首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J J Evans 《Prostaglandins》1987,33(4):561-566
It is believed that in guinea-pigs the main luteolytic agent is prostaglandin F2 alpha (PGF2a) and that it is synthesised in the uterus. In this study non-pregnant guinea-pigs were hysterectomised at Day 5 of the estrous cycle. Peripheral progesterone levels in animals from which the uterus had been removed remained elevated for an extended time. The results suggested the corpora lutea (CL) had an inherent life span in excess of the length of the estrous cycle. However after a time the levels of circulating progesterone declined, suggesting there might have been a reduction of a stimulating factor or the appearance of a non-uterine luteolysin. If after hysterectomy PGF2a was administered 4 and 5 days later then there was a reduction in the mean progesterone level but the decline did not continue. The CL at the stage of the experimental procedure were sensitive to luteolysin but they had retained their capability to resist endocrinological insult. The study provided further support for the contention that control of PGF2a activity is vital for progesterone maintenance. Additionally, the cells of the CL have the potential to be the site of some of the PGF2a control.  相似文献   

2.
Prostaglandin (PG) F(2alpha) secreted from the uterus is the luteolysin of the estrous cycle and is also believed to be responsible for luteolysis in the pregnant doe at term. We have reported that basal progesterone concentrations decrease before basal PGF(2alpha) concentrations increase, which is inconsistent with this view. In this study we investigated whether luteolysis is associated with increased frequency or amplitude of pulsatile PGF(2alpha) secretion in does over the last 2 wk of gestation. Progesterone concentrations decreased approximately 1 wk before parturition. There was no accompanying increase in PGF(2alpha) concentrations or pulse frequency, and those pulses that were observed were of lesser amplitude and duration than those that have been associated with luteolysis in cycling ewes. A small increase in PGF(2alpha) pulse frequency was identified during the 3 days before parturition, but this was not associated with any change in progesterone concentrations. The biological significance of these small changes in PGF(2alpha) pulse frequency is obscure, although the high concentration of this eicosanoid at labor may have been related to the final, precipitous decline in plasma progesterone concentrations. These findings do not support the notion that PGF(2alpha) is the principal luteolysin in the pregnant doe at term.  相似文献   

3.
Prostaglandin F2alpha (PGF2alpha) is a major physiological luteolysin in the cow. However, injection of PGF2alpha before day 5 (day 0 = estrus) of the estrous cycle dose not induce luteolysis. On the other hand, the early corpus luteum (CL) actively produces PGF2alpha. This indicates that luteal PGF2alpha may play a key role in the refractoriness to PGF2alpha injected during the early luteal phase when angiogenesis is active in the CL. Thus, this study aimed to investigate the possible interaction between pituitary hormones and local factors (luteal peptides) on secretion of PGF2alpha and progesterone (P) by the early bovine CL, and to evaluate the effect of growth hormone (GH) as well as its interactions on production of PGF2alpha in the developing CL. A RT-PCR analysis revealed that mRNA for GH receptor in CL was fully expressed from early in the luteal phase throughout the estrous cycle, while luteinizing hormone (LH) receptor mRNA was expressed less by the early and regressing CL than those at mid or late luteal phases (P < 0.05). For the stimulation test, an in vitro microdialysis system (MDS) was used as a model. Each bovine early CL (days 3-4) was implanted with the MDS, and maintained in an organ culture chamber. The infusion of GH, insulin-like growth factor-I (IGF-I) and oxytocin (OT) increased (P < 0.05) PGF2alpha and P release. In contrast, LH had no effect (P > 0.05) on PGF2alpha secretion and little effect on P release. Unexpectedly, there was no distinct interaction between pituitary hormones and luteal peptides on secretion of PGF2alpha and P. These results indicate that GH is a more powerful stimulator of PGF2alpha and P production in the early bovine CL than LH and suggest that GH and luteal peptides, IGF-1 and OT, contribute to maintenance of elevated PGF2alpha production in the developing bovine CL.  相似文献   

