首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Persistent mild hyperketonemia is a common finding in neonatal rats and human newborns, but the physiological significance of elevated plasma ketone concentrations remains poorly understood. Recent advances in ketone metabolism clearly indicate that these compounds serve as an indispensable source of energy for extrahepatic tissues, especially the brain and lung of developing rats. Another important function of ketone bodies is to provide acetoacetyl-CoA and acetyl-CoA for synthesis of cholesterol, fatty acids, and complex lipids. During the early postnatal period, acetoacetate (AcAc) and beta-hydroxybutyrate are preferred over glucose as substrates for synthesis of phospholipids and sphingolipids in accord with requirements for brain growth and myelination. Thus, during the first 2 wk of postnatal development, when the accumulation of cholesterol and phospholipids accelerates, the proportion of ketone bodies incorporated into these lipids increases. On the other hand, an increased proportion of ketone bodies is utilized for cerebroside synthesis during the period of active myelination. In the lung, AcAc serves better than glucose as a precursor for the synthesis of lung phospholipids. The synthesized lipids, particularly dipalmityl phosphatidylcholine, are incorporated into surfactant, and thus have a potential role in supplying adequate surfactant lipids to maintain lung function during the early days of life. Our studies further demonstrate that ketone bodies and glucose could play complementary roles in the synthesis of lung lipids by providing fatty acid and glycerol moieties of phospholipids, respectively. The preferential selection of AcAc for lipid synthesis in brain, as well as lung, stems in part from the active cytoplasmic pathway for generation of acetyl-CoA and acetoacetyl-CoA from the ketone via the actions of cytoplasmic acetoacetyl-CoA synthetase and thiolase.  相似文献   

2.
To elucidate the physiological significance of ketone bodies on insulin and glucagon secretion, the direct effects of beta-hydroxybutyrate (BOHB) and acetoacetate (AcAc) infusion on insulin and glucagon release from perfused rat pancreas were investigated. The BOHB or AcAc was administered at concentrations of 10, 1, or 0.1 mM for 30 min at 4.0 ml/min. High-concentration infusions of BOHB and AcAc (10 mM) produced significant increases in insulin release in the presence of 4.4 mM glucose, but low-concentration infusions of BOHB and AcAc (1 and 0.1 mM) caused no significant changes in insulin secretion from perfused rat pancreas. BOHB (10, 1, and 0.1 mM) and AcAc (10 and 1 mM) infusion significantly inhibited glucagon secretion from perfused rat pancreas. These results suggest that physiological concentrations of ketone bodies have no direct effect on insulin release but have a direct inhibitory effect on glucagon secretion from perfused rat pancreas.  相似文献   

3.
Brain uptake of substrates other than glucose has been demonstrated in neonatal but not fetal animals in vivo. This study was undertaken to investigate the ability of the fetal sheep brain to use potential alternative substrates when they were provided in increased amounts. Brain substrate uptake was measured in chronically catheterised fetal sheep during 2-h infusions of neutralised lactate (n = 12) or beta-hydroxybutyrate (n = 12). Despite large increases in fetal arterial lactate and beta-hydroxybutyrate during the respective infusions, no significant uptake of either substrate was demonstrated. However during both types of infusion, the brain arterio-venous difference for glucose decreased 30% (P less than 0.05). Since the brain arterio-venous difference for oxygen was unchanged, and blood flow to the cerebral hemispheres (measured in 11 studies) was also unchanged, the infusions appeared to cause a true decrease in brain glucose uptake. This decrease paralleled the rise in lactate concentration during lactate infusions, and the rise in lactate and butyrate concentrations during the butyrate infusions. Both substrates have metabolic actions that may inhibit brain glucose uptake. We speculate that the deleterious effects of high lactate and ketone states in the perinatal period may in part be due to inhibition of brain glucose uptake.  相似文献   

