首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NADP-linked isocitrate dehydrogenase (EC 1.1.1.42), a key enzyme of the tricarboxylic acid cycle, was purified 672-fold as a nearly homogeneous protein from the copper-tolerant wood-rotting basidiomycete Fomitopsis palustris. The purified enzyme, with a molecular mass of 115 kDa, consisted of two 55-kDa subunits, and had the Km of 12.7, 2.9, and 23.9 microM for isocitrate, NADP, and Mg2+, respectively, at the optimal pH of 9.0. The enzyme had maximum activity in the presence of Mg2+, which also helped to prevent enzyme inactivation during the purification procedures and storage. The enzyme activity was competitively inhibited by 2-oxoglutarate (K(i), 127.0 microM). Although adenine nucleotides and other compounds, including some of the metabolic intermediates of glyoxylate and tricarboxylic acid cycles, had no or only slight inhibition, a mixture of oxaloacetate and glyoxylate potently inhibited the enzyme activity and the inhibition pattern was a mixed type.  相似文献   

2.
The Kdp system from Escherichia coli is a derepressible high-affinity K+-uptake ATPase. Its membrane-bound ATPase activity was approximately 50 mumol g-1 min-1. The Kdp-ATPase complex was purified from everted vesicles by solubilization with the nonionic detergent Aminoxid WS 35 followed by DEAE-Sepharose CL-6B chromatography at pH 7.5 and pH 6.4 and gel filtration on Fractogel TSK HW-65. The overall yield of activity was 6.5% and the purity at least 90%. The isolated KdpABC complex had a high affinity for its substrates K+ (Km app. = 10 microM) and Mg2+-ATP (Km = 80 microM) and a narrow substrate specificity. The ATPase activity was inhibited by vanadate (Ki = 1.5 microM), fluorescein isothiocyanate (Ki = 3.5 microM), N,N'-dicyclohexylcarbodiimide (Ki = 60 microM) and N-ethylmaleimide (Ki = 0.1 mM). The purification protocol was likewise applicable to the isolation of a KdpA mutant ATPase which in contrast to the wild-type enzyme exhibited an increased Km value for K+ of 6 mM and a 10-fold lowered sensitivity for vanadate. Starting from the purified Kdp complex the single subunits were obtained by gel filtration on Bio-Gel P-100 in the presence of SDS. Both the native Kdp-ATPase and the SDS-denatured polypeptides were used to raise polyclonal antibodies. The specificity of the antisera was established by immunoblot analysis. In functional inhibition studies the anti-KdpABC and anti-KdpB sera impaired ATPase activity in the membrane-bound as well as in the purified state of the enzyme. In contrast, the anti-KdpC serum did not inhibit enzyme activity.  相似文献   

3.
Key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were identified in pupas of the butterfly Papilio machaon L. The activities of these enzymes in pupas were 0.056 and 0.108 unit per mg protein, respectively. Isocitrate lyase was purified by a combination of various chromatographic steps including ammonium sulfate fractionation, ion-exchange chromatography on DEAE-Toyopearl, and gel filtration. The specific activity of the purified enzyme was 5.5 units per mg protein, which corresponded to 98-fold purification and 6% yield. The enzyme followed Michaelis-Menten kinetics (Km for isocitrate, 1.4 mM) and was competitively inhibited by succinate (Ki = 1.8 mM) and malate (Ki = 1 mM). The study of physicochemical properties of the enzyme showed that it is a homodimer with a subunit molecular weight of 68 +/- 2 kD and a pH optimum of 7.5 (in Tris-HCl buffer).  相似文献   

