首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seigler DS 《Phytochemistry》2005,66(13):1567-1580
The major cyanogenic glycoside of Guazuma ulmifolia (Sterculiaceae) is (2R)-taxiphyllin (>90%), which co-occurs with (2S)-dhurrin. Few individuals of this species, but occasional other members of the family, have been reported to be cyanogenic. To date, cyanogenic compounds have not been characterized from the Sterculiaceae. The cyanogenic glycosides of Ostrya virginiana (Betulaceae) are (2S)-dhurrin and (2R)-taxiphyllin in an approximate 2:1 ratio. This marks the first report of the identification of cyanogenic compounds from the Betulaceae. Based on NMR spectroscopic and TLC data, the major cyanogenic glucoside of Tiquilia plicata is dhurrin, whereas the major cyanide-releasing compound of Tiquilia canescens is the nitrile glucoside, menisdaurin. NMR and TLC data indicate that both compounds are present in each of these species. The spectrum was examined by CI-MS, 1H and 13C NMR, COSY, 1D selective TOCSY, NOESY, and 1J/2,3J HETCOR experiments; all carbons and protons are assigned. The probable absolute configuration of (2R)-dhurrin is established by an X-ray crystal structure. The 1H NMR spectrum of menisdaurin is more complex than might be anticipated, containing a planar conjugated system in which most elements are coupled to several other atoms in the molecule. The coupling of one vinyl proton to the protons on the opposite side of the ring involves a 6J- and a 5/7J-coupling pathway. A biogenetic pathway for the origin of nitrile glucosides is proposed.  相似文献   

2.
Turnera ulmifolia constitutes a well-studied polyploid complex with allo- and autopolyploid species ranging from 2 to 8x. Flow cytometry was used to determine nuclear DNA content, and to estimate 2C- and 1Cx-values with the aim of analysing the genome size in Turnera in terms of polyploid speciation. The 2C-value and 1Cx-value were evaluated in 12 species of the T. ulmifolia complex. Nuclear DNA content was estimated by flow cytometry of nuclei stained with propidium iodide. The 2C DNA content ranged from 1.38 to 1.83?pg in diploids, from 2.67 to 3.96?pg in tetraploids, from 2.73 to 4.31?pg in hexaploids, and from 3.53 to 5.90?pg in octoploids. The 1Cx-value ranged from 0.44 to 0.99?pg. The Turnera ulmifolia complex showed an increase in total DNA content in the ploidy level, but not in the expected proportion. The general tendency indicated a decrease in the 1Cx-value with increasing chromosome number, with T. grandidentata 4x being an outstanding exception. The 1Cx-values in the allooctoploids T. aurelii and T. cuneiformis differed by 1.6-fold from each other, probably as a result of different evolutionary histories following divergence from the last common ancestor.  相似文献   

3.
Large amounts of cyanogenic lipids (esters of 1 cyano-2-methylprop-2-ene-1-ol with C:20 fatty acids) are stored in the seeds of Ungnadia speciosa. During seedling development, these lipids are completely consumed without liberation of free HCN to the atmosphere. At the same time, cyanogenic glycosides are synthesized, but the total amount is much lower (about 26%) than the quantity of cyanogenic lipids formerly present in the seeds. This large decrease in the total content of cyanogens (HCN-potential) demonstrates that at least 74% of cyanogenic lipids are converted to noncyanogenic compounds. Whether the newly synthesized cyanogenic glycosides are derived directly from cyanogenic lipids or produced by de novo synthesis is still unknown. Based on the utilization of cyanogenic lipids for the synthesis of noncyanogenic compounds, it is concluded that these cyanogens serve as storage for reduced nitrogen. The ecophysiological significance of cyanolipids based on multifunctional aspects is discussed.  相似文献   