4.
By using an in situ rat hindquarter perfusion, we evaluated ketone body utilization and its metabolic effects in the resting muscle of 24 h fasted normal and streptozotocin (STZ)-diabetic rats. Under the perfusion with ketone body-supplementation (1 mM each of acetoacetic acid (AcAc) and 3-hydroxybutyric acid (3-OHB], the AcAc and 3-OHB uptake of STZ-diabetic rats was significantly (P less than 0.05) smaller than that of normal rats. This might be explained by the low enzyme activity of 3-oxoacid CoA transferase demonstrated in the hindlimb muscles of STZ-diabetic rats and this reduced ketone body uptake would be one of the causes of the development of diabetic ketoacidosis. The glucose uptake and the phosphofructokinase (PFK) activity of normal rats were significantly (P less than 0.05) higher than those of STZ-diabetic rats. In both normal and STZ-diabetic rats, the glucose utilization and PFK activity of the muscles in the ketone body-supplemented condition were significantly (P less than 0.05) lower than those in the non-supplemented condition. This inhibition of glucose utilization by ketone bodies should be due to the mechanism by which the oxidation of ketone bodies inhibits PFK in the muscle.  相似文献   

5.
Chemical oxidation of beta-hydroxybutyrate (beta-OHB) to acetoacetate (AcAc) has been carried out by a simple and new method employing potassium persulphate as an oxidising agent. Under the conditions of assay, beta-OHB (0.079-0.395 microM) was instantaneously oxidised to AcAc and the authenticity of the oxidised product was proved by absorption spectroscopy. A common absorption maxima at about 446 nm was observed in all the spectra recorded for the product (AcAc-complex) obtained after the oxidation of beta-OHB (0.079-0.395 microM) to AcAc followed by coupling with diazotized p-nitroaniline. This absorption maxima was almost equal to that obtained for AcAc-complex using AcAc as reference standard. It implies that AcAc formed by the chemical oxidation of beta-OHB is identically similar to the AcAc used as reference standard for the study. This fact was further strengthened when absorption spectra, recorded either individually or in combination (mixed-type), exhibited a single peak with a common absorption maxima at about 446 nm. Absorption spectra was found to be partially diminished by glucose (1.77 microM) and chloride (17.1 microM), while almost complete diminution of absorption spectra was observed at higher concentration of glucose (8.88 microM) and chloride (51.3 microM).  相似文献   

6.
Brain uptake and metabolism of ketone bodies in animal models   总被引:1,自引:0,他引:1  
As a consequence of the high fat content of maternal milk, the brain metabolism of the suckling rat represents a model of naturally occurring ketosis. During the period of lactation, the rate of uptake and metabolism of the two ketone bodies, beta-hydroxybutyrate and acetoacetate is high. The ketone bodies enter the brain via monocarboxylate transporters whose expression and activity is much higher in the brain of the suckling than the mature rat. beta-Hydroxybutyrate and acetoacetate taken up by the brain are efficiently used as substrates for energy metabolism, and for amino acid and lipid biosynthesis, two pathways that are important for this period of active brain growth. Ketone bodies can represent about 30-70% of the total energy metabolism balance of the immature rat brain. The active metabolism of ketone bodies in the immature brain is related to the high activity of the enzymes of ketone body metabolism. Thus, the use of ketone bodies by the immature rodent brain serves to spare glucose for metabolic pathways that cannot be fulfilled by ketones such as the pentose phosphate pathway mainly. The latter pathway leads to the biosynthesis of ribose mandatory for DNA synthesis and NADPH which is not formed during ketone body metabolism and is a key cofactor in lipid biosynthesis. Finally, ketone bodies by serving mainly biosynthetic purposes spare glucose for the emergence of various functions such as audition, vision as well as more integrated and adapted behaviors whose appearance during brain maturation seems to critically relate upon active glucose supply and specific regional increased use.  相似文献   

