首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cell-free enzyme system, which catalyses the incorporation of radiolabel from [12-14C]isopentenyl pyrophosphate into the sesquiterpenoid phytoalexin lubimin, has been prepared from tuber tissue of Solanum tuberosum inoculated with an elicitor preparation from Phytophthora infestans. Biosynthesis of lubimin is optimum at pH 7.32-7.5 and is dependent upon Mg2+ and NADPH. Lubimin labelling by cell-free enzyme system prepared from tissue 48 hr after treatment with elicitor rises rapidly to a maximum over the first 30 min of incubation and does not decline for a further 150 min. The biosynthetic capacity for lubimin in cell free extracts can be observed as early as 3 hr after inoculation of tuber tissue, and rises to a maximum at about 48 hr after treatment, declining thereafter. Lubimin labelling is inhibited by iodoacetamide, the effect of which is reversed by 3,3-dimethylallylpyrophosphate. Preliminary observations on the cell-free system show that it will also catalyse the incorporation of [2-14C]mevalonic acid into lubimin in the presence ofan ATP-generating system.  相似文献   

2.
Arachidonic acid, cellulase, CuSO4, a sonicate of Phytophthora infestans mycelium and a spore suspension of Penicillium chrysogenum all elicited the formation of the sesquiterpenoid phytoalexins lubimin, 3-hydroxylubimin and rishitin in fruit cavities of Datura stramonium. 3-Hydroxylubimin was the predominant phytoalexin formed after treatment of the fruits with arachidonic acid, cellulase and the P. infestans preparation. Copper sulphate was a potent elicitor of lubimin but not 3-hydroxylubimin. The fungus P. chrysogenum metabolized lubimin and 3-hydroxylubimin to 15-dihydrolubimin and 3-hydroxy-15-dihydrolubimin respectively, both in fruit cavities inoculated with spores of this fungus and in pure culture. The 15-dihydrolubimin formed in the fruits by the fungus was further metabolized (by the fruits) to both isolubimin and 3-hydroxy-15-dihydrolubimin. The precursor-product relationships between all of the subject compounds was investigated by feeding experiments with 3H-labelled compounds. 2-Dehydro-[15-3H1]lubimin was rapidly and efficiently incorporated into lubimin and may be the direct precursor of lubimin in planta. 3-Hydroxy[2-3H1]lubimin was incorporated into the nor-eudesmane rishitin but 10-epi-3-hydroxy[2-3H1]lubimin was not. An updated scheme for the biosynthesis and metabolism of lubimin and related compounds in infected tissues of solanaceous plants is presented.We thank Mr Vic Swetez for the provision of plant material, Mrs Margaret Huffee for technical assistance, Dr David Ewing for help with obtaining NMR spectra, and the Agricultural and Food Research Council for financial support.  相似文献   

3.
4.
Potato (Solanum tuberosum) hairy root cultures, established by infecting potato tuber discs with Agrobacterium rhizogenes, were used as a model system for the production of antimicrobial sesquiterpenes and lipoxygenase (LOX) metabolites. Of the four sesquiterpene phytoalexins (rishitin, lubimin, phytuberin and phytuberol) detected in elicitor-treated hairy root cultures, rishitin (213 g g–1 dry wt) was the most predominant followed by lubimin (171 g g–1 dry wt). The elicitors also induced LOX activity (25-fold increase) and LOX metabolites, mainly 9-hydroxyoctadecadienoic acid and 9-hydroxyoctadecatrienoic acid, in potato hairy root cultures. The combination of fungal elicitor plus cyclodextrin was the most effective elicitor treatment, followed by methyl jasmonate plus cyclodextrin in inducing sesquiterpenes and LOX metabolites.  相似文献   