4.
Cyanogenic glycosides are ancient biomolecules found in more than 2,650 higher plant species as well as in a few arthropod species. Cyanogenic glycosides are amino acid-derived β-glycosides of α-hydroxynitriles. In analogy to cyanogenic plants, cyanogenic arthropods may use cyanogenic glycosides as defence compounds. Many of these arthropod species have been shown to de novo synthesize cyanogenic glycosides by biochemical pathways that involve identical intermediates to those known from plants, while the ability to sequester cyanogenic glycosides appears to be restricted to Lepidopteran species. In plants, two atypical multifunctional cytochromes P450 and a soluble family 1 glycosyltransferase form a metabolon to facilitate channelling of the otherwise toxic and reactive intermediates to the end product in the pathway, the cyanogenic glycoside. The glucosinolate pathway present in Brassicales and the pathway for cyanoalk(en)yl glucoside synthesis such as rhodiocyanosides A and D in Lotus japonicus exemplify how cytochromes P450 in the course of evolution may be recruited for novel pathways. The use of metabolic engineering using cytochromes P450 involved in biosynthesis of cyanogenic glycosides allows for the generation of acyanogenic cassava plants or cyanogenic Arabidopsis thaliana plants as well as L. japonicus and A. thaliana plants with altered cyanogenic, cyanoalkenyl or glucosinolate profiles.  相似文献   

5.
The valine/isoleucine-derived cyanogenic glycosides linamarin and lotaustralin have been isolated together with the cyclopentenoid cyanogen passibiflorin from Passiflora lutea. This is only the second report of the production of cyanogenic glycosides from more than one biosynthetic pathway in individuals of a single species.  相似文献   

6.
To investigate whether extrafloral nectar (EFN) increases seed dispersal in Turnera ulmifolia, we measured seed removal on plants with and without EFN. Plants producing EFN had more seeds removed than control plants, suggesting that EFN does play a role in seed dispersal. This is a novel function of EFN.  相似文献   

7.
This paper describes the myrmecochory system of Turnera ulmifolia in a coastal sand dune matorral in Mexico. Turnera ulmifolia has elaiosome‐bearing seeds and extrafloral nectaries (EFNs). In ten quadrants (4 × 15 m) ant–seed interaction was monitored, and an interaction intensity index calculated and correlated with the number of seedlings. Seed removal rates by ants were surveyed every 2 h for 24 h, the ants being observed both on and beneath the plants. The role of the elaiosome in seed removal was evaluated by offering seeds with and without elaiosomes, and elaiosomes only. Finally, the effect of ant manipulation in seed germination was evaluated. There were 25 ant species associated with seeds and/or EFNs, the most frequently recorded being Monomorium cyaneum and Forelius analis. There was a positive correlation between the intensity index and seedling number per quadrant. There was significantly higher mean seed removal during the day than during the night (19.3% and 12.3%, respectively), and from beneath than on the plant (21.9% and 9.5%, respectively). The preference for elaiosomes only was also greater during the diurnal period, and when gathered on, rather than beneath, the plant. Seed manipulation by F. analis enhanced germination by T. ulmifolia. Seed removal, dispersal distances, seed predation and germination were largely determined by ant behaviour. The presence of EFNs may be influencing seed removal on the plant by attracting a specific assemblage of omnivorous ants. Among such assemblages associated with T. ulmifolia we encountered a variety of behaviours, with ant species either good at defending plants but bad at dispersing seeds, or vice versa. We discuss the way in which these two rewards, and the processes involved (defence and dispersion), could have interacted with each other and evolved. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86 , 67–77.  相似文献   

8.
An epimeric mixture of two novel cyclopentenoid cyanogenic glycosides, passibiflorin [1-(6-O-β-D-rhamnopyranosyl-β-D-glucopyranosyloxy)-4-hydroxycyclopent-2-en-1-nitrile] and its C-1 epimer, epipassibiflorin, has been isolated from Passiflora biflora and P. talamancensis. The structures were determined by means of 1H NMR and 13C NMR. Another novel cyclopentenoid cyanogenic glycoside, passitrifasciatin [1-(4-O-β-D-rhamnopyranosyl-β-D-glucopyranosyloxy)-4-hydroxycyclopent-2-en-1-nitrile] is described from Passiflora trifasciata. The structure was determined by means of 1H NMR. The identification of the sugar moieties was made by HPLC and TLC. The isolation of a β-1 → 4 and a β-1 → 6-rhamnoglucoside of cyclopentenoid cyanogens from three species of subgenus Plectostemma of Passiflora suggests that diglycosides of this type are taxonomically diagnostic for the section.  相似文献   

