首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein palmitoylation is an increasingly investigated form of post-translational lipid modification that affects protein localization, accumulation, secretion and function. Recently, emerging findings have revealed that protein palmitoylation is crucial for many tumor-related signaling pathways, such as EGFR, RAS, PD-1/PD-L1 signaling, affecting the occurrence, progression and therapeutic response of tumors. Protein palmitoylation and its modifying enzymes, including palmitoylases and depalmitoylases, are expected to be new targets for effective tumor treatment. Recognizing the significance of palmitoylation modification on protein stability, localization and downstream signal regulation, this review focuses on the regulatory roles of protein palmitoylation and its modifying enzymes in tumor cell signal transduction, aiming to bring new ideas for effective cancer prevention and treatment.  相似文献   

2.
3.
4.
Starch is the major food reserve in plants and forms a large part of the daily calorie intake in the human diet. Industrially, starch has become a major raw material in the production of various products including bio-ethanol, coating and anti-staling agents. The complexity and diversity of these starch based industries and the demand for high quality end products through extensive starch processing, can only be met through the use of a broad range of starch and α-glucan modifying enzymes. The economic importance of these enzymes is such that the starch industry has grown to be the largest market for enzymes after the detergent industry. However, as the starch based industries expand and develop the demand for more efficient enzymes leading to lower production cost and higher quality products increases. This in turn stimulates interest in modifying the properties of existing starch and α-glucan acting enzymes through a variety of molecular evolution strategies. Within this review we examine and discuss the directed evolution strategies applied in the modulation of specific properties of starch and α-glucan acting enzymes and highlight the recent developments in the field of directed evolution techniques which are likely to be implemented in the future engineering of these enzymes.  相似文献   

5.
氨基糖苷类抗生素在治疗感染性疾病尤其是革兰氏阴性菌引起的严重感染方面起着重要作用 ,但是耐药菌株的出现较大地限制了此类抗生素的发展 ,因此 ,如何控制耐药性已经成为一项迫切需要解决的任务。细菌对氨基糖苷类抗生素产生抗性的机制很多 ,目前普遍接受的主要有三种 :1. 通过减少对氨基糖苷类抗生素的摄取或减少药物在体内的累积而产生抗性。 2. 通过改变核糖体结合位点而产生抗性。 3. 通过表达氨基糖苷类抗生素修饰酶而产生抗性。目前细菌耐药性的控制主要集中在对原有氨基糖苷类抗生素进行改造或合成新的抗生素 ,开发氨基糖苷类抗生素修饰酶抑制剂。  相似文献   

6.
7.
A modifying action of ATP and ADP on the activity of some key membrane-bound enzymes of the brain and heart microsomes of rats exposed to 7 Gy radiation has been investigated. The difference in the reactions of energy-dependent enzymes is attributed to the compensatory systems involved at the molecular level.  相似文献   

8.
转基因改良植物的胁迫耐性   总被引:13,自引:0,他引:13  
干旱、盐碱和低温等逆境是严重影响栽培植物生产的非生物胁迫因素。导入外源目的的基因已发展成为改良作物对逆境胁迫耐性的新途径。现今已应用于植物胁迫改良的基因包括编码活性氧清除酶类、膜修饰酶类、胁迫诱导蛋白和渗调物质合成酶等基因。  相似文献   

9.
Multiple histone-modifying enzymes have been identified in the past several years. Much has been learned regarding the biochemistry of these enzymes and their effects on gene expression in cultured cells. However, the functions of these factors during development are still largely unknown. Recent genetic studies indicate that specific histone modifications and modifying enzymes play essential roles in both global and tissue-specific chromatin organization. In particular, these studies indicate that enzymes that control levels and patterns of histone acetylation and methylation are required for normal embryo patterning, organogenesis, and survival.  相似文献   

10.
J P Zehr  K Ohki  Y Fujita    D Landry 《Journal of bacteriology》1991,173(21):7059-7062
The genomic DNA of the marine nonheterocystous nitrogen-fixing cyanobacterium Trichodesmium sp. strain NIBB 1067 was found to be highly resistant to DNA restriction endonucleases. The DNA was digested extensively by the restriction enzyme DpnI, which requires adenine methylation for activity. The DNA composition, determined by high-performance liquid chromatography (HPLC), was found to be 69% AT. Surprisingly, it was found that a modified adenine which was not methylated at the usual N6 position was present and made up 4.7 mol% of the nucleosides in Trichodesmium DNA (15 mol% of deoxyadenosine). In order for adenine residues to be modified at this many positions, there must be many modifying enzymes or at least one of the modifying enzymes must have a degenerate recognition site. The reason(s) for this extensive methylation has not yet been determined but may have implications for the ecological success of this microorganism in nature.  相似文献   

