首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Free radical research》2013,47(11):917-933
Abstract

Oxidative stress has been implicated in the pathogenesis of acute pancreatitis, a severe and debilitating inflammation of the pancreas that carries a significant mortality, and which imposes a considerable financial burden on the health system due to patient care. Although extensive efforts have been directed towards the elucidation of critical underlying mechanisms and the identification of novel therapeutic targets, the disease remains without a specific therapy. In experimental animal models of acute pancreatitis, increased oxidative stress and decreased antioxidant defences have been observed, changes also detected in patients clinically. However, despite the promise of studies evaluating the effects of antioxidants in these model systems, translation to the clinic has thus far been disappointing. This may reflect many factors involved in the design of both preclinical and clinical evaluations of antioxidant therapy, not least the fact that most experimental studies have focussed on pre-treatment rather than post-injury assessment. This review has examined evidence relating to the involvement of oxidative stress in the pathophysiology of acute pancreatitis, focussing on experimental models and the clinical experience, including the experimental techniques employed and potential of antioxidant therapy.  相似文献   

2.
Oxidative stress in cell culture: an under-appreciated problem?   总被引:13,自引:0,他引:13  
Halliwell B 《FEBS letters》2003,540(1-3):3-6
Cell culture studies have given much valuable information about mechanisms of metabolism and signal transduction and of regulation of gene expression, proliferation, senescence, and death. However, cells in culture may behave differently from cells in vivo in many ways. One of these is that cell culture imposes a state of oxidative stress on cells. I argue that cells that survive and grow in culture might use ROS-dependent signal transduction pathways that rarely or never operate in vivo. A further problem is that cell culture media can catalyse the oxidation of compounds added to them, resulting in apparent cellular effects that are in fact due to oxidation products such as ROS. Such artefacts may have affected many studies on the effects of ascorbate, thiols, flavonoids and other polyphenolic compounds on cells in culture.  相似文献   

3.
Oxidative stress in cardiovascular disease: myth or fact?   总被引:6,自引:0,他引:6  
Oxidative stress is a mechanism with a central role in the pathogenesis of atherosclerosis, cancer, and other chronic diseases. It also plays a major role in the aging process. Ischemic heart disease is perhaps the human condition in which the role of oxidative stress has been investigated in more detail: reactive oxygen species and consequent expression of oxidative damage have been demonstrated during post-ischemic reperfusion in humans and the protective role of antioxidants has been validated in several experimental studies addressing the pathophysiology of acute ischemia. Although an impressive bulk of experimental studies substantiate the role of oxidative stress in the progression of the damage induced by acute ischemia, not a single pathophysiologic achievement has had a significant impact on the treatment of patients and randomized, controlled clinical trials, both in primary and secondary prevention, have failed to prove the efficacy of antioxidants in the treatment of ischemic cardiovascular disease. This dichotomy, between the experimental data and the lack of impact in the clinical setting, needs to be deeply investigated: certainly, the pathophysiologic grounds of oxidative stress do maintain their validity but the concepts of the determinants of oxidative damage should be critically revised. In this regard, the role of intermediate metabolism during myocardial ischemia together with the cellular redox state might represent a promising interpretative key.  相似文献   

4.
Abstract

The prevalence of Alzheimer's disease (AD) is increasing rapidly worldwide due to an ageing population and largely ineffective treatments. In AD cognitive decline is due to progressive neuron loss that begins in the medial temporal lobe and spreads through many brain regions. Despite intense research the pathogenesis of the common sporadic form of AD remains largely unknown. The popular amyloid cascade hypothesis suggests that the accumulation of soluble oligomers of beta amyloid peptides (Aβ) initiates a series of events that cause neuronal loss. Among their putative toxic effects, Aβ oligomers are thought to act as pro-oxidants combining with redox-active metals to produce excessive reactive oxygen and nitrogen species. However, to date the experimental therapies that reduce Aβ load in AD have failed to halt cognitive decline. Another hypothesis proposed by the late Mark Smith and colleagues is that oxidative stress, rather than Aβ, precipitates the pathogenesis of AD. That is, Aβ and microtubule-associated protein tau are upregulated to address the redox imbalance in the AD brain. As the disease progresses, excess Aβ and tau oligomerise to further accelerate the disease process. Here, we discuss redox balance in the human brain and how this balance is affected by ageing. We then discuss where oxidative stress is most likely to act in the disease process and the potential for intervention to reduce its effects.  相似文献   