4.
Prostaglandin F2alpha (PGF2alpha) is a major physiological luteolysin in the cow. However, injection of PGF2alpha before day 5 (day 0 = estrus) of the estrous cycle dose not induce luteolysis. On the other hand, the early corpus luteum (CL) actively produces PGF2alpha. This indicates that luteal PGF2alpha may play a key role in the refractoriness to PGF2alpha injected during the early luteal phase when angiogenesis is active in the CL. Thus, this study aimed to investigate the possible interaction between pituitary hormones and local factors (luteal peptides) on secretion of PGF2alpha and progesterone (P) by the early bovine CL, and to evaluate the effect of growth hormone (GH) as well as its interactions on production of PGF2alpha in the developing CL. A RT-PCR analysis revealed that mRNA for GH receptor in CL was fully expressed from early in the luteal phase throughout the estrous cycle, while luteinizing hormone (LH) receptor mRNA was expressed less by the early and regressing CL than those at mid or late luteal phases (P < 0.05). For the stimulation test, an in vitro microdialysis system (MDS) was used as a model. Each bovine early CL (days 3-4) was implanted with the MDS, and maintained in an organ culture chamber. The infusion of GH, insulin-like growth factor-1 (IGF-1) and oxytocin (OT) increased (P < 0.05) PGF2alpha and P release. In contrast, LH had no effect (P > 0.05) on PGF2alpha secretion and little effect on P release. Unexpectedly, there was no distinct interaction between pituitary hormones and luteal peptides on secretion of PGF2alpha and P. These results indicate that GH is a more powerful stimulator of PGF2alpha and P production in the early bovine CL than LH and suggest that GH and luteal peptides, IGF-1 and OT, contribute to maintenance of elevated PGF2alpha production in the developing bovine CL.  相似文献   

5.
Two experiments were conducted to determine the luteotropin of pregnancy in sheep and to examine autocrine and paracrine roles of progesterone and estradiol-17 beta on progesterone secretion by the ovine corpus luteum (CL). Secretion of progesterone per unit mass by day-8 or day-11 CL of the estrous cycle was similar to day-90 CL of pregnancy (P > or = 0.05). In experiment 1, secretion of progesterone in vitro by slices of CL from ewes on day-8 of the estrous cycle was increased (P < or = 0.05) by LH or PGE2. Secretion of progesterone in vitro by CL slices from day-90 pregnant ewes was not affected by LH (P > or = 0.05) while PGE2 increased (P < or = 0.05) secretion of progesterone. Day 8 ovine CL of the estrous cycle did not secrete (P > or = 0.05) detectable quantities of PGF2alpha or PGE while day-90 ovine CL of pregnancy secreted PGE (P < or = 0.05) but not PGF2alpha. Secretion of progesterone and PGE in vitro by day-90 CL of pregnancy was decreased (P < or = 0.05) by indomethacin. The addition of PGE2, but not LH, in combination with indomethacin overcame the decreases in progesterone by indomethacin (P < or = 0.05). In experiment 2, secretion of progesterone in vitro by day-11 CL of the estrous cycle was increased at 4-h (P < or = 0.05) in the absence of treatments. Both day-11 CL of the estrous cycle and day-90 CL of pregnancy secreted detectable quantities of PGE and PGF2alpha (P < or = 0.05). In experiment 1, PGF2alpha secretion by day-8 CL of the estrous cycle and day-90 ovine CL of pregnancy was undetectable, but was detectable in experiment 2 by day-90 CL. Day 90 ovine CL of pregnancy also secreted more PGE than day-11 CL of the estrous cycle (P < or = 0.05), whereas day-8 CL of the estrous cycle did not secrete detectable quantities of PGE (P > or = 0.05). Trilostane, mifepristone, or MER-25 did not affect secretion of progesterone, PGE, or PGF2alpha by day- 11 CL of the estrous cycle or day-90 CL of pregnancy (P > or = 0.05). It is concluded that PGE2, not LH, is the luteotropin at day-90 of pregnancy in sheep and that progesterone does not modify the response to luteotropins. Thus, we found no evidence for an autocrine or paracrine role for progesterone or estradiol-17 36 on luteal secretion of progesterone, PGE or PGF2alpha.  相似文献   

6.
Two experiments were conducted to determine the luteotropin of pregnancy in sheep and to examine autocrine and paracrine roles of progesterone and estradiol-17 beta on progesterone secretion by the ovine corpus luteum (CL). Secretion of progesterone per unit mass by day-8 or day-11 CL of the estrous cycle was similar to day-90 CL of pregnancy (P >/= 0.05). In experiment 1, secretion of progesterone in vitro by slices of CL from ewes on day-8 of the estrous cycle was increased (P /= 0.05) while PGE(2) increased (P /= 0.05) detectable quantities of PGF(2alpha) or PGE while day-90 ovine CL of pregnancy secreted PGE (P /= 0.05). Trilostane, mifepristone, or MER-25 did not affect secretion of progesterone, PGE, or PGF(2alpha) by day-11 CL of the estrous cycle or day-90 CL of pregnancy (P >/= 0.05). It is concluded that PGE(2), not LH, is the luteotropin at day-90 of pregnancy in sheep and that progesterone does not modify the response to luteotropins. Thus, we found no evidence for an autocrine or paracrine role for progesterone or estradiol-17 36 on luteal secretion of progesterone, PGE or PGF(2alpha).  相似文献   

