首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partially and fully N-deacetylated 4-methylumberlliferyl chitobioside (1) derivatives, such as GlcN-GlcNAc-UMB (2), GlcNAc-GlcN-UMB (3), and (GlcN)2-UMB (4), were synthesized using chemo- and enzymatic procedure. Fluorescent aglycon was released from the chitobiosides 1, 2 and 3 by the action of chitinase. These UMB glycosides of heterochitobiose were versatile probes for the investigation of substrate binding chitinase from various sources.  相似文献   

2.
The three-dimensional structure of the chitin-binding domain (ChBD) of chitinase A1 (ChiA1) from a Gram-positive bacterium, Bacillus circulans WL-12, was determined by means of multidimensional heteronuclear NMR methods. ChiA1 is a glycosidase that hydrolyzes chitin and is composed of an N-terminal catalytic domain, two fibronectin type III-like domains, and C-terminal ChBD(ChiA1) (45 residues, Ala(655)-Gln(699)), which binds specifically to insoluble chitin. ChBD(ChiA1) has a compact and globular structure with the topology of a twisted beta-sandwich. This domain contains two antiparallel beta-sheets, one composed of three strands and the other of two strands. The core region formed by the hydrophobic and aromatic residues makes the overall structure rigid and compact. The overall topology of ChBD(ChiA1) is similar to that of the cellulose-binding domain (CBD) of Erwinia chrysanthemi endoglucanase Z (CBD(EGZ)). However, ChBD(ChiA1) lacks the three aromatic residues aligned linearly and exposed to the solvent, which probably interact with cellulose in CBDs. Therefore, the binding mechanism of a group of ChBDs including ChBD(ChiA1) may be different from that proposed for CBDs.  相似文献   

3.
Growing evidence suggests that horizontal gene transfer plays an integral role in the evolution of bacterial genomes. One of the debated examples of horizontal gene transfer from animal to prokaryote is the fibronectin type III domain (FnIIID). Certain extracellular proteins of soil bacteria contain an unusual cluster of FnIIIDs, which show sequence similarity to those of animals and are likely to have been acquired horizontally from animals. Here we report the solution structure of the FnIIID of chitinase A1 from Bacillus circulans WL-12. To the best of our knowledge, this is the first tertiary structure to be reported for an FnIIID from a bacterial protein. The structure of the domain shows significant similarity to FnIIIDs from animal proteins. Sequence comparisons with FnIIIDs from other soil bacteria proteins show that the core-forming residues are highly conserved and, thus, are under strong evolutionary pressure. Striking similarities in the tertiary structures of bacterial FnIIIDs and their mammalian counterparts may support the hypothesis that the evolution of the FnIIID in bacterial carbohydrases occurred horizontally. The total lack of surface-exposed aromatic residues also suggests that the role of this FnIIID is different from those of other bacterial beta-sandwich domains, which function as carbohydrate-binding modules.  相似文献   

4.
Chitinase A1 from Bacillus circulans WL-12 comprises an N-terminal catalytic domain, two fibronectin type III-like domains, and a C-terminal chitin-binding domain (ChBD). In order to study the biochemical properties and structure of the ChBD, ChBD(ChiA1) was produced in Escherichia coli using a pET expression system and purified by chitin affinity column chromatography. Purified ChBD(ChiA1) specifically bound to various forms of insoluble chitin but not to other polysaccharides, including chitosan, cellulose, and starch. Interaction of soluble chitinous substrates with ChBD(ChiA1) was not detected by means of nuclear magnetic resonance and isothermal titration calorimetry. In addition, the presence of soluble substrates did not interfere with the binding of ChBD(ChiA1) to regenerated chitin. These observations suggest that ChBD(ChiA1) recognizes a structure which is present in insoluble or crystalline chitin but not in chito-oligosaccharides or in soluble derivatives of chitin. ChBD(ChiA1) exhibited binding activity over a wide range of pHs, and the binding activity was enhanced at pHs near its pI and by the presence of NaCl, suggesting that the binding of ChBD(ChiA1) is mediated mainly by hydrophobic interactions. Hydrolysis of beta-chitin microcrystals by intact chitinase A1 and by a deletion derivative lacking the ChBD suggested that the ChBD is not absolutely required for hydrolysis of beta-chitin microcrystals but greatly enhances the efficiency of degradation.  相似文献   

