首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stability and dynamics of the porcine odorant-binding protein   总被引:1,自引:0,他引:1  
The denaturation process of porcine odorant-binding protein (pOBP) was studied by intrinsic fluorescence analysis and far- and near-UV circular dichroism measurements. Our results showed that a reversible one-step process described the denaturation by GdnHCl. The midpoint of the transition, that is, the point where the free energies of protein in the native and unfolded states are equal, corresponds to 2.3 M GdnHCl. The difference in free energy between native and unfolded states of pOBP is -5.95 kcal/mol in the absence of GdnHCl, indicating that the protein molecule is very stable to the denaturing action of GdnHCl. A 15% increase in fluorescence intensity accompanied by a 25% decrease of fluorescence decay lifetime recorded in the range of 0.0-1.4 M GdnHCl was explained by the destruction of the complex between Trp 16 and the positively charged atom NZ of Lys 120, localized over the center of the Trp 16 indole ring, with concurrent formation of complex between Trp 16 and bound water molecules also located in its close vicinity.  相似文献   

2.
Apparently homogeneous odorant binding protein purified from pig nasal mucosa (pOBP) exhibited subunit molecular masses of 17 223, 17 447, and 17 689 (major component) Da as estimated by ESI/MS. According to gel filtration, this protein, its truncated forms, and/or its variants are homodimeric under physiologic conditions (pH 6-7, 0.1 M NaCl). The dimer if monomer equilibrium shifts toward a prevalent monomeric form at pH <4.5. Velocity sedimentation reveals a monomeric state of OBP at both pH 7.2 and 3.5, indicating a pressure-induced dissociation of the homodimer. High-sensitivity differential scanning calorimetry (HS-DSC) shows that the unfolding transition of pOBP is reversible at neutral pH. It is characterized by the transition temperature of 69.23 degrees C and an enthalpy of 391.1 kJ/mol per monomer. The transition heat capacity curve of pOBP is well-approximated by the two-state model on the level of subunit, indicating that the two monomers behave independently. Isothermal titration calorimetry (ITC) shows that at physiological pH pOBP binds 2-isobutyl-3-methoxypyrazine (IBMP) and 3,7-dimethyloctan-1-ol (DMO) with association constants of 3.19 x 10(6) and 4.94 x 10(6) M(-)(1) and enthalpies of -97.2 and -87.8 kJ/mol, respectively. The binding stoichiometry of both ligands is nearly one molecule of ligand per homodimer of pOBP. The interaction of pOBP with both ligands is enthalpically driven with an unfavorable change of entropy. The binding affinity of pOBP with IBMP does not change significantly at acidic pH, while the binding stoichiometry is nearly halved. According to HS-DSC data, the interaction with IBMP and DMO leads to a substantial stabilization of the pOBP folded structure, which is manifested by the increase in the unfolding temperature and enthalpy. The calorimetric data allow us to conclude that the mechanism of binding of the studied odorants to pOBP is not dominated by a hydrophobic effect related to any change in the hydration state of protein and ligand groups but, most likely, is driven by polar and van der Waals interactions.  相似文献   