4.
NADP-dependent isocitrate dehydrogenase (EC 1.1.1.42) from Mycobacterium phlei ATCC 354 was purified to homogeneity by ammonium sulphate fractionation, followed by DEAE cellulose and Sephadex G-200 chromatography. The pH optimum of the enzyme was 8.5. The Km values for isocitrate and NADP were 74 and 53 microM, respectively. Mn2+ was essential for enzyme activity. The enzyme lost all activity on incubation at 70 degrees C for 15 min; isocitrate and NADP protected against this thermal inactivation. p-Chloromercuribenzoate inhibited the enzyme; pre-incubation of enzyme with isocitrate + Mn2+ prevented this inhibition. The purified enzyme showed concerted inhibition by glyoxylate + oxaloacetate and was inhibited by oxalomalate.  相似文献   

5.
In earlier studies, two distinct molecules, 20 alpha-HSD-I and 20 alpha-HSD-II, responsible for 20 alpha-HSD activity of pig adrenal cytosol were purified to homogeneity and characterized [S. Nakajin et al., J. Steroid Biochem. 33 (1989) 1181-1189]. We report here that the purified 20 alpha-HSD-I, which mainly catalyzes the reduction of 17 alpha-hydroxyprogesterone to 17 alpha,20 alpha-dihydroxy-4-pregnen-3-one, catalyzes 3 alpha-hydroxysteroid oxidoreductase activity for 5 alpha (or 5 beta)-androstanes (C19), 5 alpha (or 5 beta)-pregnanes (C21) in the presence of NADPH as the preferred cofactor. The purified enzyme has a preference for the 5 alpha (or 5 beta)-androstane substrates rather than 5 alpha (or 5 beta)-pregnane substrates, and the 5 beta-isomers rather than 5 alpha-isomers, respectively. Kinetic constants in the reduction for 5 alpha-androstanedione (Km; 3.3 microM, Vmax; 69.7 nmol/min/mg) and 5 beta-androstanedione (Km; 7.7 microM, Vmax; 135.7 nmol/min/mg) were demonstrated for comparison with those for 17 alpha-hydroxyprogesterone (Km; 26.2 microM, Vmax; 1.3 nmol/min/mg) which is a substrate for 20 alpha-HSD activity. Regarding oxidation, the apparent Km and Vmax values for 3 alpha-hydroxy-5 alpha-androstan-17-one were 1.7 microM and 43.2 nmol/min/mg, and 1.2 microM and 32.1 nmol/min/mg for 3 alpha-hydroxy-5 beta-androstan-17-one, respectively. 20 alpha-HSD activity in the reduction of 17 alpha-hydroxyprogesterone catalyzed by the purified enzyme was inhibited competitively by addition of 5 alpha-DHT with a Ki value of 2.0 microM. Furthermore, 17 alpha-hydroxyprogesterone inhibited competitively 3 alpha-HSD activity with a Ki value of 150 microM.  相似文献   

6.
Bovine mammary fatty acid synthetase was inhibited by approximately 50% by 40 microM methylmalonyl-CoA; this inhibition was competitive with respect to malonyl-CoA (apparent Ki = 11 microM). Similarly, 6.25 microM coenzyme A inhibited the synthetase by 35% and this inhibition was again competitive (apparent Ki = 1.7 microM). Apparent Km for malonyl-CoA was 29 microM. The short-chain dicarboxylic acids malonic, methylmalonic and ethylmalonic at high concentrations (160-320 microM) and ATP (5 mM) enhanced the synthetase activity by about 50% respectively; the activating effects of methylmalonic acid and ATP on the synthetase were additive. Methylmalonyl-CoA at 50 microM concentration inhibited the partially purified acetyl-CoA carboxylase uncompetitively by 10% and the propionyl-CoA carboxylase activity of the enzyme preparation competitively (apparent Ki = 21 microM) by 40%. Malonyl-CoA also inhibited the acetyl-CoA carboxylase activity competitively (apparent Ki = 7 microM) by 35% and the propionyl-CoA carboxylating activity of the preparation competitively (apparent Ki = 4 microM) by 82%. The possibility that methylmalonyl-CoA may be a causal factor in the aetiology of the low milk-fat syndrome in high yielding dairy cows is discussed.  相似文献   