7.
In aerobic conditions, the heart preferentially oxidizes fatty acids. However, during metabolic stress, glucose becomes the major energy source, and enhanced glucose uptake has a protective effect on heart function and cardiomyocyte survival. Thus abnormal regulation of glucose uptake may contribute to the development of cardiac disease in diabetics. Ketone bodies are often elevated in poorly controlled diabetics and are associated with increased cellular oxidative stress. Thus we sought to determine the effect of the ketone body beta-hydroxybutyrate (OHB) on cardiac glucose uptake during metabolic stress. We used 2,4-dinitrophenol (DNP), an uncoupler of the mitochondrial oxidative chain, to mimic hypoxia in cardiomyocytes. Our data demonstrated that chronic exposure to OHB provoked a concentration-dependent decrease of DNP action, resulting in 56% inhibition of DNP-mediated glucose uptake at 5 mM OHB. This was paralleled by a diminution of DNP-mediated AMP-activated protein kinase (AMPK) and p38 MAPK phosphorylation. Chronic exposure to OHB also increased reactive oxygen species (ROS) production by 1.9-fold compared with control cells. To further understand the role of ROS in OHB action, cardiomyocytes were incubated with H(2)O(2). Our results demonstrated that this treatment diminished DNP-induced glucose uptake without altering activation of the AMPK/p38 MAPK signaling pathway. Incubation with the antioxidant N-acetylcysteine partially restored DNP-mediated glucose but not AMPK/p38 MAPK activation. In conclusion, these results suggest that ketone bodies, through inhibition of the AMPK/p38 MAPK signaling pathway and ROS overproduction, regulate DNP action and thus cardiac glucose uptake. Altered glucose uptake in hyperketonemic states during metabolic stress may contribute to diabetic cardiomyopathy.  相似文献   

8.
Brain uptake of substrates other than glucose has been demonstrated in vivo in postnatal but not fetal life. In this study, brain uptake of potential alternative substrates beta-hydroxybutyrate and lactate was studied during 2 h substrate infusions in 10 chronically-catheterised fetal sheep at 135-141 days gestation. beta-hydroxybutyrate appeared to be taken up by the brain of 5 fetuses with spontaneously low arterial blood glucose concentrations, and produced by the brains of the 5 with higher glucose concentrations. Brain butyrate/oxygen quotients at the end of the infusions were directly related to fetal arterial blood glucose concentrations (r2 = 0.72, P less than 0.01. Brain butyrate/oxygen quotients were not related to the arterial beta-hydroxybutyrate concentrations at the beginning or end of the infusions. No brain uptake of lactate was demonstrated. This study suggests for the first time that the fetal brain in vivo may take up substrates other than glucose. The near term fetal sheep brain appears to take up beta-hydroxybutyrate only when arterial butyrate concentrations are high and glucose is low.  相似文献   

9.
Birds have much higher plasma glucose and fatty acid levels compared to mammals. In addition, they are resistant to insulin-induced decreases in blood glucose. Recent studies have demonstrated that decreasing fatty acid utilization alleviates insulin resistance in mammals, thereby decreasing plasma glucose levels. This has yet to be examined in birds. In the present study, the levels of glucose and beta-hydroxybutyrate (BOHB), a major ketone body and indicator of fatty acid utilization, were measured after the administration of chicken insulin, acipimox (an anti-lipolytic agent), or insulin and acipimox in mourning doves (Zenaidura macroura). Insulin significantly decreased whole blood glucose levels (19%), but had no effect on BOHB concentrations. In contrast, acipimox decreased blood BOHB levels by 41%, but had no effect on whole blood glucose. In addition to changes in blood composition, levels of glucose uptake by various tissues were measured after the individual and combined administration of insulin and acipimox. Under basal conditions, the uptake of glucose appeared to be greatest in the kidney followed by the brain and skeletal muscle with negligible uptake by heart, liver and adipose tissues. Acipimox significantly decreased glucose uptake by brain (58% in cortex and 55% in cerebellum). No significant effect of acipimox was observed in other tissues. In summary, the acute inhibition of lipolysis had no effect on glucose uptake in the presence or absence of insulin. This suggests that free fatty acids alone may not be contributing to insulin resistance in birds.  相似文献   

10.
Accumulation of methylmalonic acid (MMA) in tissues and biological fluids is the biochemical hallmark of methylmalonic aciduria. Affected patients present renal failure and severe neurological findings. Considering that the underlying pathomechanisms of tissue damage are not yet understood, in the present work we assessed the in vivo e in vitro effects of MMA on DNA damage in brain and kidney, as well as on p53 and caspase 3 levels, in the presence or absence of gentamicin (acute renal failure model). For in vitro studies, tissue prisms were incubated in the presence of different concentrations of MMA and/or gentamicin for one hour. For in vivo studies, animals received a single injection of gentamicin (70 mg/kg) and/or three injections of MMA (1.67 μmol/g; 11 h interval between injections). The animals were killed 1 h after the last MMA injection. Controls received saline in the same volumes. DNA damage was analyzed by the comet assay. We found that MMA and gentamicin alone or combined in vitro increased DNA damage in cerebral cortex and kidney of rats. Furthermore, MMA administration increased DNA damage in both brain and kidney. Gentamicin per se induced DNA damage only in kidney, and the association of MMA plus gentamicin also caused DNA damage in cerebral cortex and kidney. On the other hand, p53 and caspase 3 levels were not altered by the administration of MMA and/or gentamicin. Our findings provide evidence that DNA damage may contribute to the neurological and renal damage found in patients affected by methylmalonic aciduria.  相似文献   