3.
Despite the fact that the porcine odorant-binding protein (pOBP) possesses a single tryptophan residue (Trp 16) that is characterized by a high density microenvironment (80 atoms in a sphere with radius 7 A) with only one polar group (Lys 120) and three bound water molecules, pOBP displayed a red shifted fluorescence emission spectrum (lambda(max) = 340 nm). The protein unfolding in 5M GdnHCl was accompanied by the red shift of the fluorescence emission spectrum (lambda(max) = 353 nm), by the increase of fluorescence quantum yield, and by the decrease of lifetime of the excited state (from 4.25 ns in native state to 3.15 ns in the presence of 5M GdnHCl). Taken together these data indicate the existence of an exciplex complex (Trp 16 with Lys 120 and/or with bound molecules of water) in the protein native state. Heat-induced denaturation of pOBP resulted in significant red shifts of the fluorescence emission spectra: the value of the ratio (I(320)/I(365)) upon excitation at lambda(ex) = 297 nm (parameter A) decreases from 1.07 to 0.64 passing from 60 to 85 degrees C, and the calculated midpoint of transition was centered at 70 degrees C. Interestingly, even at higher temperature, the values of the parameter A both in the absence and in the presence of GdnHCl did not coincide. This suggests that a portion of the protein structure is still preserved upon the temperature-induced denaturation of the protein in the absence of GdnHCl. CD experiments performed on pOBP in the absence and in the presence of GdnHCl and at different temperatures were in agreement with the fluorescence results. In addition, the obtained experimental data were corroborated by the analysis of the 3D structure of pOBP which revealed the amino acid residues that contribute to the protein dynamics and stability. Finally, molecular dynamics simulation experiments pointed out the important role of ion pair interactions as well as the molecular motifs that are responsible for the high thermal stability of pOBP, and elucidated the reasons of the protein aggregation that occurred at high temperature.  相似文献   

4.
Several blue copper proteins are known to change the active site structure at alkaline pH (alkaline transition). Spectroscopic studies of Met16Phe, Met16Tyr, Met16Trp, and Met16Val pseudoazurin variants were performed to investigate the second sphere role through alkaline transition. The visible electronic absorption and resonance Raman spectra of Met16Phe, Met16Tyr, and Met16Trp variants showed the increasing of axial component at pH 11 like wild-type PAz. The visible electronic absorption and far-UV CD spectra of Met16Val demonstrated that the destabilization of the protein structure was triggered at pH > 11. Resonance Raman (RR) spectra of PAz showed that the intensity-weighted averaged Cu–S(Cys) stretching frequency was shifted to higher frequency region at pH 11. The higher frequency shift of Cu–S(Cys) bond is implied the stronger Cu–S(Cys) bond at alkaline transition pH 11. The visible electronic absorption and far-UV CD spectra of Met16X PAz revealed that the Met16Val variant is denatured at pH > 11, but Met16Phe, Met16Tyr, and Met16Trp mutant proteins are not denatured even at pH > 11. These observations suggest that Met16 is important to maintain the protein structure through the possible weak interaction between methionine –SCH3 part and coordinated histidine imidazole moiety. The introduction of π–π interaction in the second coordination sphere may be contributed to the enhancement of protein structure stability.  相似文献   

5.
The effect of hydrostatic pressure on the tryptophan (Trp) synthase alpha2beta2 complex from Salmonella typhimurium has been investigated. Trp synthase has been shown previously to exhibit low-activity (open) and high-activity (closed) conformations. The equilibrium between the open and closed conformations of Trp synthase has been found to be affected by a wide range of variables, including alpha-subunit ligands, monovalent cations, organic solvents, pH, and temperature. The absorption spectrum of the Trp synthase-L-Ser complex shows an increase in absorption of the 423 nm band of the external aldimine, which is a characteristic of the open conformation, as hydrostatic pressure is increased from 1 to 2000 bar. The deltaV(o) and K(o) for the equilibrium between the closed and open conformations of the Trp synthase-L-Ser complex are -126 mL/mol and 0.12 for the Na+ form and -171 mL/mol and 2.3 x 10(-4) for the NH4+ form. When the Trp synthase-L-Ser complex is subjected to pressure jumps of 100-400 bar, relaxations are observed, exhibiting an increase in fluorescence emission at wavelengths greater than 455 nm, with 405 nm excitation. The relaxation to the new equilibrium position requires two exponentials to fit the data in the presence of 0.1 M Na+ and three exponentials to obtain a reasonable fit in the absence of cations and with 0.1 M NH4+. Fluorescence emission at 325 nm, with excitation at 280 nm, also increases when the Trp synthase-L-Ser complex is subjected to pressure jump. These data demonstrate that the open conformation of Trp synthase is favored by higher pressure. Thus, the open conformation has a smaller apparent net system volume than the closed conformation. We estimate that there are 35-47 more waters in the solvation shell of the open conformation than in that of the closed conformation.  相似文献   

