首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The kinetics of inhibition of calf-intestinal alkaline phosphatase by inorganic phosphate, fluorophosphate, inorganic pyrophosphate, beta-glycerophosphate and adenosine 5'-triphosphate in the range pH8-10 were investigated. The reference substrate was 4-methylumbelliferyl phosphate. 2. The inhibitions were ;mixed' in that both K(m) and V were affected, but the competitive element was by far the stronger. 3. In each case the pH profile for the competitive K(i) was similar to the pH profile for K(m). Since the K(m) and K(i) values both change 100-fold over the pH range 8-10, it is concluded that the inhibitors compete with the substrate for the same active site. 4. It was also found that the enzyme preparation hydrolysed fluorophosphate, pyrophosphate and adenosine 5'-triphosphate as readily as it hydrolysed 4-methylumbelliferyl phosphate and beta-glycerophosphate. Each pH-activity curve, however, had a different shape, but with the exception of pyrophosphate the activity approached the same maximum value at high pH. 5. Attempts to separate the phosphomonoesterase and pyrophosphatase activities by column chromatography were not successful, and the results of other experiments listed suggest that the two activities are a property of the same enzyme. 6. The effect of Mg(2+) ions is briefly mentioned: the phosphomonoesterase activity is enhanced whereas the pyrophosphatase and adenosine triphosphatase activities are strongly inhibited in the presence of excess of Mg(2+) ions.  相似文献   

2.
Alkaline phosphatase (from chicken intestinal sources) was shown to contain a considerable amount of polyanionic phosphorus which was released by basic digestion. The polyanionic phosphorus of alkaline phosphatase is not associated with protein or polyalcohols and does not exhibit a visible or ultraviolet absorption spectrum. Alkaline phosphatase and abiogenic inorganic polyphosphate were found to incorporate 32P-orthophosphate under similar experimental conditions. It has been previously reported that this enzyme will incorporate 32P-orthophosphate into its protein phosphoserine without the apparent concomitant utilization of an energy source. This reported phosphorylation was immediately reversible upon dilution of the phosphorylated enzyme with unlabelled orthophosphate, which indicates that the initial phosphorylation was an exchange reaction. These observations suggest that this polyanionic phosphorus from alkaline phosphatase may be inorganic polyphosphate.  相似文献   