7.
D J Bolt 《Prostaglandins》1979,18(3):387-396
The ability of human chorionic gonadotropin (HCG) to reduce the luteolytic effect of prostaglandin (PGF2 alpha) was demonstrated in cycling ewes. As expected, treatment with 10 mg of PGF2 alpha alone on Day 10 of the estrous cycle exerted a potent negative effect on the function and structure of corpus luteum (CL) as indicated by reduced plasma progesterone, CL progesterone, and CL weight. However, the identical PGF2 alpha treatment failed to significantly reduce either luteal function or luteal weight when administered to ewes that were also treated with HCG on Days 9 and 10 of the estrous cycle. Treatment with HCG alone had a positive effect on CL as indicated by increased plasma progesterone, CL progesterone, and CL weight. Treatment with HCG did not render the CL totally insensitive to the negative effects of PGF2 alpha because plasma progesterone was reduced when the dose of PGF2 alpha was doubled. Whether CL regressed or continued to function after treatment with both HCG and PGF2 alpha appeared to depend upon a balance between the positive and negative effects of the two hormones.  相似文献   

8.
Prostaglandin (PG) F2alpha that is released from the uterus is essential for spontaneous luteolysis in cattle. Although PGF2alpha and its analogues are extensively used to synchronize the estrous cycle by inducing luteolysis, corpora lutea (CL) at the early stage of the estrous cycle are resistant to the luteolytic effect of PGF2alpha. We examined the sensitivity of bovine CL to PGF2alpha treatment in vitro and determined whether the changes in the response of CL to PGF2alpha are dependent on progesterone (P4), oxytocin (OT), and PGs produced locally. Bovine luteal cells from early (Days 4-5 of the estrous cycle) and mid-cycle CL (Days 8-12 of the estrous cycle) were preexposed for 12 h to a P4 antagonist (onapristone: OP; 10(-4) M), an OT antagonist (atosiban: AT; 10(-6) M), or indomethacin (INDO; 10(-4) M) before stimulation with PGF2alpha. Although OP reduced P4 secretion (p < 0.001) only in early CL, it reduced OT secretion in the cells of both phases examined (p < 0.001). OP also reduced PGF2alpha and PGE2 secretion (p < 0.01) from early CL. However, it stimulated PGF2alpha secretion in mid-cycle luteal cells (p < 0.001). AT reduced P4 secretion in early and mid-cycle CL (p < 0.05). Moreover, PGF2alpha secretion was inhibited (p < 0.05) by AT in early CL. The OT secretion and the intracellular level of free Ca2+ ([Ca2+]i) were measured as indicators of CL sensitivity to PGF2alpha. PGF2alpha had no influence on OT secretion, although [Ca2+]i increased (p < 0.05) in the early CL. However, the effect of PGF2alpha was augmented (p < 0.01) in cells after pretreatment with OP, AT, and INDO in comparison with the controls. In mid-cycle luteal cells, PGF2alpha induced 2-fold increases in OT secretion and [Ca2+]i. However, in contrast to results in early CL, these increases were magnified only by preexposure of the cells to AT (p < 0.05). These results indicate that luteal P4, OT, and PGs are components of an autocrine/paracrine positive feedback cascade in bovine early to mid-cycle CL and may be responsible for the resistance of the early bovine CL to the exogenous PGF2alpha action.  相似文献   