7.
The enzyme L-alanine:4,5-dioxovalerate aminotransferase (EC 2.6.1.43), which catalyzes the synthesis of 5-aminolevulinic acid, was purified 161-fold from Chlorella regularis. The enzyme also showed L-alanine:glyoxylate aminotransferase activity (EC 2.6.1.44). The activity of glyoxylate aminotransferase was 56-fold greater than that of 4,5-dioxovalerate aminotransferase. The ratio of the two activities remained nearly constant during purification, and when the enzyme was subjected to a variety of treatments. 4,5-Dioxovalerate aminotransferase activity was competitively inhibited by glyoxylate, with a Ki value of 0.5 mM. Double-reciprocal plots of velocity versus 4,5-dioxovalerate with varying L-alanine concentrations indicate a ping-pong reaction mechanism. The apparent Km values for 4,5-dioxovalerate and L-alanine were 0.12 and 3.5 mM, respectively. The enzyme is an acidic protein having an isoelectric point of 4.8. The molecular weight of the enzyme was estimated to be 126,000, with two identical subunits. These results suggest that, in Chlorella, as in bovine liver mitochondria and Euglena, both 4,5-dioxovalerate and glyoxylate aminotransferase activities are associated with the same protein. From the activity ratio of transamination and catalytic properties, it is concluded that this enzyme does not function primarily as a part of the 5-carbon pathway to 5-aminolevulinic acid synthesis.  相似文献   

8.
D-3-Aminoisobutyrate-pyruvate aminotransferase (EC 2.6.1.40) was purified 1900-fold from rat liver extract. The purified enzyme showed a molecular mass of 180 kDa by gel-permeation HPLC analysis using a TSK gel G3000SW column. Reductive polyacrylamide gel electrophoresis in sodium dodecyl sulfate resulted in identification of a single band of approx. 50 kDa, indicating that the native enzyme is probably a tetrametric protein. The specific activity of the purified enzyme was 1.14 mumol/min per mg protein. D-3-Aminoisobutyrate and beta-alanine were good amino donors. The Km value for L-3-aminoisobutyrate was 100-times larger than that for the D-isomer. The apparent Km values for D-3-aminoisobutyrate and beta-alanine were 35 and 282 microM, respectively. Pyruvate, glyoxylate, oxalacetate, 2-oxo-n-valerate, and 2-oxo-n-butyrate were good amino acceptors. The apparent Km values for pyruvate and glyoxylate were 32 and 44 microM, respectively.  相似文献   

9.
The penultimate step of haem biosynthesis, the oxidation of protoporphyrinogen to protoporphyrin, was examined with purified murine hepatic protoporphyrinogen oxidase (EC 1.3.3.4) in detergent solution. The kinetic parameters for the two-substrate (protoporphyrinogen and oxygen) reaction were determined. The limiting Km for protoporphyrinogen when oxygen is saturating is 6.6 microM, whereas the Km for oxygen with saturating concentrations of protoporphyrinogen is 125 microM. The kcat. for the overall reaction is 447 h-1. The ratio of kcat. to the Km for protoporphyrinogen is approx. 20-fold greater than the kcat./Km,O2 ratio. The ratio of protoporphyrin formed to dioxygen consumed is 1:3. Ubiquinone-6, ubiquinone-10 and dicoumarol stimulate protoporphyrinogen oxidase activity at low concentrations (less than 15 microM), whereas coenzyme Q0 and menadione show no activation at these concentrations. Above 30 microM, all five quinones inhibit the enzyme activity. FAD does not significantly affect the activity of the enzyme. Bilirubin, a product of haem catabolism, is shown to be a competitive inhibitor of the penultimate enzyme of the haem-biosynthetic pathway, protoporphyrinogen oxidase, with a calculated Ki of 25 microM. The terminal enzyme of haem-biosynthetic pathway, namely ferrochelatase, is not inhibited by bilirubin at concentrations over double the Ki value for the oxidase. In contrast with other enzymic systems, the toxicity of bilirubin is not reversed by binding to albumin.  相似文献   