11.
The possible contribution of extracellular constitutively produced chitin deacetylase by Metarhizium anisopliae in the process of insect pathogenesis has been evaluated. Chitin deacetylase converts chitin, a beta-1,4-linked N-acetylglucosamine polymer, into its deacetylated form chitosan, a glucosamine polymer. When grown in a yeast extract-peptone medium, M. anisopliae constitutively produced the enzymes protease, lipase, and two chitin-metabolizing enzymes, viz. chitin deacetylase (CDA) and chitosanase. Chitinase activity was induced in chitin-containing medium. Staining of 7.5% native polyacrylamide gels at pH 8.9 revealed CDA activity in three bands. SDS-PAGE showed that the apparent molecular masses of the three isoforms were 70, 37, and 26 kDa, respectively. Solubilized melanin (10microg) inhibited chitinase activity, whereas CDA was unaffected. Following germination of M. anisopliae conidia on isolated Helicoverpa armigera, cuticle revealed the presence of chitosan by staining with 3-methyl-2-benzothiazoline hydrazone. Blue patches of chitosan were observed on cuticle, indicating conversion of chitin to chitosan. Hydrolysis of chitin with constitutively produced enzymes of M. anisopliae suggested that CDA along with chitosanase contributed significantly to chitin hydrolysis. Thus, chitin deacetylase was important in initiating pathogenesis of M. anisopliae softening the insect cuticle to aid mycelial penetration. Evaluation of CDA and chitinase activities in other isolates of Metarhizium showed that those strains had low chitinase activity but high CDA activity. Chemical assays of M. anisopliae cell wall composition revealed the presence of chitosan. CDA may have a dual role in modifying the insect cuticular chitin for easy penetration as well as for altering its own cell walls for defense from insect chitinase.  相似文献   

12.
Thaxtomin A, a cyclic dipeptide with a nitrated tryptophan moiety, is a phytotoxic pathogenicity determinant in scab-causing Streptomyces species that inhibits cellulose synthesis by an unknown mechanism. Thaxtomin A is produced by the action of two non-ribosomal peptide synthetase modules (TxtA and TxtB) and a complement of modifying enzymes, although the order of biosynthesis has not yet been determined. Analysis of a thaxtomin dual module knockout mutant and single module knockout mutants revealed that 4-nitrotryptophan is an intermediate in thaxtomin A biosynthesis prior to backbone assembly. The 4-nitrotryptophan represents a novel substrate for non-ribosomal peptide synthetases. Through identification of N -methyl-4-nitrotryptophan in a single module knockout and the use of adenylation domain specificity prediction software, TxtB was identified as the non-ribosomal peptide synthetase module specific for 4-nitrotryptophan.  相似文献   

13.
非核糖体多肽合成酶研究进展   总被引:4,自引:0,他引:4  
细菌和真菌采用非核糖体系统合成一些重要的多肽类物质.近年来的研究表明,在该系统中发挥关键作用的是一类分子巨大的非核糖体多肽合成酶.它们由顺序排列的组件构成,酶分子结构本身即蕴涵着多肽合成的信息.对非核糖体多肽合成酶结构和功能的了解,使人们期望可以通过对这类酶的修饰和重组来合成一些新的多肽类物质.  相似文献   

14.
Carcinogenic metals, such as nickel, arsenic, and chromium, are widespread environmental and occupational pollutants. Chronic exposure to these metals has been connected with increased risks of numerous cancers and as well as non-carcinogenic health outcomes, including cardiovascular disease, neurologic deficits, neuro-developmental deficits in childhood, and hypertension. However, currently the specific molecular targets for metal toxicity and carcinogenicity are not fully understood. Here, we propose that the iron- and 2-oxoglutarate-dependent dioxygenase family enzymes, as well as, other histone modifying enzymes are important intracellular targets that mediate the toxicity and carcinogenicity of nickel, and maybe potential targets in chromium and arsenic induced carcinogenesis. Our data demonstrate that all three metals are capable of inducing post-translational histone modifications and affecting the enzymes that modulate them (i.e. the iron- and 2-oxoglutarate-dependent dioxygenase family, including HIF-prolyl hydroxylase PHD2, histone demethylase JHDM2A/JMJD1A, and DNA repair enzymes ABH3 and ABH2, and histone methyltransferases, G9a). Given the effects that these metals can exert on the epigenome, future studies of their involvement in histone modifying enzymes dynamics would deepen our understanding on their respective toxicities and carcinogenicities.  相似文献   