9.
The nonproteinogenic amino acid, cyclopentenylglycine, is found in certain Flacourtiaceae. This compound may be synthesized by two C1-chain elongations of -ketoglutarate via -ketopimelate (C5+2C1) or by condensation of C4 and C3 units (C4+C3), a pathway not involving -ketopimelate. The following experimental design elucidated the biosynthetic pathway: Idesia polycarpa callus cultures were freshly established from leaf petioles; synthetic -[1,2-14C]ketopimelate was added to the medium and cultures were incubated for 3 weeks. After isolation and separation of free amino acids from the tissues, the radioactivity incorporated into cyclopentenylglycine was determined. The results establish -ketopimelate as a precursor for cyclopentenylglycine, thus providing evidence for the C5+2C1 biosynthetic path.  相似文献   

10.
《Phytochemistry》1986,25(10):2349-2350
The cyclopentenoid cyanogenic glucoside gynocardin and 4-cyclopentene-1α,2β,3α-triol have been isolated from foliage of Ceratiosicyos laevis (Achariaceae). The systematic significance of the cyanogenic glycosides in Violales is briefly discussed.  相似文献   

11.
The possible role for cyanogenic glycosides as nitrogen storage compounds was studied in barley, Hordeum vulgare (cv. Golf), cultivated under different nitrogen regimes. Cyanogenic glycosides were absent in seeds and roots but were synthesized in seedlings where they accumulated at a level of about 150 nmol shoot−1 in control plants and 110 nmol shoot−1 in nitrogen-starved plants. An enzyme involved in the breakdown of cyanogenic glycosides, β-glucosidase (EC 3.2.1.-) exhibited high activity in seeds and was also detected in roots and shoots. The activity of β-cyanoalanine synthase (EC 4.4.1.9), which is involved in the metabolism of HCN, was low in seeds but very high in roots and shoots. There was no correlation between the activities of the two enzymes and the content of cyanogenic glycosides or nitrogen. The relative content of nitrogen in cyanogenic glycosides never exceeded 0.3% of total nitrogen, and the amount of cyanogenic glycosides decreased at a low rate even at a stage when nitrogen limitation inhibited growth.  相似文献   

12.
Seeds and seedlings of Manihot utilissima were analysed for cyanogenic glycosides und free amino acids, with special reference to valine and isoleucine which serve as precursors of the aglycone moieties of linamarin and lotaustralin. Seeds contained traces of valine and isoleucine but no glycosides, whereas seedlings contained high concentrations of these amino acids and glycosides. Illumination of seedlings led to a steep increase in the concentration of glycosides followed by a decrease without excretion of detectable HCN. Seeds accumulated asparagine, while seedlings accumulated both asparagine and glutamine in the storage and transport of nitrogen. Seedlings incorporated 13.2 per cent of label from valine-14C(U) and 2.4 per cent of label from isoleucine-14C(U)into linamarin and lotaustralin, respectively. In both cases, appreciable amounts of label were also incorporated into asparagine. 49 per cent of label from H14CN was incorporated inio asparagine in which ca. 98 per cent of total radioactivity was located in the amide-carbon atom. The different patterns of labelling which occurred during the assimilation of H14CN and 14CO2 showed that cyanide metabolism did not proceed via CO2, and that M. utilissima contains an efficient enzyme-system which catalyses the conversion on high concentrations of HCN into asparagine, which subsequently enters different metabolic pools involved with respiration, protein and carbohydrate syntheses. Cyanogenesis in M. utilissima appears lo be directly influenced by available pools of valine and isoleucine, and the metabolism of HCN released from linamarin and lotaustralin by the action of linamarase may be directly related to respiratory and synthetic processes by way of the incorporation of HCN as a unit into asparagine.  相似文献   