5.
Soybeans (Glycine max [L.] Merr.) respond to pathogens by producing isoflavonoid-derived phytoalexins. Chalcone synthase (CHS) is the first enzyme of the flavonoid/isoflavonoid biosynthetic pathway. We investigated changes in the steady state levels of CHS mRNA and other specific mRNAs at increasing times after inoculation in two different race-specific interactions, one between leaves and the bacterium Pseudomonas syringae pv glycinea (Psg), and one between roots and the fungus, Phytophthora megasperma f. sp. glycinea (Pmg). The amount of CHS mRNA increases significantly in soybean leaves inoculated with an avirulent race of Psg but not with a virulent race or water. In contrast, the increase in CHS mRNA is similar in roots inoculated with zoospores of either an avirulent or virulent race of Pmg. CHS mRNA increases significantly in pathogen inoculated roots but not in uninoculated controls. Hydroxyproline-rich glycoprotein (HRGP) has been observed by others to increase in wounded or pathogen-inoculated plants. We report here that HRGP mRNA levels are greater in roots inoculated with an avirulent Pmg race than with a virulent race, but inoculation with either race causes a significant increase in HRGP mRNA with respect to controls. Calmodulin or ubiquitin mRNA do not increase in either uninoculated or inoculated roots and leaves. The possibility that race-specific resistance in soybeans is expressed differently in different organs of the plant is discussed.  相似文献   

6.
7.
A cell-free system which synthesizes protein was isolated from `aged' discs of Jerusalem artichoke tubers. The synthetic activity was largely associated with the fraction containing mitochondria. Preparations from freshly cut tissue were virtually inactive but increasingly active preparations were obtained from discs `aged' for progressively longer periods; those from 24 hour discs showing maximum activity. The characteristics of this change are reminiscent of the rate of development of invertase, a marker for protein synthesis in the intact disc. Extensive investigations showed that bacterial contamination was not a significant factor in the synthetic activity.  相似文献   

8.
The biosynthesis of benzophenanthridine alkaloids, phytoalexins of Eschscholzia californica, in cultured cells can be induced by a glycoprotein preparation from yeast, methyljasmonate, artificial acidification with permeant acids, or mild osmotic stress. Each of these stimuli strongly attenuated the subsequent response to the same stimulus (homologous desensitization). Elicitor contact and artificial acidification mutually desensitized the cells for either signal. In contrast, elicitor-treated cells maintained their responsiveness to methyljasmonate or hyperosmolarity (sorbitol). Elicitor concentrations that nearly saturated the alkaloid response did not cause a detectable increase of jasmonate content. Transient acidification of the cytoplasm is a necessary step of signaling by low elicitor concentrations but was not detectable after jasmonate treatment. Seen together, the data indicate the existence of a jasmonate-dependent and jasmonate-independent (Delta pH controlled) signal pathway towards the expression of benzophenanthridine biosynthesis. Selective desensitization allows either stimulus to activate a distinct share of the biosynthetic capacity of the cell and limits the accumulation of toxic defense metabolites.  相似文献   

9.
10.
Legume callus cultures were examined to assess whether regulation of phytoalexin biosynthetic pathways is retained in cultured tissues. Callus tissue cultures ofCanavalia ensiformis (jackbean),Medicago sativa (alfalfa), and nine species ofTrifolium (clover) were established (six clover species for the first time) and maintained on modified Gamborg's B5 medium. Phytoalexins educed in cultures incubated for 48 h with an abiotic elicitor (3.15 mM HgCl2) were detected by their antifungal activity and were purified by column chromatography and high-performance liquid chromatography. Following crystallization, phytoalexins were identified by ultraviolet and proton nuclear magnetic resonance spectroscopy. None of the treated cultures yielded the same complement of phytoalexins reported for fungal-inoculated leaves of the corresponding plants. Callus from all species exceptT. pratense yielded medicarpin, the only phytoalexin reported in treated leaves of all the corresponding plants. A second phytoalexin, maackiain, was found in treatedT. pratense andT. medium calli; maackiain has been reported in fungal-inoculated leaves of those plant species as well asT. hybridum. The phytoalexins sativan and vestitol were not found in treated callus tissues even though they were reported to be present in fungal-inoculated leaves of the same species. These results suggest that (a) the pathway for medicarpin biosynthesis is of central importance for this group of legumes, (b) some phytoalexin anabolic pathways contain metabolic blocks in cells of cultured tissue, and (c) the mechanism for regulating phytoalexin accumulation in tissues is not lost in culture. Contribution no 8113 of the US Regional Pasture Research Laboratory, USDA-ARS, University Park, PA, USA  相似文献   