3.
The structure of alkaline phosphatase from Escherichia coli has been determined to 2.8 A resolution. The multiple isomorphous replacement electron density map of the dimer at 3.4 A was substantially improved by molecular symmetry averaging and solvent flattening. From these maps, polypeptide chains of the dimer were built using the published amino acid sequence. Stereochemically restrained least-squares refinement of this model against native data, starting with 3.4 A data and extending in steps to 2.8 A resolution, proceeded to a final overall crystallographic R factor of 0.256. Alkaline phosphatase-phosphomonoester hydrolase (EC 3.1.3.1) is a metalloenzyme that forms an isologous dimer with two reactive centers 32 A apart. The topology of the polypeptide fold of the subunit is of the alpha/beta class of proteins. Despite the similarities in the overall alpha/beta fold with other proteins, alkaline phosphatase does not have a characteristic binding cleft formed at the carboxyl end of the parallel sheet, but rather an active pocket that contains a cluster of three functional metal sites located off the plane of the central ten-stranded sheet. This active pocket is located near the carboxyl ends of four strands and the amino end of the antiparallel strand, between the plane of the sheet and two helices on the same side. Alkaline phosphatase is a non-specific phosphomonoesterase that hydrolyzes small phosphomonoesters as well as the phosphate termini of DNA. The accessibility calculations based on the refined co-ordinates of the enzyme show that the active pocket barely accommodates inorganic phosphate. Thus, the alcoholic or phenolic portion of the substrate would have to be exposed on the surface of the enzyme. Two metal sites, M1 and M2, 3.9 A apart, are occupied by zinc. The third site, M3, 5 A from site M2 and 7 A from site M1, is occupied by magnesium or, in the absence of magnesium, by zinc. As with other zinc-containing enzymes, histidine residues are ligands to zinc site M1 (three) and to zinc site M2 (one). Ligand assignment and metal preference indicate that the crystallographically found metal sites M1, M2 and M3 correspond to the spectroscopically deduced metal sites A, B and C, respectively. Arsenate, a product analog and enzyme inhibitor, binds between Ser102 and zinc sites M1 and M2. The position of the guanidinium group of Arg 166 is within hydrogen-bonding distance from the arsenate site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Chloride binding to alkaline phosphatase. 113Cd and 35Cl NMR   总被引:1,自引:0,他引:1  
Chloride binding to alkaline phosphatase from Escherichia coli has been monitored by 35Cl NMR for the native zinc enzyme and by 113Cd NMR for two Cd(II)-substituted species, phosphorylated Cd(II)6 alkaline phosphatase and unphosphorylated Cd(II)2 alkaline phosphatase. Of the three metal binding sites per enzyme monomer, A, B, and C, only the NMR signal of 113Cd(II) at the A sites shows sensitivity to the presence of Cl-, suggesting that Cl- coordination occurs at the A site metal ion. From the differences in the chemical shift changes produced in the A site 113Cd resonance for the covalent (E-P) form of the enzyme versus the noncovalent (E . P) form of the enzyme, it is concluded that the A site metal ion can assume a five-coordinate form. The E-P form of the enzyme has three histidyl nitrogens as ligands from the protein to the A site metal ion plus either two water molecules or two Cl- ions as additional monodentate ligands. In the E . P form, there is a phosphate oxygen as a monodentate ligand and either a water molecule or a Cl- ion as the additional monodentate ligand. The shifts of the 113Cd NMR signals of the unphosphorylated Cd(II)2 enzyme induced by Cl- are very similar to those induced in the E-P derivative of the same enzyme, supporting the conclusion that the phosphoseryl residue is not directly coordinated to any of the metal ions. Specific broadening of the 35Cl resonance from bulk Cl- is induced by Zn(II)4 alkaline phosphatase, while Zn(II)2 alkaline phosphatase is even more effective, suggesting an influence by occupancy of the B site on the interaction of monodentate ligands at the A site. A reduction in this quadrupolar broadening is observed upon phosphate binding at pH values where E . P is formed, but not at pH values where E-P is the major species, confirming a specific interaction of Cl- at the A site, the site to which phosphate is bound in E . P, but not in E-P. For the zinc enzyme, a significant decrease in phosphate binding affinity can be shown to occur at pH 8 where one monomer has a higher affinity than the other.  相似文献   

5.
Kinetic parameters for the hydrolysis of a number of physiologically important phosphoesters by purified human liver alkaline phosphatase have been determined. The enzyme was studied at pH values of 7.0 to 10.0. The affinity of the enzyme for the compounds was determined by competition experiments and by their direct employment as substrates. Phosphodiesters and phosphonates were not hydrolysed but the latter were inhibitors. Calcium and magnesium ions inhibited the hydrolysis of ATP and PP1 and evidence is presented to show that the metal complexes of these substrates are not hydrolysed by alkaline phosphatase. A calcium-stimulated ATPase activity could not be demonstrated for the purified enzyme or the enzyme in the presence of a calcium-dependent regulator protein. Nevertheless, the influence of magnesium and calcium ions on the ATPase activity of alkaline phosphatase means that precautions must be taken when assaying for Ca2+-ATPase in the presence of alkaline phosphatase. The low substrate Km values and the hydrolysis which occurs at pH 7.4 mean that the enzyme could have a significant phosphohydrolytic role. However, liver cell phosphate concentrations, if accessible to the enzyme, are sufficient to strongly inhibit this activity.  相似文献   