9.
The effect of an in vivo prostaglandin F2 alpha (PGF2 alpha) challenge in pregnant and cyclic sows was compared to determine whether PGF2 alpha-induced release of relaxin (RLX) from the corpus luteum (CL) in late pregnancy is also effective during the cycle. Ovarian venous RLX and progesterone were monitored by radioimmunoassay and RLX localized in the CL by immunohistochemistry. In Day 108 pregnant sows, infusion of PGF2 alpha (100 micrograms) into the ovarian artery resulted in an immediate and sustained rise in ovarian venous RLX with an initial decline in progesterone levels by 30 min which then returned to pretreatment levels. In Day 13 or 15 cyclic sows with functional corpora lutea (i.e., elevated progesterone), RLX was undetectable in ovarian venous blood after 100 micrograms of PGF2 alpha. Administration of PGF2 alpha via either the jugular vein or intramuscular route was also ineffective in releasing RLX from the CL of the cycle. The intensity of RLX immunostaining of the CL was similar in saline and PGF2 alpha-treated sows. These studies indicate that the control of RLX release from the sow CL differs in the estrous cycle and pregnancy.  相似文献   

10.
Studies were conducted to determine the effect of iodine infusion on the luteal function of goats, as evident by blood progesterone concentration, and on plasma PGF2a levels. Ten cycling mixed breed goats were synchronized for estrus by PGF2a (5 mg) and given a single intrauterine iodine infusion on day 5 and on day 15 of the estrous cycle. Iodine infusion on day 5 (group II) resulted in shorter estrous length (8.2 days) and a 7-fold increase in plasma PGF2a concentration as compared to control animals (group I) given distilled water infusion. Similar infusion on day 15 (group III), on the other hand, failed to alter the estrous cycle length but induced a moderate increase in PGF2a concentration which lasted only for a brief period. The progesterone levels declined concomitantly as PGF2a levels rose after iodine infusion in group II animals but failed to decline until after 24 hours in group III animals. The studies indicate that the endometrium reacts to the chemical stimuli and releases PGF2a which, in turn, alters the luteal function.  相似文献   

11.
In female swine, PGF2α is an important regulator of corpora luteal (CL) function, uterine contractility, ovulation, and embryo attachment. High affinity PGF2α receptors are present in the CL at all stages of the estrous cycle and they are functional. Therefore, a lack of luteolytic capacity of PGF2α is related to other factors that have not been well identified. In female pigs, a single exogenous PGF2α injection produces a short lasting decrease in plasma progesterone levels but does not induce luteolysis before day 12 of the estrous cycle. However, multiple injections of PGF2α can induce luteolysis before day 12 of the estrous cycle and may be utilized in the development of protocols for ovulation synchronization and timed AI. Most commonly, PGF2α is used for the induction of farrowing and so facilitation of cross fostering. Further, since PGF2α is a smooth muscle stimulant, treatment to stimulate myometrial contractions and uterine evacuation of residual products from parturition or infectious debris, may have beneficial effects on post-weaning fertility. Administration of PGF2α at the moment of insemination has been shown to improve reproductive performances when fertility is otherwise low, such as in sow under summer heat stress.  相似文献   

12.
To evaluate by means of blood progesterone levels and estrous expression the effect of the injection of 25 mg of PGF2alpha in Zebu cows, 17 Indobrazil cows with a palpable corpus luteum (CL) were injected with PGF2alpha and blood samples taken every 6 h in Experiment I. In Experiment II, 15 cows from the previous experiment at the same stage of diestrus were injected with PGF2alpha and bled every 4 h for 5 d. Progesterone levels had declined by 50% 6 h after injection in all cows and dropped to below 1 ng/ml by 30 h. Estrus was observed in 47% of the animals in Experiment I and 60% in Experiment II. Ovulation was detected accurately in 29% of the animals at 33.6 +/- 11.6 h after the onset of estrus. The correlation between finding a CL by rectal palpation and levels of progesterone higher than 1 ng/ml of blood was 86 and 93% in Experiments I and II, respectively. These studies indicate that the injection of 25 mg of PGF2alpha is sufficient to produce luteolysis in Zebu cattle, although estrous expression is poor.  相似文献   