11.
The rate of decarboxylation of [1′-14C]indole-3-acetic acid (IAA) infiltrated into tomato (Lycopersicon esculentum Mill.) pericarp discs was much more rapid in green than in breaker and pink tissues. Studies were carried out in order to determine whether the decarboxylative catabolism occurring in the green pericarp discs was associated with ripening or was a consequence of wound-induced peroxidase activity and/or ethylene production. After a 2-h lag, the decarboxylative capacity of the green pericarp discs increased exponentially during a 24-h incubation period. This increase was accompanied by increases in IAA-oxidase activity in cell-free preparations from the intercellular space and cut surface of the discs. Although higher IAA-oxidase activity was detected in extracts from the tissue residue, which comprises mainly intracellular peroxidases, this activity did not increase during the 24-h incubation period. Analysis of the cell-free preparations by isoelectric focusing revealed the major component in all samples was a highly anionic peroxidase (pI=3.5) the levels of which did not increase during incubation. However, the intercellular and cut-surface preparations contained additional anionic and cationic peroxidases which increased in parallel with the increases in both the IAA-oxidase activity of the preparations and the decarboxylative capacity of the green pericarp discs from which they were derived. Treatment of green discs with the ethylene-biosynthesis inhibitors aminooxyacetic acid and CoCl2, inhibited the development of an enhanced capacity to decarboxylate [1′-14C]IAA but the inhibition was not counteracted by exogenous ethylene. Another ethylene-biosynthesis inhibitor, aminoethoxyvinyl glycine, also reduced ethylene levels but did not affect IAA decarboxylation, indicating that the decarboxylation was not a consequence of wound-induced ethylene production. The data obtained thus demonstrate that the enhanced capacity to decarboxylate [1′-14C]IAA that develops in green tomato pericarp discs following excision is not associated with ripening but instead is attributable to a wound-induced increase in anionic and cationic peroxidase activity in the intercellular fluid and at the cut surface of the excised tissues.  相似文献   

12.
Primary roots of soybean [Glycine max (L.), cv Harosoy 63] seedlings were inoculated with zoospores from either race 1 (incompatible, host resistant) or race 3 (compatible, host susceptible) of Phytophthora megasperma f. sp. glycinea (Pmg) and the activities of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), isoflavone synthase, and dihydroxypterocarpan 6a-hydroxylase related to phytoalexin (glyceollin) biosynthesis, and of glucose-6-phosphate dehydrogenase (Glc-6-PDH) and glutamate dehydrogenase (Glu-DH) were determined at various times after inoculation. About 2-4 h after inoculation with race 1, the activities of PAL, CHS, and pterocarpan 6a-hydroxylase were higher than after inoculation with race 3 and increased considerably thereafter. In contrast, activities of these enzymes in the compatible interaction were equal to or only slightly higher than in the controls over the entire infection period investigated (2-8 h). Isoflavone synthase did not increase until 7 h after inoculation with race 1. There were no significant differences in activities for Glc-6-PDH and Glu-DH between inoculated roots and controls. The results show that infection of soybean roots with zoospores of Pmg race 1 causes a race:cultivar-specific early induction of enzymes involved in glyceollin synthesis, whereas such an induction does not occur with zoospores of race 3. These findings are in agreement with the race:cultivar-specific accumulation of glyceollin in soybean roots reported previously [M. G. Hahn, A. Bonhoff, and H. Grisebach (1985) Plant Physiol. 77, 591-601].  相似文献   

13.
Summary Gibberella pulicaris (Fusarium sambucinum) is a major cause of dry-rot of stored potatoes (Solanum tuberosum) worldwide. The ability of field strains ofG. pulicaris to cause dry-rot is correlated with their ability to detoxify sesquiterpene phytoalexins produced by potato. All highly virulent field strains can detoxify the sesquiterpenes rishitin and lubimin. Meiotic recombinational analysis indicates that rishitin detoxification can be controlled at two or more loci. High virulence has been associated with one of these loci, designatedRiml. Detoxification of rishitin and lubimin comprises a complex pattern of reactions involving epoxidation, dehydrogenation, and cyclization. To date, seven lubimin metabolites and one rishitin metabolite have been characterized. Genes for rishitin and lubimin detoxification are being cloned fromG. pulicaris in order to more rigorously analyze the role and regulation of sesquiterpene metabolism in potato dry-rot. Our results indirectly support a role for sesquiterpene phytoalexins in resistance of potato tubers to dry-rot and may enhance research on alternative control strategies for this economically important potato disease.  相似文献   