6.
Thioredoxin is one of the major proteins that catalyze disulfide reduction and defines the thioredoxin superfamily bearing the CXXC structural motif. Human thioredoxin contains only 1 Trp residue proximal to the active site (WCGPC). We are interested in thioredoxin structure-function relationships, in particular, active site hydration and flexibility. Hence, in this study, we used hydrostatic pressure as a perturbation and monitored the conformational changes around the active site of thioredoxin by analyzing Trp fluorescence. The structure of thioredoxin was drastically altered by increasing pressure and did not completely refold after pressure release. The conformation in the active site vicinity was modified at low pressure (less than 100 MPa) and the Trp residue was completely exposed to aqueous medium at pressures above 350 MPa. Upon pressure release, thioredoxin showed no activity, although it folded 80% of the alpha-helical content relative to the native state. According to these results, pressure denaturation induces critical damage for the activity of thioredoxin, indicating extreme fragility of the active site with respect to pressure. This result is in contrast to the pressure effect on protein disulfide isomerase (PDI) which is organized by four thioredoxin-like domains including two WCGHC motifs.  相似文献   

7.
After acute myocardial infarction (AMI), infiltrating proinflammatory cells generate two-electron oxidants such as hypochlorous acid (HOCl). Myoglobin (Mb) is present at approximately 0.3 mM in cardiomyocytes and, therefore, represents a significant target for oxidation. Exposure of horse Mb (50 microM) to reagent HOCl (0-500 microM) or activated human neutrophils (4-40x10(6) cells/ml) yielded oxidized Mb (Mb(ox)) as judged by amino acid analysis and peptide mass mapping. HOCl/Mb ratios of 1-5 mol/mol gave Mb(ox) with up to four additional oxygen atoms. Hydrolysis of Mb(ox) followed by amino acid analysis indicated that methionine (Met) and tryptophan (Trp) residues were modified by HOCl. Peptide mass mapping revealed that Met55 was oxidized at a lower HOCl/Mb ratio than Met131 and this preceded Trp7/14 modification (susceptibility Met55>Met131>Trp7>Trp14). Incubation of Mb with activated neutrophils and physiological chloride anion yielded Mb(ox) with a composition similar to that determined with HOCl/Mb ratios <2 mol/mol, with oxidation of Met, but not Trp, detected. These data indicate that Mb undergoes site-specific oxidation depending on the HOCl/protein ratio. As Mb is released from necrotic cardiomyocytes into the vasculature after AMI, HOCl-modified Mb may be a useful surrogate marker to gauge the extent of myocardial inflammation.  相似文献   

8.
ABSTRACT

To formulate low-protein diets for blue foxes with sufficient amounts of amino acids (AA), AA digestibility and AA requirements of the animals are crucial information. Therefore, a digestibility and nitrogen (N) balance trial was conducted with 20 blue foxes to determine the macronutrient and AA digestibility and N utilisation in low-protein diets supplemented with DL-methionine (Met) and L-histidine (His). In addition, plasma urea and plasma AA were measured. The diets were designated as P24 (control), P20, P20M, P16M and P16MH and contained energy from digestible crude protein (DCP) at 24%, 20% or 16% of total dietary metabolisable energy (ME). The 20% protein level was fed with or without Met and the 16% protein level was fed with Met and with or without His. The apparent total-tract digestibility (ATTD) of crude protein linearly decreased with decreasing dietary protein level. The ATTD of dry matter, organic matter and crude carbohydrates increased when wheat starch was added as a replacement for protein. The apparent ileal digestibility (AID) and ATTD methods were compared to determine the AA digestibility. The decreasing dietary protein supply decreased the ATTD of most of the AA: threonine, tryptophan (Trp), valine, alanine (Ala), aspartic acid (Asp), glutamic acid, glycine (Gly), proline (Pro), serine (Ser) and total AA. The AID of the AA was constant between diets. Diverging AA showed higher or lower digestibility when determined in the AID or ATTD methods. Isoleucine, lysine, Met, Ala and tyrosine showed higher levels of AID. Arginine, His, cysteine (Cys), Trp, Asp, Gly, Pro and Ser showed higher levels of ATTD, which may reflect the net loss of these AA in the large intestine. Met and His supplementation improved the ATTD and AID of the AA in question, respectively, but did not affect the other variables examined. N retention did not differ between diets and renal N excretion decreased with decreasing protein level; thus N utilisation improved. It was concluded that the protein supply and AA composition in low-protein diets with supplemented Met were adequate for adult blue foxes, since the lower protein supply improved N utilisation and did not affect N retention. However, His supplementation failed to reach the designed level and therefore showed no clear results.  相似文献   