13.
Estrous response and pregnancy rates are decreased for cows given Syncro-Mate-B (SMB) during metestrus (Day 1 to 5 of an estrous cycle). Data indicate these decreases are due, in part, to retention of a functional corpus luteum (CL). Our objective was to determine whether PGF2alpha administered in conjunction with SMB would improve estrous response and pregnancy rates in metestrous cows with no detrimental effects to cows in other stages of the estrous cycle. Three hundred seventy-three suckled beef cows were observed for estrus for 21 d before SMB administration to determine stage of an estrous cycle. Blood samples were collected 14 and 7 d before treatment and at SMB administration. Serum was assayed for concentration of progesterone to verify stage of estrous cycle or noncyclicity. All cows received the standard SMB regime and were allotted by age and stage of cycle to one of two groups. Cows denoted SMB + L received 25 mg of PGF2alpha 8 d after implantation, whereas cows denoted SMB served as controls. On Day 10, SMB implants were removed and females were observed for subsequent estrus. At this time, calves were removed from their dams for 48 h. Artificial insemination was performed 12 hr after observation of a standing estrus. Timed insemination was performed at 48 hr after implant removal for cows not inseminated at 24 or 36 hr after implant removal. Interval to synchronized estrus (within 5 d of implant removal) was lengthened for metestrous cows compared to cows in other stages of the cycle irrespective of treatment (P < 0.001). Cows receiving PGF2alpha had a greater pregnancy rate at 5 d compared to controls (P = .0672). Interval to estrus, estrous response, and pregnancy rate to A1 at d 28 or end of breeding season were not affected by administration of PGF2alpha in conjunction with SMB when compared to the standard SMB protocol.  相似文献   

14.
Change in morphology of the corpus luteum (CL) and patterns of progesterone and estradiol secretion after treatment with melengestrol acetate (MGA) were monitored in postpartum beef cows. Twenty Angus cows were randomly assigned to MGA or MGA + prostaglandin F(2alpha) (PGF) treatments. All cows were fed 0.5 mg of MGA per cow per day for 14 d. The MGA-treated cows (n = 10) were allowed to return to estrus spontaneously at the second estrus after withdrawal of MGA from the feed. The MGA + PGF-treated cows (n = 10) received an injection containing 25 mg of PGF(2alpha) 17 d after the last feeding of MGA. Cycle 1 was defined as the first luteal phase after MGA feeding and Cycle 2 represented the subsequent cycle or luteal phase after PGF. Blood sampling and transrectal ultrasonography of the ovaries was done daily through the completion of 2 estrous cycles upon removal of MGA from the feed. Blood samples were analyzed for plasma progesterone and estradiol concentrations. Area of CL and fluid-filled cavities within each CL were determined by ultrasonography. Concentrations of progesterone and area of CL were similar between cycles and treatments. Estradiol concentrations were higher (P < 0.05) in Cycle 2 than in Cycle 1. Fluid-filled cavities were larger (P < 0.001) in Cycle 1 than in Cycle 2 for both mid-luteal (Days 5 to 9) and late-luteal (Days 10 to 14) phases. Multiple CL (2 or more during 1 cycle) were observed in 5 cows. Progesterone concentrations and total area of luteal tissue did not change with respect to treatment or cycle, but CL morphology was altered in the first cycle after MGA treatment. Of the 19 cows that ovulated after withdrawal of MGA, 3 experienced a short luteal phase. These data characterize changes that occur among cows that are fed melengestrol acetate during the postpartum period and enhance observations from prior studies regarding MGA use.  相似文献   

15.
J L Pate 《Prostaglandins》1988,36(3):303-315
The objective of the present study was to investigate the influence of progesterone on prostaglandin synthesis by the corpus luteum (CL). Corpora lutea were obtained from dairy cows on days 4, 6, 10, and 18 of the estrous cycle, dissociated, and placed in serum-free culture. The addition of luteinizing hormone (LH) resulted in a slight, but non-significant (p greater than 0.05), increase in levels of 6-keto-PGF1 alpha, and had no effect on PGF2 alpha. Progesterone treatment caused a significant, dose-dependent decrease in both PGF2 alpha and 6-keto-PGF1 alpha in 6-day and 10-day corpora lutea, but not in 4-day or 18-day corpora lutea. In the 6- and 10-day corpora lutea, progesterone treatment resulted in a greater inhibition of PGF2 alpha than 6-keto-PGF1 alpha production. Therefore, progesterone treatment brought about an increase in the 6-keto-PGF1 alpha to PGF2 alpha ratio in these cells (12.9 vs. 21.3). It is concluded from these studies that progesterone can modulate luteal prostacyclin and PGF2 alpha synthesis, suggesting an interaction of progesterone and prostaglandin production within the corpus luteum.  相似文献   