14.
Recent reports have revealed genomic clustering of enzymatic genes for particular biosynthetic pathways in plant specialized/secondary metabolism. Rice (Oryza sativa) carries two such clusters for production of antimicrobial diterpenoid phytoalexins, with the cluster on chromosome 2 containing four closely related/homologous members of the cytochrome P450 CYP76M subfamily (CYP76M5-8). Notably, the underlying evolutionary expansion of these CYP appears to have occurred after assembly of the ancestral biosynthetic gene cluster, suggesting separate roles. It has been demonstrated that CYP76M7 catalyzes C11α-hydroxylation of ent-cassadiene, and presumably mediates an early step in biosynthesis of the derived phytocassane class of phytoalexins. Here we report biochemical characterization of CYP76M5, -6, and -8. Our results indicate that CYP76M8 is a multifunctional/promiscuous hydroxylase, with CYP76M5 and -7 seeming to provide only redundant activity, while CYP76M6 seems to provide both redundant and novel activity, relative to CYP76M8. RNAi-mediated double knockdown of CYP76M7 and -8 suppresses elicitor inducible phytocassane production, indicating a role for these monooxygenases in phytocassane biosynthesis. In addition, our data suggests that CYP76M5, -6, and -8 may play redundant roles in production of the oryzalexin class of phytoalexins as well. Intriguingly, the preceding diterpene synthase for oryzalexin biosynthesis, unlike that for the phytocassanes, is not found in the chromosome 2 diterpenoid biosynthetic gene cluster. Accordingly, our results not only uncover a complex evolutionary history, but also further suggest some intriguing differences between plant biosynthetic gene clusters and the seemingly similar microbial operons. The implications for the underlying metabolic evolution of plants are then discussed.  相似文献   

15.
The differential response of cultured parsley cells to u.v. irradiation and elicitor treatment is a paradigm for analysis of specific plant defense responses. We demonstrate that freshly isolated parsley protoplasts, in the absence of detectable cell wall, maintain fully the ability to be activated by these important environmental factors. Stimulated protoplasts synthesize typical qualitative patterns and amounts of potentially protective flavonoid glycosides and coumarin phytoalexins following either u.v. irradiation or treatment with fungal elicitor, respectively. Induced accumulation of mRNAs and enzymes of the phenylpropanoid biosynthetic pathways is nearly identical in protoplasts and cells. Stimulation of protoplasts with elicitor requires only a short period of contact, which is not sufficient for cell wall regeneration. Importantly, there is no activation of these pathways during protoplast preparation. These results establish that parsley protoplasts respond appropriately to two physically distinct stimuli and might serve as an especially suitable system for the analysis of signal transduction and gene activation.  相似文献   

16.
Pisatin elicitor activity was examined in diffusate of the M. fructicola–pea endocarp interaction, leachate of pea endocarp, extracts of ungerminated conidia and filtrates of conidia germinated in vitro in a simple nutrient broth, or in filter–sterilized diffusate or pea leachate. Extracts were made after 18 h incubations which represents the half–time of the primary phase of pisatin accumulation in the M. fructicola–pea model system. These were chromatographed on a Bio–Gel, P–2 column and elicitor activity in eluate fractions was located by bioassay for the ability to induce pisatin accumulation. A characteristic elution profile of pisatin elicitor activity was obtained from diffusate of the pea–M. fructicola interaction. Other preparations obtained from pea leachate, ungerminated conidial extracts or culture filtrates of the fungus germinated in a simple nutrient broth or pea leachate (6 h) did not contain the same profile of elicitor components. No further production of elicitor was detected in early diffusate (6 h) filtrates when they were incubated in vitro alone or withM. fructicola. Elicitor activity was significant in some conidial germination filtrates in vitro. The elution profiles of elicitor activity obtained from these filtrates were shown to be dependent on the physical conditions of culture used (still or shaken). Incubation of the pea leachates with M. fructicola in vitro resulted in the formation of a high molecular weight elicitor which did not correspond with that of the diffusate preparations. Its reapplication to pod tissue did not suggest that it was significantly metabolized by pea tissue to produce the same elicitors found in diffusate preparations. The results emphasize the importance of in vivo studies in the search for elicitors of phytoalexins where two living systems, the plant and the fungus are intimately involved.  相似文献   