9.
Noncovalent, weak interactions in the second coordination sphere of the copper active site of Pseudoazurin (PAz) from Achromobacter cycloclastes were examined using a series of Met16X variants. In this study, the differences in protein stability due to the changes in the nature of the 16th amino acid (Met, Phe, Val, Ile) were investigated by electrospray ionization mass spectrometry (ESI‐MS) and far‐UV circular dichroism (CD) as a result of acid denaturation. The percentage of native states (folded holo forms) of Met16Phe variants was estimated to be 75% at pH 2.9 although the wild‐type (WT), Met16Val and Met16Ile PAz, became completely unfolded. The high stability under acidic conditions is correlated with the result of the active site being stabilized by the aromatic substitution of the Met16 residue. The π–π interaction in the second coordination sphere makes a significant contribution to the stability of active site and the protein matrix.  相似文献   

10.
Porcine odorant binding protein (pOBP) is a monomer of 157 amino acid residues, purified in abundance from pig nasal mucosa. In contrast to the observation on lipocalins as retinol binding protein (RBP), major urinary protein (MUP) or bovine odorant binding protein (bOBP), no naturally occurring ligand was found in the beta-barrel cavity of pOBP. Porcine OBP was therefore chosen as a simple model for structure/function studies with odorant molecules. In competition experiments with tritiated pyrazine, the affinity of pOBP towards several odorant molecules belonging to different chemical classes has been found to be of the micromolar order, with a 1:1 stoichiometry. The X-ray structures of pOBP complexed to these molecules were determined at resolution between 2.15 and 1.4 A. As expected, the electron density of the odorant molecules was observed into the hydrophobic beta-barrel of the lipocalin. Inside this cavity, very few specific interactions were established between the odorant molecule and the amino acid side-chains, which did not undergo significant conformational change. The high B-factors observed for the odorant molecules as well as the existence of alternative conformations reveal a non-specific mode of binding of the odorant molecules in the cavity.  相似文献   

11.
There are frequent contacts between aromatic rings and sulfur atoms in proteins. However, it is unclear to what degree this putative interaction is stabilizing and what the nature of the interaction is. We have investigated the aryl-sulfur interaction by placing a methionine residue diagonal to an aromatic ring on the same face of a beta-hairpin, which places the methionine side chain in close proximity to the aryl side chain. The methionine (Met)-aryl interaction was compared with an equivalent hydrophobic and cation-pi interaction in the context of the beta-hairpin. The interaction between phenylalanine (Phe), tryptophan (Trp), or cyclohexylalanine (Cha) and Met stabilized the beta-hairpin by -0.3 to -0.5 kcal mole(-1), as determined by double-mutant cycles. The peptides were subjected to thermal denaturations that suggest a hydrophobic driving force for the interactions between Met and Trp or Cha. The observed interaction of Met or norleucine (Nle) with Trp or Cha are quite similar, implying a hydrophobic driving force for the Met-pi interaction. However, the thermodynamic data suggest that there may be some differences between the interaction of Met with Trp and Phe and that there may be a small thermodynamic component to the Met...Phe interaction.  相似文献   

