible contribution from either plasma glucose or muscle oxaloacetate. The reverse PK served as a common route for both glyconeogenesis and glyceroneogenesis in the skeletal muscle of rats with high plasma glucose. The activity of pyruvate carboxylase was low in muscle, and no PEP carboxykinase activity was detected.  相似文献   

18.
The effect of adenine nucleotides in pyruvate, orthophosphate dikinase (EC 2.7.9.1, ATP, pyruvate, orthophosphate phosphotransferase)_was studied with the enzyme furified from maize, and with the enzyme obtained from mesophyll chloroplast extracts during assay in the direction of pyruvate conversion to phosphoenolpyruvate. (1) In studies with the purified enzyme, the relationship of initial velocity to ATP concentrations follows Michaelis-Menten kinetics, and the Km value for ATP was 22.8 μM (± 5.1 μM, n = 5). (2) AMP was a competitive inhibitor with respect to ATP, and its Ki value was 35.8 μM (± μM, n = 4). There was no inhibition of catalysis by ADP up to a concentration of 460 μM. (3) The theoretical response of the enzyme to change in the adenylate energy charge was calculated from the kinetic constants for ATP and AMP. The experimentally obtained values were similar to the theoretical response when varying energy charge was generated by addition of appropriate amounts of ATP, ADP and AMP in assays with the purified enzyme. The response of the enzyme to energy charge at different pH values (pH 7.0, 7.5, and 8.0) was similar, although the activity of the enzyme at pH 7.0 was about 40% of that at pH 8.0. (4) When mesophyll chloroplast extracts of maize, which contain high levels of adenylate kinase, were used as the source of the enzyme and the adenylate energy charge was generated by addition of different concentrations of ATP and AMP, the influence on catalysis was similar to that with the purified enzyme. (5) The data show that the effect of varying energy chage on the activity of the dikinase is not typical of a U-type enzyme, in contrast to phosphoglycerate kinase (EC 2.7.2.3, ATP: 3-phospho-D-glycerate 1-phosphotransferase), which is more strongly regulated. (6) Evidence is presented for competition between the dikinase and phosphoglycerate kinase for ATP in mesophyll chloroplast extracts of maize. (7) When the effect of adenylate energy charge on the state of activation and the direct effect on catalysis of the dikanase are combined, the total capacity for catalysis is very dependent on the energy charge.  相似文献   

19.
A sensitive method for measuring phosphorylase kinase activity by the incorporation of 32P from [γ-32]ATP into phosphorylase in the presence of other phosphorylation reactions is described. The kinase reaction is carried out in a crude homogenate. After stopping the reaction, a portion of the reaction mixture is withdrawn for assay of phosphorylase conversion and the rest is applied on a 5′-AMP Sepharose column. Phosphorylase in both forms is retained on the column while other phosphorylated proteins and [γ-32P]ATP are washed out. The phosphorylase is then eluted by 10 mm AMP and the radioactivity incorporated is counted.  相似文献   

20.
Yukiko Tokumitsu  Michio Ui 《BBA》1973,292(2):325-337
1. The mitochondrial level of AMP gradually diminishes during incubation of mitochondria with glutamate but does not with succinate. This decline of AMP, associated with stoichiometric increase in ADP and/or ATP, is accelerated by the addition of electron acceptors or 2,4-dinitrophenol, while arsenite, arsenate and rotenone are inhibitory. These results are in agreement with the view that AMP is phosphorylated to ADP in the inner space of rat liver mitochondria via succinyl-CoA synthetase (succinate: CoA ligase (GDP), EC 6.2.1.4) and GTP:AMP phosphotransferase dependent on the oxidation of 2-oxoglutarate, which is promoted by the transfer of electron from NADH to the respiratory chain.2. Studies of the periodical changes of chemical quantities of adenine nucleotides as well as of their labelling with 32Pi reveals the following characteristics concerning mitochondrial phosphorylation. (i) In contrast to the mass action ratio of ATP to ADP, the ratio of ADP to AMP is not affected by the intramitochondrial concentration of Pi. (ii) 32Pi, externally added, is incorporated into ADP much more slowly than into γ-phosphate of ATP. (iii) Conversely, ATP loses its radioactivity from γ-phosphate position more rapidly than [32P]ADP when 32P-labelled mitochondria are incubated with non-radioactive Pi.3. In order to elucidate the above characteristic properties of phosphorylation, a hypothetical scheme is proposed which postulates the two separate compartments in the intramitochondrial pool of Pi; one readily communicates with external Pi and is utilized for the phosphorylation of ADP in oxidative phosphorylation, while the other less readily communicates with external Pi and serves as the precursor of ADP via succinyl-CoA synthetase and GTP:AMP phosphotransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号