13.
《Phytochemistry》1986,25(10):2299-2302
Experiments in which unlabelled and [aglycone 14C-labelled cyanogenic glycosides, linamarin and lotaustralin, were fed to larvae of the moth Zygaena trifolii on leaves of an acyanogenic strain of their food plant, Lotus corniculatus, showed that the larvae retained about 20–45% of the glucosides consumed. The larvae in nature usually feed on plants of L. corniculatus which themselves contain linamarin and lotaustralin. Earlier experiments had shown that the larvae of Zygaena spp. are able to synthesize these glucosides from valine and isoleucine and so both sequestration and biosynthesis of the same compounds can occur. This is the only such occurrence yet known in the relationships between plants and insects.  相似文献   

14.
Plant defences can incur allocation costs and such costs incurred early in ontogeny may result in opportunity costs with effects evident later in life. A unified understanding of the growth cost of defence requires the identification of plants with varying ontogenetic trajectories of preferably resource demanding defences and an appropriate measurement of the growth cost of these defences. To develop such tools, we first compared nitrogen-based chemical defence (cyanogenic glycosides) in juvenile and adult foliage of three species of Eucalyptus (Myrtaceae). We found marked differences between the species, with two having much lower concentrations of foliar cyanogenic glycosides in seedlings compared to adults. We next used seedlings of two species to measure the resource (nitrogen) and growth cost of deploying cyanogenic glycosides. We found evidence that for every 1.0 nitrogen invested in cyanogenic glycosides, 1.49 additional nitrogens were effectively added to the leaves. We also found that deployment of cyanogenic glycosides was associated with a reduction in net assimilation rate (NAR) at constant leaf nitrogen. We did not, however, detect an overall growth cost associated with cyanogenic glycoside deployment because the rise in leaf nitrogen associated with this deployment apparently counteracted the reduction in NAR.  相似文献   

15.
Plants often associate with multiple arthropod mutualists. These partners provide important services to their hosts, but multiple interactions can constrain a plant's ability to respond to complex, multivariate selection. Here, we quantified patterns of genetic variance and covariance among rewards for pollination, biotic defence and seed dispersal mutualisms in multiple populations of Turnera ulmifolia to better understand how the genetic architecture of multiple mutualisms might influence their evolution. We phenotyped plants cultivated from 17 Jamaican populations for several mutualism and mating system-related traits. We then fit genetic variance–covariance (G) matrices for the island metapopulation and the five largest individual populations. At the metapopulation level, we observed significant positive genetic correlations among stigma–anther separation, floral nectar production and extrafloral nectar production. These correlations have the potential to significantly constrain or facilitate the evolution of multiple mutualisms in T. ulmifolia and suggest that pollination, seed dispersal and defence mutualisms do not evolve independently. In particular, we found that positive genetic correlations between floral and extrafloral nectar production may help explain their stable coexistence in the face of physiological trade-offs and negative interactions between pollinators and ant bodyguards. Locally, we found only small differences in G among our T. ulmifolia populations, suggesting that geographic variation in G may not shape the evolution of multiple mutualisms.  相似文献   

16.
Sambucus plants have prominent place in folk medicine of the people from Europe and the Middle East. Sambucus ebulus (both above and under ground parts) preparations showed anti-neoplastic, antimicrobial (incl. antiviral) and anti-inflammatory properties. Elderberries accumulate sugars and fibers, vitamins and minerals, besides abundant secondary metabolites, as flavonoids, anthocyanins, phytosterols, triterpenes and iridoid glycosides, among others. Sambucus plants, however, also accumulate cyanogenic glycosides, whose presence is undesirable. Despite many applications so far the knowledge of the metabolites, accumulated in Sambucus species, is still limited and based mainly on determination of the major compounds. Here we report the application of 1H NMR metabolic fingerprinting in combination with principal component and hierarchical clustering analyses to reveal the metabolic differences of Sambucus mature and immature fruits, and plant leaves. Moreover, we show that immature fruits and leaves of S. ebulus have similar metabolome, which apparently undergoes significant changes during the fruit ripening stage. Sambunigrin was not detectable in any sample. To the best of our knowledge this is the first report on the systematic analysis of S. ebulus metabolome.  相似文献   