12.
The effect of oxidation of the methionine residues of Escherichia coli-derived recombinant human stem cell factor (huSCF) to methionine sulfoxide on the structure and activity of SCF was examined. Oxidation was performed using hydrogen peroxide under acidic conditions (pH 5.0). The kinetics of oxidation of the individual methionine residues was determined by quantitation of oxidized and unoxidized methionine-containing peptides, using RP-HPLC of Asp-N endoproteinase digests. The initial oxidation rates for Met159, Met-1, Met27, Met36, and Met48 were 0.11 min-1, 0.098 min-1, 0.033 min-1, 0.0063 min-1, and 0.00035 min-1, respectively, when SCF was incubated in 0.5% H2O2 at room temperature. Although oxidation of these methionines does not affect the secondary structure of SCF, the oxidation of Met36 and Met48 affects the local structure as indicated by CD and fluorescence spectroscopy. The 295-nm Trp peak in the near-UV CD is decreased upon oxidation of Met36, and lost completely following the oxidation of Met48, indicating that the Trp44 environment is becoming significantly less rigid than it is in native SCF. Consistent with this result, the fluorescence spectra revealed that Trp44 becomes more solvent exposed as the methionines are oxidized, with the hydrophobicity of the Trp44 environment decreasing significantly. The oxidations of Met36 and Met48 decrease biological activity by 40% and 60%, respectively, while increasing the dissociation rate constant of SCF dimer by two- and threefold. These results imply that the oxidation of Met36 and Met48 affects SCF dimerization and tertiary structure, and decreases biological activity.  相似文献   

13.
After a brief introduction of the potentialities of Trp phosphorescence spectroscopy for probing the conformation and flexibility of protein structure, this presentation summarizes the effects of hydrostatic pressure (up to 3 kbar) on the native fold of monomeric and oligomeric proteins as inferred from the variation of the intrinsic phosphorescence lifetime and the oxygen and acrylamide bimolecular quenching rate constants of buried Trp residues. The pressure/temperature response of the globular fold and modulation of its dynamical structure is analyzed both in terms of a reduction of internal cavities and of hydration of the polypeptide. The implications of these findings for the thermodynamic stability of proteins and for the determination of subunit dissociation equilibria under high pressure conditions are also discussed.  相似文献   

14.
Troponin C (TnC) is an 18-kDa acidic protein of the EF-hand family that serves as the trigger for muscle contraction. In this study, we investigated the thermodynamic stability of the C-domain of TnC in all its occupancy states (apo, Mg (2+)-, and Ca (2+)-bound states) using a fluorescent mutant with Phe 105 replaced by Trp (F105W/C-domain, residues 88-162) and (1)H NMR spectroscopy. High hydrostatic pressure was employed as a perturbing agent, in combination with urea or without it. On the basis of changes in Trp emission, the C-domain apo state was denatured by pressure (in the range of 1-1000 bar) in the absence of urea. The fluorescence data were corroborated by following the changes in the (1)H NMR signal of Histidine 128. Addition of Ca (2+) or Mg (2+) increased the C-domain stability so that complete denaturation was attained only by the combined use of high hydrostatic pressure and either 7-8 M or 1.5-2 M urea, respectively. The (1)H NMR spectra in the presence of Ca (2+) was typical of a highly structured protein and allowed us to follow the changes in the local environment of several amino-acid residues as a function of pressure at 4 M Urea. Different residues presented different volume changes, but those that are in the hydrophobic core portrayed values very similar to that obtained for tryptophan 105 as measured by fluorescence, indicating that it is indeed a good probe for the overall tertiary structure. From these experiments, we calculated the thermodynamic parameters (Delta G degrees atm and Delta V) that govern the folding of the C-domain in all its possible physiological states and constructed a thermodynamic cycle. Furthermore, a comparison of the volume and free-energy changes of folding of isolated C-domain with those of intact TnC (F105W) revealed that the N-domain has little effect on the structure of the C-domain, even in the presence of Ca (2+). The volume and free-energy diagrams reveal a landscape of different conformations from the less structured, denatured apo form to the highly structured, Ca (2+)-bound form. The large change in folding free energy of the C-domain that takes place when Ca (2+) binds may explain the much higher Ca (2+) affinity of sites III and IV, 2 orders of magnitude higher than the affinity of sites I and II.  相似文献   