5.
Oxidative stress in microbial cells shares many similarities with other cell types but it has its specific features which may differe in prokaryotic and eukaryotic cells. We survey here the properties and actions of primary sources of oxidative stress, the role of transition metals in oxidative stress and cell protective machinery of microbial cells, and compare them with analogous features of other cell types. Other features to be compared are the action of reactive oxygen species (ROS) on cell constituents, secondary lipid-or protein-based radicals and other stress products. Repair of oxidative injury by microorganisms and proteolytic removal of irreparable cell constituents are briefly described. Oxidative damage of aerobically growing microbial cells by endogenously formed ROS mostly does not induce changes similar to the aging of multiplying mammalian cells. Rapid growth of bacteria and yeast prevents accumulation of impaired macromolecules which are repaired, diluted or eliminated. During growth some simple fungi, such as yeast orPodospora spp., exhibit aging whose primary cause seems to be fragmentation of the nucleolus or impairment of mitochondrial DNA integrity. Yeast cell aging seems to be accelerated by endogenous oxidative stress. Unlike most growing microbial cells, stationaryphase cells gradually lose their viability because of a continuous oxidative stress, in spite of an increased synthesis of antioxidant enzymes. Unlike in most microorganisms, in plant and animal cells a severe oxidative stress induces a specific programmed death pathway-apoptosis. The scant data on the microbial death mechanisms induced by oxidative stress indicate that in bacteria cell death can result from activation of autolytic enzymes (similarly to the programmed mother-cell death at the end of bacillar sporulation). Yeast and other simple eukaryotes contain components of a proapoptotic pathway which are silent under normal conditions but can be activated by oxidative stress or by manifestation of mammalian death genes, such asbak orbax. Other aspects, such as regulation of oxidative-stress response, role of defense enzymes and their control, acquisition of stress tolerance, stress signaling and its role in stress response, as well as cross-talk between different stress factors, will be the subject of a subsequent review.  相似文献   

6.
7.
Oxidative stress and neurodegeneration: where are we now?   总被引:1,自引:0,他引:1  
The brain and nervous system are prone to oxidative stress, and are inadequately equipped with antioxidant defense systems to prevent 'ongoing' oxidative damage, let alone the extra oxidative damage imposed by the neurodegenerative diseases. Indeed, increased oxidative damage, mitochondrial dysfunction, accumulation of oxidized aggregated proteins, inflammation, and defects in protein clearance constitute complex intertwined pathologies that conspire to kill neurons. After a long lag period, therapeutic and other interventions based on a knowledge of redox biology are on the horizon for at least some of the neurodegenerative diseases.  相似文献   

8.
Oxidative stress and cancer: have we moved forward?   总被引:2,自引:0,他引:2  
'Reactive species' (RS) of various types are formed in vivo and many are powerful oxidizing agents, capable of damaging DNA and other biomolecules. Increased formation of RS can promote the development of malignancy, and the 'normal' rates of RS generation may account for the increased risk of cancer development in the aged. Indeed, knockout of various antioxidant defence enzymes raises oxidative damage levels and promotes age-related cancer development in animals. In explaining this, most attention has been paid to direct oxidative damage to DNA by certain RS, such as hydroxyl radical (OH*). However, increased levels of DNA base oxidation products such as 8OHdg (8-hydroxy-2'-deoxyguanosine) do not always lead to malignancy, although malignant tumours often show increased levels of DNA base oxidation. Hence additional actions of RS must be important, possibly their effects on p53, cell proliferation, invasiveness and metastasis. Chronic inflammation predisposes to malignancy, but the role of RS in this is likely to be complex because RS can sometimes act as anti-inflammatory agents.  相似文献   

9.
Zheng L  Marcusson J  Terman A 《Autophagy》2006,2(2):143-145
Intraneuronal accumulation of amyloid beta-protein (Abeta) is believed to be responsible for degeneration and apoptosis of neurons and consequent senile plaque formation in Alzheimer disease (AD), the main cause of senile dementia. Oxidative stress, an early determinant of AD, has been recently found to induce intralysosomal Abeta accumulation in cultured differentiated neuroblastoma cells through activation of macroautophagy. Because Abeta is known to destabilize lysosomal membranes, potentially resulting in apoptotic cell death, this finding suggests the involvement of oxidative stress-induced macroautophagy in the pathogenesis of AD.  相似文献   