6.
Kidney alkaline phosphatase is an enzyme which requires two types of metals for maximal activity: zinc, which is essential, and magnesium, which is stimulatory. The main features of the Mg2+ stimulation have been analyzed. The stimulation is pH-dependent and is observed mainly between pH 7.5 and 10.5. Mg2+ binding to native alkaline phosphatase is characterized by a dissociation constant of 50 muM at pH 8.5,25 degrees. Binding of Zn2+ is an athermic process. Both the rate constants of association, ka, and of dissociation, kd, have low values. Typical values are 7 M(-1) at pH 8.0, 25 degrees, for ka and 4.10(-4) S(-1) at pH 8.0, 25 degrees, for kd. The on and off processes have high activation energies of 29 kcal mol (-1). Mg2+ can be replaced at its specific site by Mn2+, Co2+, Ni2+, and Zn2+. Zinc binding to the Mg2+ site inhibits the native alkaline phosphatase. Mn2+, Co2+, and Ni2+ also bind to the Mg2+ site with a stimulatory effect which is nearly identic-al with that of Mg2+, Mn2+ is the stimulatory cation which binds most tightly to the Mg2+ site; the dissociation constant of the Mn2+ kidney phosphatase complex is 2 muM at pH 8.5. The stoichiometry of Mn2+ binding has been found to be 1 eq of Mn2+ per mol of dimeric kidney phosphatase. The native enzyme displays absolute half-site reactivity for Mn2+ binding. Mg2+ binding site and the substrate binding sites are distinct sites. The Mg2+ stimulation corresponds to an allosteric effect. Mg2+ binding to its specific sites does not affect substrate recognition, it selectively affects Vmax values. Quenching of the phosphoenzyme formed under steady state conditions with [32P]AMP as a substrate as well as stopped flow analysis of the catalyzed hydrolysis of 2,4-dinitrophenyl phosphate or p-nitrophenyl phosphate have shown that the two active sites of the native and of the Mg2+-stimulated enzyme are not equivalent. Stopped flow analysis indicated that one of the two active sites was phosphorylated very rapidly whereas the other one was phosphorylated much more slowly at pH 4.2. Half of the sites were shown to be reactive at pH 8.0. Quenching experiments have shown that only one of the two sites is phosphorylated at any instant; this result was confirmed by the stopped flow observation of a burst of only 1 mol of nitrophenol per mol of dimeric phosphatase in the pre-steady state hydrolysis of p-nitrophenyl phosphate. The half-of-the-sites reactivity observed for the native and for the Mg2+-stimulated enzyme indicates that the same type of complex, the monophosphorylated complex, accumulates under steady state conditions with both types of enzymes. Mg2+ binding to the native enzyme at pH 8.0 increases considerably the dephosphorylation rate of this monophosphorylated intermediate. A possible mechanism of Mg2+ stimulation is discussed.  相似文献   

7.
Psychrophilic organisms have successfully adapted to various low-temperature environments such as cold ocean waters. Catalysts with increased catalytic efficiencies are produced, generally at the expense of thermal stability due to fewer non-covalent stabilizing interactions. A marine bacterial strain producing a particularly heat-labile alkaline phosphatase was selected from a total of 232 strains isolated from North-Atlantic coastal waters. From partial 16S rRNA sequences the strain was characterized as a Vibrio sp. An alkaline phosphatase was purified 151-fold with 54% yield from the culture medium using a single step affinity chromatography procedure on agarose-linked L-histidyldiazobenzylphosphonic acid. The active enzyme was a 55 +/- 6 kDa monomer. The enzyme had optimal activity at pH 10 and was strikingly heat-labile with a half-life of 6 min at 40 degrees C and 30 min at 32 degrees C. This enzyme from Vibrio sp. had a higher turnover number (k(cat)) and higher apparent Michaelis-Menten factor (K(m)) than the enzyme from Escherichia coli, a clear-indication of cold-adaptation. Inorganic phosphate was a competitive inhibitor with a relatively high K(i) value of 1.7 mM. Low affinity for phosphate may contribute to higher turnover rates due to more facile release of product.  相似文献   

8.
Inorganic pyrophosphate is a potent inhibitor of bone mineralization by preventing the seeding of calcium-phosphate complexes. Plasma cell membrane glycoprotein-1 and tissue nonspecific alkaline phosphatase were reported to be antagonistic regulators of mineralization toward inorganic pyrophosphate formation (by plasma cell membrane glycoprotein-1) and degradation (by tissue nonspecific alkaline phosphatase) under physiological conditions. In addition, they possess broad overlapping enzymatic functions. Therefore, we examined the roles of tissue nonspecific alkaline phosphatase within matrix vesicles isolated from femurs of 17-day-old chick embryos, under conditions where these both antagonistic and overlapping functions could be evidenced. Addition of 25 microM ATP significantly increased duration of mineralization process mediated by matrix vesicles, while supplementation of mineralization medium with levamisole, an alkaline phosphatase inhibitor, reduces the ATP-induced retardation of mineral formation. Phosphodiesterase activity of tissue nonspecific alkaline phosphatase for bis-p-nitrophenyl phosphate was confirmed, the rate of this phosphodiesterase activity is in the same range as that of phosphomonoesterase activity for p-nitrophenyl phosphate under physiological pH. In addition, tissue nonspecific alkaline phosphatase at pH 7.4 can hydrolyze ADPR. On the basis of these observations, it can be concluded that tissue nonspecific alkaline phosphatase, acting as a phosphomonoesterase, could hydrolyze free phosphate esters such as pyrophosphate and ATP, while as phosphodiesterase could contribute, together with plasma cell membrane glycoprotein-1, in the production of pyrophosphate from ATP.  相似文献   