5.
We report here on crystallization and preliminary X-ray analysis of the catalytic domain of chitinase D from Bacillus circulans WL-12. The native crystals of this domain were found to belong to the orthorhombic space group P2(1)2(1)2(1). To elucidate the structure of the catalytic domain by the multiple isomorphous replacement method, 30 kinds of derivatized crystals were prepared by soaking the native crystals into a mother liquor containing salts of heavy metal atoms. Difference Patterson maps calculated for four derivatives showed strong peaks in the Harker sections.  相似文献   

6.
Bacillus circulans WL-12, isolated as a yeast cell wall-lytic bacterium, secretes a variety of polysaccharide-degrading enzymes into culture medium. When chitinases of the bacterium were induced with chitin, six distinct chitinase molecules were detected in the culture supernatant. These chitinases (A1, A2, B1, B2, C, and D) showed the following distinct sizes and isoelectric points: Mr 74,000, pI 4.7 (A1); Mr 69,000, pI 4.5 (A2); Mr 38,000, pI 6.6 (B1); Mr 38,000, pI 5.9 (B2); Mr 39,000, pI 8.5 (C); and Mr 52,000, pI 5.2 (D). Among these chitinases, A1 and A2 had the highest colloidal-chitin-hydrolyzing activities. Chitinase A1 showed a strong affinity to insoluble substrate chitin. Purified chitinase A1 released predominantly chitobiose [(GlcNAc)2] and a trace amount of N-acetylglucosamine (GlcNAc) from colloidal chitin. N-terminal amino acid sequence analysis of chitinases A1 and A2 indicated that chitinase A2 was generated from chitinase A1, presumably by proteolytic removal of a C-terminal portion of chitinase A1. Since chitinase A2 did not have the ability to bind to chitin, the importance of the C-terminal region of chitinase A1 to the strong affinity of chitinase A1 to substrate chitin was suggested. Strong affinity of the chitinase seemed to be required for complete degradation of insoluble substrate chitin. From these results, it was concluded that chitinase A1 is the key enzyme in the chitinase system of this bacterium.  相似文献   

7.
8.
The mature form of chitinase A1 from Bacillus circulans WL-12 comprises a C-terminal domain, two type III modules (domains), and a large N-terminal domain which contains the catalytic site of the enzyme. In order to better define the roles of these chitinase domains in chitin degradation, modified chiA genes encoding various deletions of chitinase A1 were constructed. The modified chiA genes were expressed in Escherichia coli, and the gene products were analyzed after purification by high-performance liquid chromatography. Intact chitinase A1 specifically bound to chitin, while it did not show significant binding activity towards partially acetylated chitosan and other insoluble polysaccharides. Chitinases lacking the C-terminal domain lost much of this binding activity to chitin as well as colloidal chitin-hydrolyzing activity. Deletion of the type III domains, on the other hand, did not affect chitin-binding activity but did result in significantly decreased colloidal chitin-hydrolyzing activity. Hydrolysis of low-molecular-weight substrates, soluble high-molecular-weight substrates, and insoluble high-molecular-weight substrates to which chitinase A1 does not bind were not significantly affected by these deletions. Thus, it was concluded that the C-terminal domain is a chitin-binding domain required for the specific binding to chitin and that this chitin-binding activity is important for efficient hydrolysis of the sufficiently acetylated chitin. Type III modules are not directly involved in the chitin binding but play an important functional role in the hydrolysis of chitin by the enzyme bound to chitin.  相似文献   

9.
A chitinase gene of Bacillus circulans WL-12 was cloned into Escherichia coli by transforming HB101 cells with a recombinant plasmid composed of chromosomal DNA fragments prepared from B. circulans WL-12 and the plasmid vector pKK223-3. DNA sequencing analysis revealed that the region necessary for the normal expression of chitinase activity contained one open reading frame of 2097 base pairs which codes for the precursor of chitinase A1. The precursor of chitinase A1 contained a long signal sequence of 41 amino acids with an extremely long N-terminal hydrophilic segment of 15 amino acids. Cloned chitinase produced in E. coli had at its N terminus an additional 8 amino acids that were not found in B. circulans mature chitinase A1. The N-terminal two-thirds of the deduced amino acid sequence of chitinase A1 showed a 33% amino acid match to chitinase A of Serratia marcescens. This region of chitinase A1 is immediately followed by tandemly repeating 95-amino acid segments that are 70% homologous to each other. Statistical analysis revealed that these repeating segments are homologous to the type III homology units of fibronectin, a multifunctional extracellular matrix and plasma protein of higher eukaryotes. This observation indicates that type III homology units originated prior to the emergence of eukaryotes and may be distributed in a wide range of organisms.  相似文献   