10.
11.
Summary This paper is the second of three studies of a natural hybrid,Rutilus rubilioxAlburnus alburnus found in Lake Mikri Prespa in Northern Greece. It compares the parasite load of the hybrid to that of its parents, focussing onDactylogyrus spp.,Diplozoon sp.,Bolbophorus confusus andPomphorhynchus bosniacus. The hybrid's gill tissue is parasitised almost exclusively by the parentalDactylogyrus. It follows that theDactylogyrus group constitutes an excellent biological marker for hybridisation. Furthermore, the hybrid is characterised by the following two features: 1. high susceptibility to parasitic infections, 2. important role of ecological components in the recruitment of parasites: for monoxenous parasites (Dactylogyrus spp.), the spatial position of the hybrid and for heteroxenous parasites (P. bosniacus), the trophic position. The parasitology of this particular hybrid may be useful as a model for the properties and fitness of hybrids in general.  相似文献   

12.
X-linked adrenoleukodystrophy (X-ALD) is an inherited neurodegenerative disorder expressed as four disease variants characterized by adrenal insufficiency and graded damage in the nervous system. X-ALD is caused by a loss of function of the peroxisomal ABCD1 fatty-acid transporter, resulting in the accumulation of very long chain fatty acids (VLCFA) in the organs and plasma, which have potentially toxic effects in CNS and adrenal glands. We have recently shown that treatment with a combination of antioxidants containing α-tocopherol, N-acetyl-cysteine and α-lipoic acid reversed oxidative damage and energetic failure, together with the axonal degeneration and locomotor impairment displayed by Abcd1 null mice, the animal model of X-ALD. This is the first direct demonstration that oxidative stress, which is a hallmark not only of X-ALD, but also of other neurodegenerative processes, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), contributes to axonal damage. The purpose of this review is, first, to discuss the molecular and cellular underpinnings of VLCFA-induced oxidative stress, and how it interacts with energy metabolism and/or inflammation to generate a complex syndrome wherein multiple factors are contributing. Particular attention will be paid to the dysregulation of redox homeostasis by the interplay between peroxisomes and mitochondria. Second, we will extend this analysis to the aforementioned neurodegenerative diseases with the aim of defining differences as well as the existence of a core pathogenic mechanism that would justify the exchange of therapeutic opportunities among these pathologies. This article is part of a Special Issue entitled: Metabolic functions and biogenesis of peroxisomes in health and disease.  相似文献   

13.
Abstract

Systemic sclerosis (SSc) is a multisystem autoimmune disease: characterised from the clinical side by progressive vasculopathy and fibrosis of the skin and different organs and from the biochemical side by fibroblast deregulation with excessive production of collagen and increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). The latter contributes to an overproduction of reactive oxygen species that through an autocrine loop maintains NOX4 in a state of activation. Reactive oxygen and nitrogen species are implicated in the origin and perpetuation of several clinical manifestations of SSc having vascular damage in common; attempts to dampen oxidative and nitrative stress through different agents with antioxidant properties have not translated into a sustained clinical benefit. Objective of this narrative review is to describe the origin and clinical implications of oxidative and nitrative stress in SSc, with particular focus on the central role of NOX4 and its interactions, to re-evaluate the antioxidant approaches so far used to limit disease progression, to appraise the complexity of antioxidant treatment and to touch on novel pathways elements of which may represent specific treatment targets in the not so distant future.  相似文献   

14.
15.
Although oxidative stress has been extensively studied the last fifteen years, many physicians and biologists are still sceptical concerning its interest in biology and medicine. This is probably due, in part, to the fact that this subject is a matter of biophysics, and the first studies reported were written using a physical language that inspired these people used to a more concrete problematic very little. Another problem is the difficulty to detect the species mediating oxidative stress, and to determine their role in biological processes. This review is aimed at presenting oxidative stress, as well as reactive oxygen species and free radicals--the molecules that mediate it--in a clear form able to convince all researchers involved in life sciences that these short-lived intermediates are indissociable from any aerobic organism. Moreover, if reactive oxygen species and free radicals are undoubtedly involved in many pathologies, they have physiological functions too.  相似文献   