15.
Exposing BLES (bovine lipid extract surfactant), a clinical surfactant, to reactive oxygen species (ROS) alters surfactant protein B (SP-B), as indicated by Coomassie Blue staining, silver staining, and Western analysis. Hypochlorous acid (HOCl) treatment leads to elevated maximum surface tension (gammamax) and a deterioration in minimum gamma (gammamin) during surface area cycling. Fenton reaction resulted in immediate increases in gammamin and gammamax. Intrinsic fluorescence measurements indicated Fenton, but not HOCl, induced conversion of Trp9 of SP-B to hydroxyTrp (OHTrp), N-formylkynurenine (NFKyn), and kynurenine (Kyn). Electrospray ionization mass spectrometry (ESI-MS) revealed molecular weight alterations consistent with oxidation of Met (HOCl, Fenton) and Trp (Fenton) residues. Oxidative alterations to Met29 and Met65 (HOCl, Fenton) and to Trp9 (OHTrp with HOCL and NFKyn plus Kyn with Fenton) were confirmed by matrix-assisted laser desorption mass spectrometry (MALDI-MS) studies on SP-B tryptic fragments. Some Met oxidation was observed with control SP-B. When taken together with captive bubble tensiometer measurements, these studies suggest that Met oxidation of SP-B by HOCl or Fenton interferes with phospholipid respreading during compression-expansion of surfactant films, while Fenton oxidation, which produces more extensive Met oxidation and disruption of the indole ring of Trp9, further abrogated the ability of such films to attain low surface tensions during compression. These studies provide insight into the manner by which ROS generated during acute lung injury and the acute respiratory distress syndrome act to inhibit not only endogenous surfactant but also therapeutic surfactants administered to counteract these conditions.  相似文献   

16.
Diets were computed to contain equal concentrations of digestible crude protein either of wheat gluten (diet 1) or of grieves (diets 2–8). Per kg dry diet, 41 g crystalline amino acids were supplemented. All diets contained at least 1.2 g Lys per MJ digestible energy (DE). In diet 2, ratios of Met + Cys, Trp, Leu, Ile and Phe to Lys were about equal to those in diet 1. In each of diets 3–7, one of the respective amino acids, in diet 8 all five were replaced by Glu in the supplemented mixture of amino acids.

Each diet was fed to triplciate groups of 20 trout during a trial lasting 66 days. Trout fed the diet containing wheat gluten consumed more dry matter and showed higher growth rates as well as higher protein contents in their gained body mass than trout fed diets based on grieves. Supplementing Met plus Trp significantly improved dry matter intake, growth rate and protein content of gain, though not to the level of trout fed the wheat gluten diet, whereas Leu, Ile and Phe showed no such effect. When grieves were not supplemented with both Met and Trp, gain in body mass contained significantly more lipids. DE required per kg gain by trout fed wheat gluten, grieves + Met + Trp or grieves without supplementation of Met and Trp was 20.1, 21.2 and 29.9 MJ, respectively.  相似文献   

17.
High-pressure has been established as an effective technique for refolding proteins at high concentrations. In this study, high hydrostatic pressure (1-3 kbar) was utilized to refold a homodimeric protein from inclusion bodies and the process was evaluated for large-scale manufacturing feasibility. This research focused on increasing protein concentration while maximizing yield and product quality. Refolding yields of 29-42% were achieved in the absence of urea at 2 kbar and at a protein concentration of 6 g/L. Optimization of the refolding buffer composition via multivariate design of experiments and other process parameters such as refolding pressure, gas sparging, and time under pressure are discussed. Although high-pressure refolding can be considered a viable technology for manufacturing if the gains are clearly identified, in this particular case, the benefits that the high-pressure technology offers do not compensate for the drawbacks of implementing new equipment in an existing facility, and unknown impact of scale-up for this molecule.  相似文献   