11.
The effects of tacrine (1,2,3,4-tetrahydro-9-aminoacridine) and 7-methoxytacrine on the metabolism of brain acetylcholine were investigated in experiments in which acetylcholine turnover was stimulated by tissue depolarization or by 4-aminopyridine. Rat cerebrocortical prisms were preincubated under "resting" conditions (Krebs-Ringer buffer with 3 mmol/L K+ and with paraoxon to inhibit cholinesterases) and then incubated in the presence of tacrine or methoxytacrine and of 50 mmol/L K+. Both drugs diminished the amount of acetylcholine released by depolarization and the amount of acetylcholine synthesized during incubation; in experiments in which [14C]choline was present in the incubation medium simultaneously with tacrine or methoxytacrine, the drugs diminished the uptake of [14C]choline by the tissue and the amount of [14C]-acetylcholine synthesized and released into the medium. In these experiments, it was not possible to distinguish whether the inhibitory effects of tacrine and methoxytacrine were primarily on the process of acetylcholine synthesis (particularly on the uptake of choline), or whether the drugs also acted directly on the process of neurotransmitter release. In subsequent experiments the prisms were preincubated with [14C]choline and only then subjected to a short depolarization in the presence of hemicholinium-3 and tacrine or methoxytacrine. Both drugs severely inhibited the release of preformed [14C]acetylcholine and prevented the diminution of tissue [14C]acetylcholine stores. Methoxytacrine was also found to diminish the release of acetylcholine induced by 4-aminopyridine while increasing the content of acetylcholine in the tissue. Tacrine and methoxytacrine had no effect on the activity of choline acetyltransferase (EC 2.3.1.6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
To determine whether the effects of fatty acids on the diabetic heart during ischemia involve altered glycolytic ATP and proton production, we measured energetics and intracellular pH (pH(i)) by using (31)P NMR spectroscopy plus [2-(3)H]glucose uptake in isolated rat hearts. Hearts from 7-wk streptozotocin diabetic and control rats, perfused with buffer containing 11 mM glucose, with or without 1.2 mM palmitate or the ketone bodies, 4 mM beta-hydroxybutyrate plus 1 mM acetoacetate, were subjected to 32 min of low-flow (0.3 ml x g wet wt(-1) x min(-1)) ischemia, followed by 32 min of reperfusion. In control rat hearts, neither palmitate nor ketone bodies altered the recovery of contractile function. Diabetic rat hearts perfused with glucose alone or with ketone bodies, had functional recoveries 50% lower than those of the control hearts, but palmitate restored recovery to control levels. In a parallel group with the functional recoveries, palmitate prevented the 54% faster loss of ATP in the diabetic, glucose-perfused rat hearts during ischemia, but had no effect on the rate of ATP depletion in control hearts. Palmitate decreased total glucose uptake in control rat hearts during low-flow ischemia, from 106 +/- 17 to 52 +/- 12 micromol/g wet wt, but did not alter the total glucose uptake in the diabetic rat hearts, which was 42 +/- 5 micromol/g wet wt. Recovery of contractile function was unrelated to pH(i) during ischemia; the glucose-perfused control and palmitate-perfused diabetic hearts had end-ischemic pH(i) values that were significantly different at 6.36 +/- 0.04 and 6.60 +/- 0.02, respectively, but had similar functional recoveries, whereas the glucose-perfused diabetic hearts had significantly lower functional recoveries, but their pH(i) was 6.49 +/- 0.04. We conclude that fatty acids, but not ketone bodies, protect the diabetic heart by decreasing ATP depletion, with neither having detrimental effects on the normal rat heart during low-flow ischemia.  相似文献   