16.
The paper presents a new theory on the physiological mechanism of initiation of luteolysis, function of endometrial cells and protection of corpus luteum. This theory is based on previous studies published by the authors and their coworkers on the retrograde transfer of PGF2alpha in the uterine broad ligament vasculature during the estrous cycle, early pregnancy and pseudopregnancy. The studies were focused on cyclic changes in uterine blood supply and the apoptosis of endometrial cells. Moreover, the results of many other authors are cited. The statements of the theory are as follows: 1. The initiation of luteolysis is a consequence of regressive changes in the endometrium which are due to the reduction of the uterine blood supply below the level necessary to provide for the extended needs of active endometrium. 2. During the luteal phase, both a considerable increase in uterine weight and a decrease in blood flow through the uterine artery, resulting from increasing progesterone concentration, reduce the uterine blood supply. In comparison to the volume of blood flowing to the porcine uterus during the estrus period, only 30-40% of the blood volume is determined on day 12 of the estrous cycle. The uterine weight at that time is 40-60% larger than that in the early luteal phase. Thus, due to the considerable constriction of uterine blood vessels, there is a discrepancy between the requirement for oxygen and other factors transported by blood and the possibility of supplying the uterus with these substances. After reaching the threshold of uterine blood supply level, which in pigs takes place around day 12 of the estrous cycle, regressive changes and PGF2alpha release from endometrial cells occurs. 3. Estrogens and progesterone are the major factors affecting blood flow in vessels supplying the uterus. The factors that modulate, complement and support vasodilation and vasoconstriction are: PGE2, LH, oxytocin, cytokines, neurotransmitters and other local blood flow regulators. In some animal species these modulators, especially those of embryonic origin, may be crucial for the status of uterine vasculature. 4. During early pregnancy, the action of embryo signals (estrogens, cytokines), endometrial PGE2 as well as LH results in the relaxation of the uterine artery (pigs: day 12) and, consequently, in an increase in uterine blood supply. This reaction of the maternal recognition of pregnancy effectively prevents regressive changes in well developed endometrial cells to occur. 5. Local uptake and retrograde transfer of PGF2alpha into the uterine lumen during early pregnancy protects corpus luteum from PGF2alpha luteolytic action. 6. During the period of regressive changes resulting from the limited uterine blood supply, endometrial cells restrain PGF2alpha synthesis. They are, however, still capable of releasing prostaglandin when uterine blood supply is improved after the embryo appears in the uterus. This potential capability for PGF2alpha synthesis was demonstrated in in vitro studies when endometrial cells collected during its regressive phase were incubated in medium and stimulated by LH and oxytocin. 7. Prostaglandin F2alpha pulses in venous blood flowing from the uterus do not confirm pulsatile secretion of PGF2alpha. The pulses may result from the pulsatile excretion of PGF2alpha with venous blood according to the rhythmic uterine contractions associated with oxytocin secretion. 8. The results supporting this concept are presented and discussed in due course. The critique of Bazer and Thatcher's theory on exocrine versus endocrine secretion of prostaglandin F2alpha during the estrous cycle is also depicted.  相似文献   

17.
Ginther OJ 《Theriogenology》2012,77(6):1042-1049
Recent findings on the luteolytic process in mares are reviewed and differences from other farm species are noted. It is well known that the luteolysin, PGF2α (PGF), is secreted from the endometrium in the absence of pregnancy in farm animal species. But PGF is a potent chemical and safeguards have evolved so that only the corpus luteum (CL) is affected. The safeguards include a short PGF half-life and secretion in two or three pulses per day. In mares, endogenous PGF travels from the uterus to the CL through the systemic circulation, but the luteal-cell membranes are highly efficient in capturing the PGF molecules. In ruminants, luteal affinity is lower, but an efficient pathway has evolved for local delivery of PGF from a uterine horn to the adjacent ovary. The beginning of transition from luteal control is manifested within 1 h in mares and heifers, as indicated by a dynamic change in systemic progesterone concentrations. In mares, the transition into luteolysis begins during a relatively small transitional pulse of PGFM (a PGF metabolite) and oxytocin increases with the PGFM pulse. During luteolysis, estradiol increases in stepwise fashion within the hours of each PGFM pulse, with a plateau between pulses. Progesterone decreases linearly within the hours of a PGFM pulse and continuing during the interval between pulses, whereas luteal blood flow decreases during the declining portion of the pulse. In contrast, in heifers, progesterone decreases and increases within the hours of a PGFM pulse, and luteal blood flow increases and decreases concomitantly with the pulse.  相似文献   