10.
A myo-inositol D-3 hydroxykinase activity in Dictyostelium.   总被引:1,自引:0,他引:1       下载免费PDF全文
A soluble ATP-dependent enzyme which phosphorylates myo-inositol has been characterized in Dictyostelium. The myo-inositol kinase activity was partially purified from amoebae by chromatography on DEAE-Sepharose and phenyl-Sepharose columns. The product of both the partially purified activity and of a crude cytosolic fraction was myo-inositol 3-phosphate. The partially purified preparations of myo-inositol kinase (a) possessed a Km for myo-inositol of 120 microM (in the presence of 5 mM-ATP) and for ATP of 125 microM (in the presence of 1 microM-myo-inositol), (b) did not recognize allo-, epi-, muco-, neo-, scyllo-, 1 D-chiro or 1 L-chiro-inositol as substrates, (c) were competitively inhibited by three naturally occurring analogues of myo-inositol: 1 L-chiro-inositol (Ki 49.5 +/- 0.7 microM: the structural equivalent of myo-inositol, except that the D-3 hydroxy moiety is axial), D-3-deoxy-myo-inositol [Ki 103 +/- 1 microM: (-)-viburnitol], and sequoyitol (Ki 271 +/- 7 microM; unlike 1 L-chiro-inositol and D-3-deoxy-myo-inositol, this was a substrate for the kinase), and finally (d) were apparently non-competitively inhibited by myo-inositol 3-phosphate. The product of myo-inositol kinase could be detected in intact amoebae and was a substrate for the first in a series of inositol polyphosphate kinases present in Dictyostelium which ultimately yield myo-inositol hexakisphosphate. The activity of myo-inositol D-3-hydroxykinase in Dictyostelium lysates showed evidence of developmental regulation.  相似文献   

11.
Coenzyme specificity of mammalian liver D-glycerate dehydrogenase   总被引:1,自引:0,他引:1  
D-Glycerate dehydrogenase (glyoxylate reductase) was partially purified from rat liver by anion- and cation-exchange chromatography. When assayed in the direction of D-glycerate or glycolate formation, the enzyme was inhibited by high (greater than or equal to 0.5 mM), unphysiological concentrations of hydroxypyruvate or glyoxylate much more potently in the presence of NADPH than in the presence of NADH. However, the dehydrogenase displayed a much greater affinity for NADPH (Km less than 1 microM) than for NADH (Km = 48-153 microM). Furthermore, NADP was over 1000-fold more potent than NAD in inhibiting the enzyme competitively with respect to NADH. NADP also inhibited the reaction competitively with respect to NADPH whereas NAD, at concentrations of up to 10 mM had no inhibitory effect. When measured by the formation of hydroxypyruvate from D-glycerate, the enzyme also displayed a much greater affinity for NADP than for NAD. These properties indicate that liver D-glycerate dehydrogenase functions physiologically as an NADPH-specific reductase. In agreement with this conclusion, the addition of hydroxypyruvate or glyoxylate to suspensions of rat hepatocytes stimulated the pentose-phosphate pathway. The coenzyme specificity of D-glycerate dehydrogenase is discussed in relation to the biochemical findings made in D-glyceric aciduria and in primary hyperoxaluria type II (L-glyceric aciduria).  相似文献   

12.
Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50 mumol of methyl viologen per min per mg of protein and 8.2 mumol of coenzyme F420 per min per mg of protein. The apparent Km for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F420, was 10-fold greater (63 microM) than for coenzyme F420 (6 microM). The purified enzyme also reduced flavin mononucleotide (Km = 13 microM) and flavin adenine dinucleotide (Km = 25 microM) with formate, but did not reduce NAD+ or NADP+. The reduction of NADP+ with formate required formate dehydrogenase, coenzyme F420, and coenzyme F420:NADP+ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F420. The optimal reaction rate occurred at 55 degrees C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (Ki = 6 microM), azide (Ki = 39 microM), alpha,alpha-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm.  相似文献   