9.
The structural relationships among human alkaline phosphatase isoenzymes from placenta, bone, kidney, liver and intestine were investigated by using three criteria. 1. Immunochemical characterization by using monospecific antisera prepared against either the placental isoenzyme or the liver isoenzyme distinguishes two antigenic groups: bone, kidney and liver isoenzymes cross-react with anti-(liver isoenzyme) serum, and the intestinal and placental isoenzymes cross-react with the anti-(placental isoenzyme) antiserum. 2. High-resolution two-dimensional electrophoresis of the 32P-labelled denatured subunits of each enzyme distinguishes three groups of alkaline phosphatase: (a) the liver, bone and kidney isoenzymes, each with a unique isoelectric point in the native form, can be converted into a single form by treatment with neuraminidase; (b) the placental isoenzyme, whose position also shifts after removal of sialic acid; and (c) the intestinal isoenzyme, which is distinct from all other phosphatases and is unaffected by neuraminidase digestion. 3. Finally, we compare the primary structure of each enzyme by partial proteolytic-peptide 'mapping' in dodecyl sulphate/polyacrylamide gels. These results confirm the primary structural identity of liver and kidney isoenzymes and the non-identity of the placental and intestinal forms. These data provide direct experimental support for the existence of at least three alkaline phosphatase genes.  相似文献   

10.
Alkaline phosphomonoesterase (EC 3.1.3.1) activity from Blastocladiella emersonii, while displaying typically broad substrate specificity for phosphorylated organic compounds, exhibited nearly complete substrate preference for N-acetylglucosamine-6-phosphate over N-acetylglucosamine-1-phosphate. Enzyme in zoospore extracts was purified 43-fold by differential centrifugation followed by gel filtration (Sephadex G-200) and then by ion-exchange chromatography (diethylaminoethyl-cellulose). The partially purified enzyme displayed an apparent molecular weight (Sephadex G-200) of approximately 170,000. The activity of partially purified enzyme exhibited a pH optimum of pH 8.5, did not require a metal divalent cation, but was inhibitable by ethylenediaminetetraacetic acid. During the life cycle of the organism, the specific activity of the phosphatase decreased slightly during germination and early exponential growth but then increased about 4.5-fold during sporulation. B. emersonii alkaline phosphatase does not appear to be a repressible enzyme.  相似文献   

11.
Alkaline phosphatase from Escherichia coli contains three metal binding sites (A, B, and C) located at sites forming a triangle with sides of 4, 5, and 7 A (Wyckoff, H.W., Handschumacher, M., Murthy, K., and Sowadski, J.M. (1983) Adv. Enzymol. 55, 453). When all three sites are occupied by Cd(II) the enzyme has a very low turnover; at least 10(3) slower than the native Zn(II) enzyme. The slow turnover number has made the Cd(II) enzyme useful in NMR studies of the mechanism of alkaline phosphatase. The binding of arsenate to two forms of Cd(II) alkaline phosphatase (Cd(II)2alkaline phosphatase and Cd(II)6alkaline phosphatase) has been studied by 113Cd NMR. Cd(II)2alkaline phosphatase, pH 6.3, binds arsenate at only one monomer of the dimeric enzyme and causes migration of Cd(II) from the A site of one monomer to the B site of the arsenylated monomer. This same migration has previously been observed to accompany metal ion-dependent phosphate binding, but is much more rapid in the case of arsenate. The acceleration of migration induced by arsenate supports the conclusion based on the phosphate data that the substrate anion binds to the A site metal ion of one monomer prior to migration and that only the metal ion at A site is required for phosphorylation (arsenylation) of serine 102. The 113Cd chemical shifts of A and B site metal ions are very sensitive to the form of the bound arsenate, i.e. covalent (E-As) or noncovalent (E X As) complex. Like the analogous phosphate derivatives, the change of chemical shift of A site (to which phosphate is coordinated in the E X P complex) is much greater than that of the B site metal ion, when the arsenate shifts between the two intermediates, suggesting that arsenate is also coordinated to A site in the E X As intermediate. The chemical shifts of A and B site 113Cd(II) ions are considerably different in the arsenate and phosphate derivatives, while the C site 113Cd(II) ions have nearly identical chemical shifts. Thus the substrate appears to interact closely with both A and B sites, while C site appears relatively unimportant in phosphomonoester hydrolysis. The analogous behavior of arsenate and phosphate at the active center as evaluated by 113Cd NMR supports the validity of using the heavier arsenate derivative in x-ray diffraction studies.  相似文献   