10.
Lysis of Yeast Cell Walls: Glucanases from Bacillus circulans WL-12   总被引:6,自引:1,他引:6       下载免费PDF全文
Endo-β-(1 → 3)- and endo-β-(1 → 6)-glucanases are produced in high concentration in the culture fluid of Bacillus circulans WL-12 when grown in a mineral medium with bakers' yeast cell walls as the sole carbon source. Much lower enzyme levels were found when laminarin, pustulan, or mannitol was the substrate. The two enzyme activities were well separated during Sephadex G-100 chromatography. The endo-β-(1 → 3)-glucanase was further purified by diethylaminoethyl-cellulose and hydroxyapatite chromatography, whereas the endo-β-(1 → 6)-glucanase could be purified further by diethylamino-ethyl-cellulose and carboxymethyl cellulose chromatography. The endo-β-(1 → 3)-glucanase was specific for the β-(1 → 3)-glucosidic bond, but it did not hydrolyze laminaribiose; laminaritriose was split very slowly. β-(1 → 4)-Bonds in oat glucan in which the glucosyl moiety is substituted in the 3-position were also cleaved. The kinetics of laminarin hydrolysis (optimum pH 5.0) were complex but appeared to follow Michaelis-Menten theory, especially at the lower substrate concentrations. Glucono-δ-lactone was a noncompetitive inhibitor and Hg2+ inhibited strongly. The enzyme has no metal ion requirements or essential sulfhydryl groups. The purified β-(1 → 6)-glucanase has an optimum pH of 5.5, and its properties were studied in less detail. In contrast to the crude culture fluid, the two purified β-glucanases have only a very limited hydrolytic action on cell wall of either bakers' yeast or of Schizosaccharomyces pombe. Although our previous work had assumed that the two glucanases studied here are responsible for cell wall lysis, it now appears that the culture fluid contains in addition a specific lytic enzyme which is eliminated during the extensive purification process.  相似文献   

11.
When grown in a mineral medium with yeast cell walls or yeast glucan as the sole carbon source, Bacillus circulans WL-12 produces wall-lytic enzymes in addition to non-lytic beta-(1 leads to 3) and beta-(1 leads to 6)-glucananases. The lytic enzymes were isolated from the culture liquid by adsorption on insoluble yeast glucan in batch operation. After digestion of the glucan, the mixture of enzymes was chromatographed on hydroxylapatite on which the lytic activity could be resolved into one lytic beta-(1 leads to 6)glucanase and two lytic beta-(1 leads to 3)-glucanase was further purified by chromatography over diethylamino-ehtyl-agarose and carboxymethyl cellulose. Its specific activity on pustulan was 6.2 units per mg of protein. The enzyme moved as a single protein with a molecular weight of 54000 during sodium dodecylsulphate electrophoresis in slab gels. Hydrolysis of pustulan went thorugh a series of oligosaccharides, leading to a mixture of gentiotriose, gentiobiose and glucose. The enzyme also produced small amounts of gentiobiose from laminarin and pachyman and on this basis its lytic activity on yeast cell walls,was attribut beta-(1 leads to 3)-linked oligosaccharides were not detected. The lytic beta-(1 leads to 6)-glucanase has an optimum pH of 6.0. Pustulan hydrolysis followed Michaelis-Menten kinetics. A Km of 0.29 mg pustulan per ml and a V of 9.1 micro-equivalents of glucose released/min per mg of enzyme were calculated. The enzyme has no metal ion requirement. The lytic beta-(1 leads to 6)-glucanase differs in essence from the non-lytic beta-(1 leads to 6)-glucanase of the same organism by its positive action on yeast cell walls and yeast glucan and its much lower specific activity on soluble pustulan.  相似文献   

12.
A protein purification procedure was developed to efficiently and effectively purify the target enzyme, chitinase A1 of Bacillus circulans WL-12, from Escherichia coli DH5alpha carrying the chiA gene with its natural promoter in the plasmid pNTU110. Chitinase A1 was purified to apparent homogeneity from E. coli periplasm with a final recovery of 90.6%. Two main steps were included in this protein purification procedure, ammonium sulfate precipitation (40% saturation) and anion-exchange chromatography at pH 6.0 using Q Ceramic HyperD column. The yield of chitinase A1 was estimated at 95 microg/L. A polyclonal antibody against chitinase A1 was raised by immunizing BALB/c mice with chitinase A1 purified from E. coli DH5alpha(pNTU110). As indicated by Western blot analysis, a 3000-fold diluted antibody detected purified chitinase A1 from E. coli DH5alpha(pNTU110) in an amount of at least 1 ng and specifically detected chitinase A1 produced by B. circulans WL-12.  相似文献   