18.
This study examines differences in intracellular responses to cloprostenol, a prostaglandin (PG)F(2alpha) analog, in porcine corpora lutea (CL) before (Day 9 of estrous cycle) and after (Day 17 of pseudopregnancy) acquisition of luteolytic capacity. Pigs on Day 9 or Day 17 were treated with saline or 500 microgram cloprostenol, and CL were collected 10 h (experiment I) or 0.5 h (experiment III) after treatment. Some CL were cut into small pieces and cultured to measure progesterone and PGF(2alpha) secretion. In experiment I, progesterone remained high and PGF(2alpha) low in luteal incubations from either Day 9 or Day 17 saline-treated pigs. Cloprostenol increased PGF(2alpha) production 465% and decreased progesterone production 87% only from Day 17 luteal tissue. Cloprostenol induced prostaglandin G/H synthase (PGHS)-2 mRNA (0.5 h) and protein (10 h) in both groups. In cell culture, cloprostenol or phorbol 12, 13-didecanoate (PDD) (protein kinase C activator), induced PGHS-2 mRNA in luteal cells from both groups. However, acute cloprostenol treatment (10 min) decreased progesterone production and increased PGF(2alpha) production only from Day 17 luteal cells. Thus, PGF(2alpha) production is induced by cloprostenol in porcine CL with luteolytic capacity (Day 17) but not in CL without luteolytic capacity (Day 9). However, this change in PGF(2alpha) production is not explained by a difference in induction of PGHS-2 mRNA or protein.  相似文献   

19.
This study aimed to confirm that the luteolysis in normal-cycling dairy heifers seen during short estrous cycles induced with cloprostenol (Clp) and GnRH administered 24h apart is caused by a premature release of prostaglandin F(2alpha) (PGF(2alpha)). A further aim was to study the PGF(2alpha) release pattern more closely to determine whether it resembles the spontaneous release occurring during normal regression of the corpus luteum (CL) or whether PGF(2alpha) is continuously secreted after the induced ovulations, leading to short estrous cycles. Twenty-four Ayrshire heifers were allotted to four equally sized groups. After estrus synchronization with 0.5mg of Clp, a new luteolysis was induced with 0.5mg of Clp on Day 6 (groups T-d6 and C-d6) or Day 7 (groups T-d7 and C-d7) after ovulation. Gonadorelin (0.1mg i.m.) was given to groups T-d6 and T-d7 to induce premature ovulation 24h later. Groups C-d6 and C-d7 served as controls. Ovaries were examined daily by transrectal ultrasonography, while blood samples (for progesterone and 15-ketodihydro-PGF(2alpha) analyses) were obtained via a jugular catheter every 3h, starting from the second Clp treatment and continuing for 9 days postovulation. Unresponsiveness to Clp or anovulation resulted in 4 C-d6 heifers being excluded. Four heifers in group T-d6 and three in group T-d7 had a short estrous cycle of 8-12 days, while all others had a cycle of normal length. Significant elevations in 15-ketodihydro-PGF(2alpha) concentrations with recurrent high peaks coincided with a decrease in progesterone concentration and were detected in all heifers that showed a short estrous cycle, but not in any heifers with normal estrous cycles in groups T and C. In conclusion, a premature release of PGF(2alpha), which closely resembles its release during spontaneous luteolysis, causes luteal regression in these short cycles.  相似文献   

20.
The relationships between the effects of single or repeated subcutaneous injections of 25 mg progesterone on luteal function during the estrous cycle in goats as well as the secretion of 20alpha-dihydroprogesterone or 15-keto-13, 14-dihydro-prostaglandin F(2alpha) (PGFM), the major metabolite of PGF(2alpha), were investigated. A single dose of progesterone given on Day 4, 10, or 18 of the estrous cycle increased the concentration of 20alpha-dihydroprogesterone and did not affect the length of the cycle. Each dose of progesterone on Days 2 to 5 increased the concentration of 20alpha-dihydroprogesterone (with a later decrease each day to a nadir which then increased daily) and shortened the cycle. The 20alpha-dihydroprogesterone concentration remained high; when it decreased, the concentration of the luteolytic agent PGFM began to increase. Daily doses of 25 mg 20alpha-dihydroprogesterone given on Days 2 to 5 had no effect on the length of the cycle. These results indicate that during the estrous cycle in goats, progesterone is catabolized to the biologically inactive steroid 20alpha-dihydroprogesterone, but much of the progesterone that is given early in the luteal phase of the estrous cycle causes premature luteolysis by stimulating an increase in the release of PGF(2alpha) . The secretion of 20alpha-dihydroprogesterone may help to regulate progesterone production during the estrous cycle in goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号