12.
Endogenous dephosphorylation of the light-harvesting chlorophyll-protein complex of photosystem II in pea (Pisum sativum, L. cv Progress 9) thylakoids drives the state 2 to state 1 transition; the responsible enzyme is a thylakoid-bound, fluoride-sensitive phosphatase with a pH optimum of 8.0 (Bennett J [1980] Eur J Biochem 104: 85-89). An enzyme with these characteristics was isolated from well-washed thylakoids. Its molecular mass was estimated at 51.5 kD, and this monomer was catalytically active, although the activity was labile. The active site could be labeled with orthophosphate at pH 5.0. High levels of alkaline phosphatase activity were obtained with the assay substrate, 4-methylumbelliferyl phosphate (350 micromoles per minute per milligram purified enzyme). The isolated enzyme functioned as a phosphoprotein phosphatase toward phosphorylated histone III-S and phosphorylated, photosystem II-enriched particles from pea, with typical activities in the range of 200 to 600 picomoles per minute per milligram enzyme. These activities all had a pH optimum of 8.0 and were fluoride sensitive. The enzyme required magnesium ion for maximal activity but was not dependent on this ion. Evidence supporting a putative function for this phosphatase in dephosphorylation of thylakoid proteins came from the inhibition of this process by a polyclonal antibody preparation raised against the partially purified enzyme.  相似文献   

13.
A procedure for the purification of alkaline phosphatase from human polymorphonuclear leukocytes is described, involving enzyme solubilisation with Triton X-100 and chromatography on DEAE-Sepharose CL 6B and Cibacron Red F = B-Sepharose 4B. The final enzyme preparation was 244-fold purified and was shown to be capable of hydrolysis of a wide range of phosphorylated substates.  相似文献   

14.
The active site of bovine intestinal alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) was labeled with [32P]Pi, a radioactive CNBr peptide was isolated and the amino acid sequence was determined. The sequence of the active-site peptide has limited homology (26%) with the active-site sequence of Escherichia coli alkaline phosphatase except for the ten residues immediately flanking the active-site serine (70%). A possible amino acid sequence deduced from the amino acid composition of an active-site tryptic peptide from human placental alkaline phosphatase is very similar to the bovine intestinal active-site sequence. The amino-terminal sequence of bovine intestinal alkaline phosphatase is homologous (69%) with the human placental enzyme but not with the E. coli phosphatase.  相似文献   

15.
The complete amino acid sequence of the precursor and mature forms of human placental alkaline phosphatase have been inferred from analysis of a cDNA. A near full-length PLAP cDNA (2.8 kilobases) was identified upon screening a bacteriophage lambda gt11 placental cDNA library with antibodies against CNBr fragments of the enzyme. The precursor protein (535 amino acids) displays, after the start codon for translation, a hydrophobic signal peptide of 21 amino acids before the amino-terminal sequence of mature placental alkaline phosphatase. The mature protein is 513 amino acids long. The active site serine has been identified at position 92, as well as two putative glycosylation sites at Asn122 and Asn249 and a highly hydrophobic membrane anchoring domain at the carboxyl terminus of the protein. Significant homology exists between placental alkaline phosphatase and Escherichia coli alkaline phosphatase. Placental alkaline phosphatase is the first eukaryotic alkaline phosphatase to be cloned and sequenced.  相似文献   