13.
Bacillus circulans WL-12 when grown in a mineral medium with yeast cell walls or yeast glucan as the soli carbon source, produced five beta-glucanases. Two beta-(1 leads to 3)-glucanases (I and II), which are lytic to yeast cell walls, were isolated from the culture liquid by batch adsorption on yeast glucan, and separated by chromatography on hydroxylapatite. Lytic beta-(1 leads to 3)-glucanase I was further purified by carboxymethylcellulose chromatography. The specific activity of lytic beta-(1 leads to 3)-glucanase I on laminarin was 4.1 U per mg of protein. The enzyme moved as a single protein with a molecular weight of 40000 during sodium dodecylsulfate electrophoresis in slab gels. It was specific for the beta-(1 leads to 3)-glucosidic bond but the enzyme did not hydrolyze laminaribiose. Hydrolysis of laminarin went through a series of oligosaccharides, and laminaribiose and glucose accumulated till the end of the reaction. A small amount of gentibiose was also produced from laminarin. Products from yeast cell walls and yeast glucan included laminaripentaose, laminaritriose, laminaribiose, glucose and gentiobiose, but no laminaritetraose was detected. This glucanase has an optimum pH of 5.5.  相似文献   

14.
Kinetic analyses of the hydrolysis reactions of N-acetylated and N-deacetylated derivatives of 4-methylumbelliferyl chitobioside [(GlcNAc)(2)-UMB (1), GlcN-GlcNAc-UMB (2), GlcNAc-GlcN-UMB (3), and (GlcN)(2)-UMB (4)] by ChiA and ChiB from Serratia marcescens were performed. Both enzymes released UMB from all compounds apart from 4. The S-v curves of the hydrolyses of 1 by ChiA and ChiB both exhibited atypical kinetic patterns, and the shapes of the two S-v curves were different from one another. However, both curve shapes were explained by assuming some of the enzyme present formed complexes with multiple molecules of the substrate. Conversely, the S-v curves generated in the cleavage of 2 and 3 by ChiA exhibited typical Michaelis-Menten profiles. Both enzymes hydrolysed 2 with an approximately 14-fold higher K(m) value relative to 1, indicating that the N-acetyl group was recognised at the -2 subsite. The k(cat) value obtained with ChiA was identical to the k(cat) value observed for 1. However, the k(cat) value for ChiB was one-fourth that of 1, suggesting that the removal of the N-acetyl group caused an increase in the formation of a non-productive ES-complex. ChiA and ChiB hydrolysed 3 with 5- and 20-fold greater K(m) values relative to 1, respectively, and 60- and 30-fold smaller k(cat) values relative to 1, respectively. The reaction mechanism of family 18 chitinases is discussed based upon the results obtained from the hydrolysis of these compounds.  相似文献   

15.
The gene (chiD) encoding the precursor of chitinase D was found to be located immediately upstream of the chiA gene, encoding chitinase A1, which is a key enzyme in the chitinase system of Bacillus circulans WL-12. Sequencing analysis revealed that the deduced polypeptide encoded by the chiD gene was 488 amino acids long and the distance between the coding regions of the chiA and chiD genes was 103 bp. Remarkable similarity was observed between the N-terminal one-third of chitinase D and the C-terminal one-third of chitinase A1. The N-terminal 47-amino-acid segment (named ND) of chitinase D showed a 61.7% amino acid match with the C-terminal segment (CA) of chitinase A1. The following 95-amino-acid segment (R-D) of chitinase D showed 62.8 and 60.6% amino acid matches, respectively, to the previously reported type III-like repeating units R-1 and R-2 in chitinase A1, which were shown to be homologous to the fibronectin type III sequence. A 73-amino-acid segment (residues 247 to 319) located in the putative activity domain of chitinase D was found to show considerable sequence similarity not only to other bacterial chitinases and class III higher-plant chitinases but also to Streptomyces plicatus endo-beta-N-acetylglucosaminidase H and the Kluyveromyces lactis killer toxin alpha subunit. The evolutionary and functional meanings of these similarities are discussed.  相似文献   