17.
Bruce RJ  West CA 《Plant physiology》1982,69(5):1181-1188
Endopolygalacturonase isolated from culture filtrates of the fungus Rhizopus stolonifer was shown previously to act as an elicitor of biosynthetic capacity for the antifungal agent, casbene, in castor bean (Ricinus communis L.) seedlings (S.-C. Lee, C.A. West 1981 Plant Physiology 67:633-639). Selective amidation of exposed carboxyl groups of the pure fungal endopolygalacturonase using intermediate activation with a water-soluble carbodiimide under mild conditions leads to inactivation of its enzymic activity. Tests of active and partially inactivated preparations of the enzyme reveal a close correlation between the levels of catalytic and elicitor activities. This suggests that the catalytic activity of the enzyme is necessary for its function as an elicitor. Treatment of the cell-free particulate fraction of homogenates of castor bean seedlings with the active fungal endopolygalacturonase results in the production of a heat-stable, water-soluble component which is highly active as an elicitor of casbene synthetase activity. Several additional lines of evidence, including the susceptibility of the heat-stable elicitor fraction to partial inactivation following prolonged treatment with endopolygalacturonase, indicate that the heat-stable elicitor is most likely a pectic fragment of the plant cell wall and that it is a required intermediate in the process of elicitation of casbene synthetase activity by the fungal endopolygalacturonase.  相似文献   

18.
Shortly after sowing cotyledons of chickpea (Cicer arietinum) start to accumulate the isoflavones biochanin A and formononetin together with their 7-0-glucosides and their 7-0-glucoside-6″-malonates. The additional accumulation of the pterocarpan phytoalexins medicarpin and maackiain can be induced by wounding of the cotyledons. Treatment of sliced cotyledons with a crude elicitor fraction obtained from the growth medium or the mycelium of the chickpea pathogenic fungus Ascochyta rabiei (Pass.) Lab. leads to a dramatic increase in the level of numerous aromatic compounds, especially of the isoflavone aglyca and the phytoalexins. Accumulation of isoflavone conjugates is not altered by elicitor treatment as shown by time course studies, and dose-response curves. A protein preparation (“suppressor”) isolated from the culture filtrate of the same fungus was shown to inhibit the accumulation of isoflavone aglyca, isoflavone conjugates and phytoalexins in the sliced cotyledons. The possible relevance of elicitor-suppressor counteraction with regard to the defence mechanisms of the host plant is discussed.  相似文献   

19.
Potato antimicrobial sesquiterpenoid phytoalexins lubimin and rishitin have been implicated in resistance to the late blight pathogen, Phytophthora infestans and early blight pathogen, Alternaria solani. We generated transgenic potato plants in which sesquiterpene cyclase, a key enzyme for production of lubimin and rishitin, is compromised by RNAi to investigate the role of phytoalexins in potato defence. The transgenic tubers were deficient in phytoalexins and exhibited reduced post-invasive resistance to an avirulent isolate of P. infestans, resulting in successful infection of the first attacked cells without induction of cell death. However, cell death was observed in the subsequently penetrated cells. Although we failed to detect phytoalexins and antifungal activity in the extract from wild-type leaves, post-invasive resistance to avirulent P. infestans was reduced in transgenic leaves. On the other hand, A. solani frequently penetrated epidermal cells of transgenic leaves and caused severe disease symptoms presumably from a deficiency in unidentified antifungal compounds. The contribution of antimicrobial components to resistance to penetration and later colonization may vary depending on the pathogen species, suggesting that sesquiterpene cyclase-mediated compounds participate in pre-invasive resistance to necrotrophic pathogen A. solani and post-invasive resistance to hemibiotrophic pathogen P. infestans.  相似文献   

20.
An extract of frozen and thawed soybean (Glycine max L. Merr. cv. Wayne) stems is active, in wounded soybean cotyledons, as a heat-labile elicitor of phytoalexins. The elicitor activity of the extract is destroyed by heating to 95°C for 10 minutes. The fraction that contains heat-labile elicitor activity releases heat-stable elicitor-active molecules from purified soybean cell walls. Heat-labile elicitor activity voids a Bio-Gel P-6 column and can be absorbed onto and eluted from a DEAE Sephadex ion exchange column. Using the cotyledon phytoalexin elicitor assay, maximum heatlabile elicitor activity was obtained when soybean stems were extracted with acetate buffer at pH 6.0. Addition of 1 millimolar CaCl2 increased apparent heat-labile elicitor activity. The heat-labile elicitor stimulated maximum phytoalexin accumulation when applied to cotyledons immediately after the cotyledons were cut. Partially purified stem extracts lost heat-labile elicitor activity during storage for several days at 3°C. The possible role of a heat-labile elicitor in stimulation of phytoalexin accumulation by both abiotic and biotic elicitors is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号