13.
Abstract— Oligodendroglia prepared from calf cerebral white matter were incubated with [3-14C]aceto-acetate (AcAc), d -[3-14C](-)-beta-hydroxybutyrate (OHbut) or 3H2O. Addition to the medium of the ATP-rate oxaloacetate lyase inhibitor (-)-hydroxycitrate diminished sterol labelling from OHbut and 3H2O, but caused 4-fold stimulation of sterol labelling from AcAc. The discrepancy between results with the two ketone bodies indicates the existence in oligodendroglia of an extrarnitochondrial pathway for conversion of AcAc but not OHbut to acetyl CoA. Acetoacetyl CoA synthetase, the first enzyme in this pathway, was more than 20-fold enriched in oligodendroglia over whole brain.  相似文献   

14.
Mitochondrial anaplerosis is important for insulin secretion, but only some of the products of anaplerosis are known. We discovered novel effects of mitochondrial metabolites on insulin release in INS-1 832/13 cells that suggested pathways to some of these products. Acetoacetate, beta-hydroxybutyrate, alpha-ketoisocaproate (KIC), and monomethyl succinate (MMS) alone did not stimulate insulin release. Lactate released very little insulin. When acetoacetate, beta-hydroxybutyrate, or KIC were combined with MMS, or either ketone body was combined with lactate, insulin release was stimulated 10-fold to 20-fold the controls (almost as much as with glucose). Pyruvate was a potent stimulus of insulin release. In rat pancreatic islets, beta-hydroxybutyrate potentiated MMS- and glucose-induced insulin release. The pathways of their metabolism suggest that, in addition to producing ATP, the ketone bodies and KIC supply the acetate component and MMS supplies the oxaloacetate component of citrate. In line with this, citrate was increased by beta-hydroxybutyrate plus MMS in INS-1 cells and by beta-hydroxybutyrate plus succinate in mitochondria. The two ketone bodies and KIC can also be metabolized to acetoacetyl-CoA and acetyl-CoA, which are precursors of other short-chain acyl-CoAs (SC-CoAs). Measurements of SC-CoAs by LC-MS/MS in INS-1 cells confirmed that KIC, beta-hydroxybutyrate, glucose, and pyruvate increased the levels of acetyl-CoA, acetoacetyl-CoA, succinyl-CoA, hydroxymethylglutaryl-CoA, and malonyl-CoA. MMS increased incorporation of (14)C from beta-hydroxybutyrate into citrate, acid-precipitable material, and lipids, suggesting that the two molecules complement one another to increase anaplerosis. The results suggest that, besides citrate, some of the products of anaplerosis are SC-CoAs, which may be precursors of molecules involved in insulin secretion.  相似文献   

15.
Neurological dysfunction is a common finding in patients with maple syrup urine disease (MSUD). However, the mechanisms underlying the neuropathology of brain damage in this disorder are poorly known. In the present study, we investigated the effect of the in vitro effect of the branched chain alpha-keto acids (BCKA) accumulating in MSUD on some parameters of energy metabolism in cerebral cortex of rats. [14CO(2)] production from [14C] acetate, glucose uptake and lactate release from glucose were evaluated by incubating cortical prisms from 30-day-old rats in Krebs-Ringer bicarbonate buffer, pH 7.4, in the absence (controls) or presence of 1-5 mM of alpha-ketoisocaproic acid (KIC), alpha-keto-beta-methylvaleric acid (KMV) or alpha-ketoisovaleric acid (KIV). All keto acids significantly reduced 14CO(2) production by around 40%, in contrast to lactate release and glucose utilization, which were significantly increased by the metabolites by around 42% in cortical prisms. Furthermore, the activity of the respiratory chain complex I-III was significantly inhibited by 60%, whereas the other activities of the electron transport chain, namely complexes II, II-III, III and IV, as well as succinate dehydrogenase were not affected by the keto acids. The results indicate that the major metabolites accumulating in MSUD compromise brain energy metabolism by blocking the respiratory chain. We presume that these findings may be of relevance to the understanding of the pathophysiology of the neurological dysfunction of MSUD patients.  相似文献   