15.
Fructose-2,6-bisphosphate: a traffic signal in plant metabolism   总被引:1,自引:0,他引:1  
Fructose-2,6-bisphosphate (Fru-2,6-P(2)) regulates key reactions of the primary carbohydrate metabolism in all eukaryotes. In plants, Fru-2,6-P(2) coordinates the photosynthetic carbon flux into sucrose and starch biosynthesis. The use of transgenic plants has allowed the regulatory models to be tested by modifying the Fru-2,6-P(2) levels and the enzymes regulated by Fru-2,6-P(2). Genes for the bifunctional plant enzyme that synthesizes and degrades Fru-2,6-P(2) have been isolated and molecular characterization has provided new insight into structure and molecular regulation of the enzyme. Advances in Fru-2,6-P(2) physiology and molecular biology are discussed. These advances have not only enlightened in vivo operation of Fru-2,6-P(2) but also revealed that the Fru-2,6-P(2) regulatory system is highly complex and interacts with other regulatory mechanisms.  相似文献   

16.
17.
Histone modifying enzymes catalyze the addition or removal of an array of covalent modifications in histone and non-histone proteins. Within the context of chromatin, these modifications regulate gene expression as well as other genomic functions and have been implicated in establishing and maintaining a heritable epigenetic code that contributes to defining cell identity and fate. Biochemical and structural characterization of histone modifying enzymes has yielded important insights into their respective catalytic mechanisms, substrate specificities, and regulation. In this review, we summarize recent advances in understanding these enzymes, highlighting studies of the histone acetyltransferases (HATs) p300 (also now known as KAT3B) and Rtt109 (KAT11) and the histone lysine demethylases (HDMs) LSD1 (KDM1) and JMJD2A (KDM4A), present overriding themes that derive from these studies, and pose remaining questions concerning their regulatory roles in mediating DNA transactions.  相似文献   

18.
The thioredoxin h system: potential applications   总被引:4,自引:0,他引:4  
The thioredoxin h system has the specific capability to reduce intramolecular disulfide bonds of proteins, thereby modifying their tertiary structure. It is involved in many processes: in the activation or deactivation of enzymes and enzyme inhibitors and in the germination process. This system can be used to improve the breadmaking quality of wheat by strengthening the dough. It can also decrease the epitope accessibility, then modifying the response of the IgE immune system. Transgenic barley and wheat have been created to confirm the functionality of the NADP-dependent thioredoxin h system.  相似文献   

19.
Shirai H  Mokrab Y  Mizuguchi K 《Proteins》2006,64(4):1010-1023
The guanidino-group modifying enzyme (GME) superfamily contains many drug targets, including metabolic enzymes from pathogenic microorganisms as well as key regulatory proteins from higher eukaryotes. These enzymes, despite their diverse sequences, adopt the common alpha/beta propeller fold and catalyze the modification of (methylated) guanidino groups. Our structural superposition and structure-based alignment for the GMEs have identified key residues that are involved in the catalysis and substrate binding. We have shown that conserved guanidino-carboxyl interactions are utilized in two different ways; the acidic residues in the catalytic site form hydrogen bonds to the substrate guanidino group, and the enzyme Arg residues at several key positions recognize the carboxyl group of the substrate and fix its orientation. Based on this observation, we have proposed rules for classifying the GME sequences and predicting their molecular function from the conservation of the key acidic and Arg residues. Other novel motifs have been identified, which involve residues that are not in direct contact with the substrate but are likely to stabilize the active-site conformation through hydrogen-bonding networks. In addition, we have examined the domain architecture of the GMEs. Although most members consist of a single catalytic domain, fold recognition analysis has identified a likely bifunctional enzyme from a cyanobacterium. It has also revealed common immunoglobulin-like beta-sandwich domains found in the enzymes that recognize protein substrates. These findings will be useful for predicting the precise mechanism of action for potential novel targets and designing therapeutic compounds against them.  相似文献   

20.
Until recently, identifying the specificities of enzymes that post-translationally modify core histones was performed in vitro using synthetic peptides, purified mononucleosomes or short nucleosome arrays. Unfortunately, the variable results obtained for identical enzymes are often dependent on the in vitro conditions employed. These results are consistent with the conclusion that the manner in which histone tails are presented to the modifying enzymes dramatically affects specificity. Because traditional in vitro biochemical approaches do not accurately recapitulate higher-order chromatin structure or consider the influences that additional chromatin binding proteins may have on determining the specificity of modifying enzymes, the development of new and innovative approaches is warranted. Here, we describe a novel in situ microscopy approach that accurately assesses enzyme substrate specificities through single cell measurements performed under physiologically relevant conditions. This approach couples the spatial resolving power of microscopy with robust statistical analyses to determine the substrate specificities of transiently expressed enzymes using histone modification- and residue-specific antibodies. This methodology can also be applied to measuring changes in the abundance of histone modifications as cells traverse the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号