18.
The effect of the pressure on the structure and stability of the D-Galactose/D-Glucose binding protein (GGBP) from Escherichia coli was studied by steady-state and time-resolved fluorescence spectroscopy, and the ability of glucose ligand to stabilize the GGBP structure was also investigated. Steady-state fluorescence experiments showed a marked quenching of fluorescence emission of GGBP in the absence of glucose. Instead, the presence of glucose seems to stabilize the structure of GGBP at low and moderate pressure values. Time-resolved fluorescence measurements showed that the GGBP taumean in the absence of glucose varies significantly up to 600 bar, while in the presence of the ligand it is almost unaffected by pressure increase up to 600 bar. The effect of the pressure on GGBP was also studied by molecular dynamics simulations. The simulation data support the spectroscopic results and confirm that the presence of glucose is able to contrast the negative effects of pressure on the protein structure. Taken together, the spectroscopic and computer simulation studies suggest that at pressure values up to 2000 bar the structure of GGBP in the absence of glucose remains folded, but a significant perturbation of the protein secondary structures can be detected. The binding of glucose reduces the negative effect of pressure on protein structure and confers protection from perturbation especially at moderate pressure values.  相似文献   

19.
Chemical defences often vary within and between populations both in quantity and quality, which is puzzling if prey survival is dependent on the strength of the defence. We investigated the within- and between-population variability in chemical defence of the wood tiger moth (Arctia plantaginis). The major components of its defences, SBMP (2-sec-butyl-3-methoxypyrazine) and IBMP (2-isobutyl-3-methoxypyrazine), are volatiles that deter bird attacks. We hypothesized that (1) variation in the chemical defences of male wood tiger moths reflects the local predation pressure; (2) observed differences in quantity and quality of defence among populations have a genetic basis; and (3) increasing concentrations of SBMP and IBMP will elicit greater aversive reactions in predators, with the two pyrazines having an additive effect on predators' avoidance. We found that (1) the chemical defence of wild moths partly reflects local predator selection: high predation pressure populations (Scotland and Georgia) had stronger chemical defences, but not lower variance, than the low-predation populations (Estonia and Finland). (2) Based on the common garden results, both genetic and environmental components seem to influence the strength of chemical defence in moth populations; and (3) IBMP alone did not provide protection against bird predators but worked against bird attacks only when combined with SBMP, and while SBMP was more effective at higher concentrations, IBMP was not. Altogether this suggests that, when it comes to pyrazine concentration, more is not always better, highlighting the importance of testing the efficacy of chemical defence and its components with relevant predators, as extrapolating from chemical data may be less than straightforward.  相似文献   

20.
Barrows TP  Bhaskar B  Poulos TL 《Biochemistry》2004,43(27):8826-8834
Previously a K(+)-binding site, analogous to that found in ascorbate peroxidase (APX), was engineered into cytochrome c peroxidase (CcP) to test the hypothesis that the bound K(+) influences the stability of the Trp191 cation radical formed during the CcP catalytic cycle (Bonagura et al., (1996) Biochemistry 35, 6107 and Bonagura et al., (1999) Biochemistry 38, 5528). Characterization of this mutant, designated CcPK2, showed that the stability of the Trp191 cation radical is dependent on the occupancy of the engineered K(+) site and that the Trp191 radical was much less stable in this mutant than in wild-type CcP. The mutations Met230Leu, Met231Gln, and Met172Ser have now been constructed on the CcPK2 mutant template to test if the Met residues also contribute to the stabilization of the Trp191 cation radical. Crystal structures show that the mutations affect only the local structure near the sites of mutation. Removal of these electronegative residues located less than 8 A from the Trp radical results in a further destabilization of the Trp radical. The characteristic EPR signal associated with the Trp radical is significantly narrowed and is characteristic of a tyrosine radical signal. Double-mixing stopped-flow experiments, where the delay time between the formation of CcP compound I and its mixing with horse heart ferrocytochrome c is varied, show that the stability of the Trp radical decreases as the Met residues are removed from the proximal cavity. When taken together, these results demonstrate a strong correlation between the experimentally determined stability of the Trp191 radical, the enzyme activity, and the calculated electrostatic stabilization of the Trp191 radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号