16.
Livers from male and female BB Wistar spontaneously diabetic rats were perfused in vitro to determine the effects of spontaneously occurring insulin-dependent diabetes on the metabolism of fatty acid. The secretion of triglyceride and the incorporation of [1-14C] oleic acid into perfusate and hepatic triglyceride was reduced by the diabetic state, whereas beta-hydroxybutyrate production and output of total ketone bodies were increased. The spontaneous diabetic Wistar rat clearly is a suitable model to study the derangements induced in lipid/plasma lipoprotein metabolism by the insulin-dependent diabetic state; the data obtained with this model confirm our earlier observations on experimental insulin deficiency induced with alloxan, streptozotocin, and anti-insulin serum.  相似文献   

17.
This work demonstrates that in vitro sciatic nerves of normal and trembler adult mice can use ketone bodies (beta-hydroxybutyrate and acetoacetate) and butyrate for lipid synthesis. In normal sciatic nerves, beta-hydroxybutyrate is incorporated in total lipids to a larger extent than acetoacetate (141% and 33%, respectively, of acetate incorporation), whereas for trembler sciatic nerves, these percentages are only 69% and 27%. Incorporation of ketone bodies is greater into sterols than into other lipids. Lipid metabolism of ketone bodies in trembler nerves is altered and could reflect a process similar to Wallerian degeneration: a dramatic decrease of sterol and free fatty acid synthesis and an increased synthesis of triglycerides. Moreover, differences seen in precursor incorporation into lipids between normal and trembler sciatic nerves suggest that their lipid metabolism is not the same.  相似文献   

18.
Decreased ketonaemia in the monosodium glutamate-induced obese rats   总被引:3,自引:0,他引:3  
Plasma concentrations of total ketone bodies, acetoacetate (AcAc) and 3-hydroxybutyrate (3-OHBA) in monosodium glutamate (MSG)-induced obese rats were measured. MSG-treated rats showed higher Lee's indices, shorter naso-anal and tail length, and a more marked intraperitoneal fat deposition than control rats. Plasma concentrations of glucose, free fatty acid, triglyceride and phospholipids were significantly increased in the MSG-treated rats as compared to the control rats (24 weeks-old). Plasma levels of total ketone bodies, AcAc and 3-OHBA were all decreased in the MSG-treated rats as compared to control rats. The ratio, 3-OHBA/AcAc in the MSG-treated rats were not different from those in the control rats.  相似文献   

19.
REMOVAL AND UTILIZATION OF KETONE BODIES BY THE BRAIN OF NEWBORN PUPPIES   总被引:4,自引:1,他引:3  
The removal of circulating ketone bodies by the brain was investigated in 0- to 8-day-old puppies under pentobarbital anaesthesia. Of the arterial acetoacetate (AcAc) and β-hydroxybutyrate (βOHB), 24 and 30 per cent, respectively, were removed by the brain. There was a direct correlation between the arterial concentrations of either AcAc or βOHB and the A-V difference of the respective ketone body across the brain. When a continuous infusion of Na-dl -3-hydroxybutyrate [3-14T] was administered for more than 2 h, labelling of both phospholipids and free cholesterol was consistently observed in all six areas of the brain that were sampled. We conclude that the removal and utilization of ketones is of physiological importance in the brain of newborn animals.  相似文献   

20.
In order to elucidate the peculiarities of brain metabolism in tumour-bearing organisms, the arterio-venous (A-V) content of glucose, acetoacetate (Ac-Ac), beta-hydroxybutyrate (beta-HB) and non-esterified fatty acids (NEFA) in growing Zajdela ascite hepatoma (ZAH) and solid hepatoma 27 (H-27) was compared. Analysis of metabolic patterns of healthy, starving and fed recipients (ZAH and H-27) revealed the inadequacy of the concepts on anorexia as being the cause of carbohydrate-lipid metabolic disturbances. In tumour-bearing organisms lipolysis and ketogenesis reflect the tumour-induced chronic stress. Absorption of beta-HB and release of Ac-Ac by brain were observed at all stages of malignant growth. This is probably due to a partial switch-over of brain metabolism to non-carbohydrate energy sources. Besides, certain stages of tumour growth are associated with active assimilation of NEFA by brain. A correlation between the A-V difference with respect to glucose and Ac-Ac as well as between the glucose and NEFA contents was established. It was assumed that the A-V difference in glucose is the main regulator of ketone body metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号