13.
The insulin-sensitive cAMP phosphodiesterase (phosphodiesterase) in rat adipocytes is a membrane-bound low Km enzyme that can be recovered in a crude microsomal fraction (Fraction P-2). The action of this enzyme to hydrolyze cAMP is known to be inhibited by cGMP; nevertheless, it was found in our present study that under selected conditions, the enzyme can also be stimulated by cGMP as well as some other nucleotide derivatives. The maximum cGMP-dependent stimulation was observed when the enzyme in Fraction P-2 was incubated with 10 microM cGMP for 5-20 min at 37 degrees C in the presence of Mg2+, washed, and then assayed in the absence of added cGMP. The level of this stimulation was close to, but less than, that achieved by insulin in intact cells. The actions of the cGMP- and insulin-stimulated enzymes to hydrolyze labeled cAMP were inhibited in an identical manner by cilostamide (Ki = 0.10 microM), griseolic acid (Ki = 0.19 microM), unlabeled cAMP (Km = 0.20 microM), and cGMP (Ki = 0.16 microM), all added to the assay system. Also, the basal, insulin-stimulated, and cGMP-activated enzymes were identically inhibited by a polyclonal antibody raised against a purified membrane-bound low Km phosphodiesterase from bovine adipose tissue. When the same antibody was used for the Western blot analysis of Fraction P-2, it immunoreacted with a single band of protein (165 kDa). These observations indicate that the insulin-sensitive phosphodiesterase in rat adipocytes can be stimulated with 10 microM cGMP and that this stimulation is detectable only after the nucleotide has been eliminated since the enzyme would be strongly inhibited by the nucleotide if the latter exists in the assay system. It is proposed that the insulin-sensitive phosphodiesterase, which is often referred to as a Type IV enzyme, is functionally similar to the Type II enzymes that are known to be stimulated by a low concentration of cGMP and inhibited by higher concentrations of the same nucleotide.  相似文献   

14.
L-Arginine iminohydrolase (arginine deiminase, ADI) from Tetrahymena thermophila was purified approx. 75-fold by means of gel permeation chromatography. The Km of the purified enzyme for L-arginine was 412 +/- 25 microM and L-ornithine inhibited the reaction competitively with a Ki of 985 +/- 105 microM. D-Ornithine was a weak inhibitor with a Ki of greater than 10mM. The polyamines putrescine and spermidine inhibited ADI incompetitively with a Kii of 2.8mM for putrescine and 4.3mM for spermidine. Since the concentrations required for inhibition were within the range of the normal intracellular polyamine concentrations in Tetrahymena (maximally 14mM putrescine and 4mM spermidine), it is suggested that the polyamine effects on ADI are of regulatory nature. Thus, polyamine biosynthesis in Tetrahymena thermophila is regulated not only on the level of ornithine decarboxylase activity, but also on an earlier step, the supply of ODC with substrates.  相似文献   

15.
Phytase (myo-inositol-1,2,3,4,5,6-hexakisphosphate phosphohydrolase, EC 3.1.3.26), which catalyses the step-wise hydrolysis of phytic acid, was purified from cotyledons of dormant Corylus avellana L. seeds. The enzyme was separated from the major soluble acid phosphatase by successive (NH4)(2)SO(4) precipitation, gel filtration and cation exchange chromatography resulting in a 300-fold purification and yield of 7.5%. The native enzyme positively interacted with Concanavalin A suggesting that it is putatively glycosylated. After size exclusion chromatography and SDS-PAGE it was found to be a monomeric protein with molecular mass 72+/-2.5 kDa. The hazel enzyme exhibited optimum activity for phytic acid hydrolysis at pH 5 and, like other phytases, had broad substrate specificity. It exhibited the lowest Km (162 microM) and highest specificity constant (V(max)/Km) for phytic acid, indicating that this is the preferred in vivo substrate. It required no metal ion as a co-factor, while inorganic phosphate and fluoride competitively inhibited enzymic activity (Ki=407 microM and Ki=205 microM, respectively).  相似文献   