16.
O kagbue , R.N. & L ewis , M.J. 1985. Influence of mixed culture conditions on yeast-wall hydrolytic activity of Bacillus circulans WL-12 and on extractability of astaxanthin from the yeast Phaffia rhodozyma. Journal of Applied Bacteriology 59 , 243–255.
In mixed culture Bacillus circulans WL-12 hydrolysed cell walls of Phaffia rhodozyma and rendered astaxanthin extractable from the yeast. pH control was critical to survival and lytic activity of the bacillus; the optimum range was 6.2–6.8. The optimum range of temperature was 20–24C. Glucose (1–2%) was efficient in minimizing catabolite repression of the lytic enzyme complex of the bacillus. Slow-feeding of glucose improved ultimate yields of lytic enzyme but did not acclerate yeast cell wall modification. A relatively high inoculum level of B. circulans accelerated modification of P. rhodozyma in the mixed culture: when the bacterial inoculum was four times that of the yeast, over 80% of total astaxanthin was extractable in 48 h. High bacterial inoculum size also stimulated yeast autolysis and necessitated early harvest of the mixed culture. Results obtained in shake flasks were duplicated in 5-litre fermentors and suggest that the mixed culture has potential industrial value for producing a biomass containing biologically-available astaxanthin. Extractability of astaxanthin was also achieved when mixed culture filtrate was incubated with pure cultured Phaffia cells. When suitably fortified with nutrients, the filtrate also supported simultaneous yeast growth and modification of the yeast cell walls. A scheme incorporating mixed culture with B. circulans WL-12 and re-use of culture filtrate has been proposed for enzymatic processing of Phaffia rhodozyma for inclusion in animal diets.  相似文献   

17.
Bacillus subtilis F29-3 is an antagonistic bacterium against a wide range of fungal species. In order to determine the effect of chitinase on the antifungal activity of B. subtilis F29-3, a 2.4-kb DNA fragment containing the chiA gene of Bacillus circulans WL-12 was ligated into a shuttle vector pHY300PLK and transformed into B. subtilis F29-3. A bioassay conducted on the culture supernatant showed that, in comparison to the B. subtilis control strain, B. subtilis F29-3 expressing the chiA gene exhibited a greater inhibition of spore germination of Botrytis elliptica, indicating that chitinase could enhance the antifungal function conferred by B. subtilis F29-3.  相似文献   

18.
Abstract Bacillus circulans WL-12 secretes 1,4-β- d -xylanase and 1,3-β- d - and 1,6-β- d -glucanase activities. All of them are catabolites regulated by glucose and, while xylanase needs xylan as the inducer, the two latter enzyme activities are formed once glucose is depleted. Cyclic nucleotides such as adenosine 3',5'-monophosphate (cAMP) and guanosine 3',5' monophosphate (cGMP) exhibit a negative effect on enzyme synthesis if added to the culture media. Based on the fact that only cAMP is found in cells growing in glucose-rich media we propose a model for B. circulans WL-12 in which cAMP acts as a negative effector for regulating the synthesis of these enzymes. The model is not, however, extrapolated to other Bacillus species and all B. circulans strains.  相似文献   

19.
From the 3D-structural analysis of the catalytic domain of chitinase A1, two exposed tryptophan residues (W122 and W134) are proposed to play an important role in guiding a chitin chain into the catalytic cleft during the crystalline chitin hydrolysis. Mutation of either W122 or W134 to alanine significantly reduced the hydrolyzing activity against highly crystalline beta-chitin microfibrils. Double mutation almost completely abolished the hydrolyzing activity. On the other hand, the hydrolyzing activity against either soluble or amorphous substrate was not reduced. These mutations slightly impaired the binding activity of this enzyme. These results clearly demonstrated that the two exposed aromatic residues play a critical role in hydrolyzing the chitin chain in crystalline chitin.  相似文献   

20.
Kinetic properties of polynucleotide kinase (EC 2.7.1.78) isolated from Escherichia coli cells infected with phage T4 were investigated. The reaction depends on the concentration of MgATP, while free ATP or free Mg2+ have neither inhibitory nor accelerating effect. The initial reaction velocity was plotted against variable concentrations of ATP as the phosphate donor at various fixed concentrations of 5′-hydroxyl-DNA or oligo(rA) as the phosphate acceptor in the presence or absence of products. The double reciprocal plot analysis of the data suggested that the reaction obeys the random sequential mechanism. Various constants were determined and the reaction mechanism was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号