16.
Plasmodial fragmin, a Physarum polycephalum F-actin severing and capping protein, is phosphorylated by casein kinase II at Ser(266) (De Corte, V., Gettemans, J., De Ville, Y., Waelkens, E., and Vandekerckchove, J. (1996), Biochemistry 35, 5472-5480). In this study, we report the purification and characterization of the corresponding fragmin phosphatases. One of the enzymes was purified to near homogeneity from a cytosolic extract; it dephosphorylates CKII-phosphorylated fragmin, a peptide encompassing the CKII phosphorylation site of fragmin as well as histone 2A, CKII-phosphorylated casein and the CKII model-peptide substrate: R(3)E(3)S(P)E(3). Its activity was highly stimulated by Mn(2+) and Mg(2+), and based on its lack of sensitivity toward phosphatase effectors we could exclude similarities with PP1, PP2A and PP2B phosphatases. All biochemical properties of the phosphatase point to a PP2C-like enzyme. A second phosphatase dephosphorylating fragmin was identified as a Physarum alkaline phosphatase.  相似文献   

17.
1. A heat-stable alkaline phosphatase was purified from Penaeus japonicus, with a final specific activity of 21,280 U/mg of protein. 2. In polyacrylamide-gel electrophoresis under non-denaturing conditions, the purified shrimp alkaline phosphatase was found to have an identical molecular size and surface charge as the human placental enzyme. 3. By using SDS-PAGE, the monomers of shrimp alkaline phosphatase were discovered to have a Mr 55,000 but those of human placental enzyme with a Mr 70,000. Deglycosylation decreases the Mr values of the subunits to 33,000 for shrimp alkaline phosphatase. 4. The purified alkaline phosphatase from shrimp was recovered with both the attachment sites for sialic acids and phosphatidylinositol. 5. The shrimp alkaline phosphatase has an isoelectric point (pI) of 7.6 and the human placental enzyme has a pI of 4.8.  相似文献   

18.
The catalytic subunit of type-1 protein phosphatase (PP1) was phosphorylated by the tyrosine kinase v-abl as follows: (i) cytosolic PP1 was phosphorylated more (0.73 mol/mol) than PP1 obtained from the glycogen particles (0.076 mol/mol), while free catalytic subunit isolated in the active or inactive form from cytosolic PP1 was phosphorylated even less and catalytic subunit complexed with inhibitor-2 was not phosphorylated; (ii) phosphorylation stoichiometry was dependent on the concentration of PP1 and 3 h incubation at 30 degrees C was required for maximal phosphorylation; (iii) phosphorylation was on a tyrosine residue located in the C-terminal region of PP1 which is lost during proteolysis; (iv) phosphorylation did not affect enzyme activity but allowed conversion from the active to the inactive form upon incubation with inhibitor-2 of a PP1 form that in its dephospho-form did not convert.  相似文献   

19.
A repressible alkaline phosphatase has been isolated from the extreme bacterial thermophile, Thermus aquaticus. The enzyme can be derepressed more than 1,000-fold by starving the cells for phosphate. In derepressed cells, nearly 6% of the total protein in a cell-free enzyme preparation is alkaline phosphatase. The enzyme was purified to homogeneity as judged by disc acrylamide electrophoresis and sodium dodecyl sulfate electrophoresis. By sucrose gradient centrifugation it was established that the enzyme has an approximate molecular weight of 143,000 and consists of three subunits, each with a molecular weight of 51,000. Tris buffer stimulates the activity of the enzyme, which has a pH optimum of 9.2. The enzyme has a broad temperature range with an optimum of 75-80 degrees. The enzyme catalyzes the hydrolysis of a wide variety of phosphorylated compounds as do many of the mesophilic alkaline phosphatases. The Michaelis constant(Km) for the enzyme is 8.0 X 10(-4) M. Amino acid analysis of the protein revealed little in the amino acid composition to separate it from other mesophilic enzymes which have been previously studied.  相似文献   

20.
Inactivation of spermidine N1-acetyltransferase with alkaline phosphatase   总被引:2,自引:0,他引:2  
I Matsui  S Otani  M Kamei  S Morisawa 《FEBS letters》1982,150(1):211-213
Spermidine N1-acetyltransferase in an extract from phytohemagglutinin-stimulated bovine lymphocytes was inactivated by preincubation with alkaline phosphatase. Inactivation of the acetylase with the phosphatase was totally inhibited by addition of pyrophosphate. These results suggest that spermidine N1-acetyltransferase, the rate-limiting enzyme in the biodegradative pathway of polyamines, is inactivated by dephosphorylation. A similar effect of alkaline phosphatase on the acetylase in an extract from Escherichia coli was also observed. The acetylase has a rapid rate of turnover and the rapid loss of the enzyme activity may be to some extent regulated by the covalent modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号