17.
The cyanogenic glucoside-related compound prunasinamide, (2R)-β-d-glucopyranosyloxyacetamide, has been detected in dried, but not in fresh leaves of the prunasin-containing species Olinia ventosa, Prunus laurocerasus, Pteridium aquilinium and Holocalyx balansae. Experiments with leaves of O. ventosa indicated a connection between amide generation and an excessive production of reactive oxygen species. In vitro, the Radziszewski reaction with H2O2 has been performed to yield high amounts of prunasinamide from prunasin. This reaction is suggested to produce primary amides from cyanogenic glycosides in drying and decaying leaves. Two different benzoic acid esters which may be connected to prunasin metabolism were isolated and identified as the main constituents of chlorotic leaves from O. ventosa and P. laurocerasus.  相似文献   

18.
Large numbers of vacuoles (106-107) have been isolated from Sorghum bicolor protoplasts and analyzed for the cyanogenic glucoside dhurrin. Leaves from light-grown seedlings were incubated for 4 hours in 1.5% cellulysin and 0.5% macerase to yield mesophyll protoplasts which then were recovered by centrifugation, quantitated by a hemocytometer, and assayed for cyanogenic glucosides. Mature vacuoles, released from the protoplasts by osmotic shock, were purified on a discontinuous Ficoll gradient and monitored for intactness by their ability to maintain a slightly acid interior while suspended in an alkaline buffer as indicated by neutral red stain. Cyanide analysis of the protoplasts and the vacuoles obtained there from yielded equivalent values of 11 μmoles of cyanogenic glucoside dhurrin per 107 protoplasts or 107 vacuoles. This work supports an earlier study from this laboratory which demonstrated that the vacuole is the site of accumulation of the cyanogenic glucoside in Sorghum.  相似文献   

19.
In many seed species, the major source of HCN evolved during water imbibition is cyanogenic glycosides. The present investigation was performed to elucidate the role of endogenous cyanogenic glycosides in the control of seed germination and to examine the involvment of β-glucosidase in this process. All seed species used here contained some activities of β-glucosidase already in the dry state before imbibition. in the decreasing order of Malus pumila, Daucus carota, Hordeum vulgare, Chenopodium album and so on. β-Gluosidase activity in upper and lower seeds of cocklebur (Xanthium pennsylvanicum Wallr.) decreased with imbibition, and in lower seeds the activity disappeared when they germinated. On the contrary, in caryopses of rice (Oryza sativa L. cv. Sasanishiki) β-glucosidase increased during imbibition, and this increase continued even after germination. β-Glucosidase in cocklebur seeds was more active in the axial than in the cotyledonary tissue. Amygdalin, prunasin and linamarin could all serve as substrattes for the β-glucosidase(s) from both cocklebur and rice. Amygdalin, prunasin and linamarin as well as KCN, were effective in stimulating the germination of upper cocklebur seeds. The seeds evolved much more free HCN gas when they were exposed to the cyanogenic glycosides than when the glycosides were absent. Moreover, the application of the cyanogenic glycosides or of KCN caused accumulation of bound HCN in the seeds. Carbon monoxide, which stimulated cocklebur seed germination only slightly, did not cause accumulation of bound HCN. We suggest that a balance between the cytochrome and the alternative respiration pathways, which is adequate for germination (Esashi et al. 1987. Plant Cell Physiol. 28: 141–150), may be brought about by the action of endogenous HCN; a large portion of which is liberated from cyanogenic glycosides via the action of β-glucosidase. In addition to the partial suppression of the cytochrome path and unlike carbon monoxide, the HCN thus produced may act to supply cyanide group(s) to unknown compounds necessary for germination.  相似文献   

20.
Besides 7-(2-O-β-D-glucuronyl-β-D-glucuronyloxy)-5,3′,4′-trihydroxyflavone, scutellarin, rosmarinic acid and caffeic acid, two cyanogenic glycosides have been isolated from the dried leaves of Perilla frutescens var. acuta. One of them is prunasin and the other is (R)-2-(2-O-β-D-glucopyranosyl-β-D-glucopyranosyloxy)-phenylacetonitrile, a new isomer of amygdalin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号