16.
Activities of the antioxidative enzymes superoxide dismutase (SOD), catalase, glutathione peroxidase (GPX) and glutathione reductase (GR) were measured in the cephalopods Sepia officinalis and Lolliguncula brevis. Maximal enzyme activities were higher in gill tissue than in the mantle musculature of both species. Activities were generally lower in tissues of L. brevis than in S. officinalis. Comparison with other ectothermic animals showed both cephalopod species to have a low enzymatic antioxidative status despite their high metabolic rate. Furthermore, changes in antioxidative enzyme activities were measured in the cuttlefish S. officinalis with increasing age. The concentrations of malondialdehyde (MDA) and lipofuscin were determined as indicators of lipid peroxidation. Investigated animals were between 1.5 months and over 12 months old. Changes of antioxidative enzyme activities with age were not uniform. SOD and GPX activities increased with age, while catalase activity declined. In contrast, GR activity remained almost unchanged in all age groups. The low level of antioxidative defense might allow for the significant age-induced rise in MDA levels in gills and mantle musculature and for the increase in lipofuscin levels in mantle and brain tissue. It might thereby contribute to increased oxidative damage and a short life span in these cephalopods.  相似文献   

17.
There is growing evidence that oxidative stress contributes to hypertension. Oxidative stress can precede the development of hypertension. In almost all models of hypertension, there is oxidative stress that, if corrected, lowers BP, whereas creation of oxidative stress in normal animals can cause hypertension. There is overexpression of the p22(phox) and Nox-1 components of NADPH oxidase and reduced expression of extracellular superoxide dismutase (EC-SOD) in the kidneys of ANG II-infused rodents, whereas there is overexpression of p47(phox) and gp91(phox) and reduced expression of intracellular SOD with salt loading. Several mechanisms have been identified that can make oxidative stress self-sustaining. Reactive oxygen species (ROS) can enhance afferent arteriolar tone and reactivity both indirectly via potentiation of tubuloglomerular feedback and directly by microvascular mechanisms that diminish endothelium-derived relaxation factor/nitric oxide responses, generate a cyclooxygenase-2-dependent endothelial-derived contracting factor that activates thromboxane-prostanoid receptors, and enhance vascular smooth muscle cells reactivity. ROS can diminish the efficiency with which the kidney uses O(2) for Na(+) transport and thereby diminish the P(O(2)) within the kidney cortex. This may place a break on further ROS generation yet could further enhance vasculopathy and hypertension. There is a tight relationship between oxidative stress in the kidney and the development and maintenance of hypertension.  相似文献   

18.
Reactive oxygen species (ROS) are constantly produced in biological tissues and play a role in various signalling pathways. Abnormally high ROS concentrations cause oxidative stress associated with tissue damage and dysregulation of physiological signals. There is growing evidence that oxidative stress increases with age. It has also been shown that the life span of worms, flies and mice can be significantly increased by mutations which impede the insulin receptor signalling cascade. Molecular studies revealed that the insulin-independent basal activity of the insulin receptor is increased by ROS and downregulated by certain antioxidants. Complementary clinical studies confirmed that supplementation of the glutathione precursor cysteine decreases insulin responsiveness in the fasted state. In several clinical trials, cysteine supplementation improved skeletal muscle functions, decreased the body fat/lean body mass ratio, decreased plasma levels of the inflammatory cytokine tumour necrosis factor alpha (TNF-alpha), improved immune functions, and increased plasma albumin levels. As all these parameters degenerate with age, these findings suggest: (i) that loss of youth, health and quality of life may be partly explained by a deficit in cysteine and (ii) that the dietary consumption of cysteine is generally suboptimal and everybody is likely to have a cysteine deficiency sooner or later.  相似文献   

19.
The thrust of this presentation takes a more programmatic approach and gives an overview of the programs at the NIH and the NCI that have a broad nutritional and basic science undercurrent and outline. Also discussed briefly are some areas of general concern that are under investigation in the nutrition group and are included in the group's outreach efforts among professional and academic organizations. The overarching focus of these efforts is to stress the importance of nutrition as a potential modulator of health/disease risks associated with genetic predisposition and environmentally induced disease from diet, lifestyle and exposure to pollutants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号