16.
The kinetic and biochemical properties of a purified, monoamine-sulfating form of phenol sulfotransferase (M-PST) from human brain are described. M-PST activity was separated and purified from phenol-sulfating activity by anion-exchange chromatography on DEAE-cellulose and subsequently purified on AffiGel Blue and Sephacryl S-200, routinely giving a final purification of over 20 000-fold, with approximately a 3% yield. The molecular weight of the active species, as estimated by gel filtration chromatography, was 250 000. The purified enzyme was inhibited by NaCl (50% at 325 mM) and showed an optimum for dopamine sulfation at pH 7.0. Of the monoamine substrates examined, 4-methoxytyramine was the most extensively sulfated at 20 microM, while at higher substrate concentrations (200 microM), tyramine was the apparent preferred substrate. Kinetic analysis demonstrated that sulfation by M-PST proceeds via an ordered, bisubstrate reaction mechanism, where 3'-phosphoadenosine 5'-phosphosulfate (PAPS) is the leading substrate. True Km values for dopamine and PAPS were 2.9 and 0.35 microM, respectively. The product inhibitor 3'-phosphoadenosine 5'-phosphate possessed a Ki of 0.07 microM, while the dead-end inhibitor ATP exhibited a Ki of 170 microM.  相似文献   

17.
Bile salt sulfotransferase, the enzyme responsible for the formation of bile salt sulfate esters, was purified extensively from normal human liver. The purification procedure included DEAE-Sephadex chromatography, taurocholate-agarose affinity chromatography, and preparative isoelectrofocusing. The final preparation had a specific activity of 18 nmol min-1 mg protein-1, representing a 760-fold purification from the cytosol fraction with a overall yield of 15%. The human enzyme has a Mr of 67,000 and a pI of 5.2. DEAE-Sephadex chromatography of the cytosol fraction revealed only a single species of activity. The limiting Km for the sulfuryl donor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), is 0.7 microM. The limiting Km for the sulfuryl acceptor, glycolithocholate (GLC), is 2 microM. Reciprocal plots were intersecting. Product inhibition studies established that adenosine 3',5'-diphosphate (PAP) was competitive with PAPS (Ki = 0.2 microM) and noncompetitive with respect to GLC. GLC sulfate was competitive with GLC (Ki = 2.2 microM) and noncompetitive with respect to PAPS. Also, 3-ketolithocholate, a dead-end inhibitor, was competitive with GLC (Ki = 0.6 microM) and noncompetitive with respect to PAPS. Iso-PAP (the 2' isomer of PAP) was competitive with PAPS (Ki = 0.3 microM) and noncompetitive with GLC. The cumulative results of the steady-state kinetics experiments point to a random mechanism for the binding of substrates and release of products. The purified enzyme displays no activity toward estrone, testosterone, or phenol. Among the reactive substrates tested, the Vmax/Km values are in the order GLC greater than 3-beta OH-5-cholenic acid greater than glycochenodeoxycholate greater than glycocholate. p-Chloromercuribenzoate inactivated the enzyme. Either PAPS or GLC protected against inactivation, suggesting the presence of a sulfhydryl group at the active site.  相似文献   

18.
Key enzymes of the glyoxylate cycle (isocitrate lyase and malate synthetase) were found in the liver and kidney of rats suffering from alloxan diabetes. The activities of these enzymes in the liver were 0.080 and 0.0430 U/mg protein, respectively. Isocitrate lyase activity in the kidney was 0.030 U/mg protein, and that of the malate synthetase was 0.018 U/mg protein. Peroxisomal localization of the enzymes was shown. A novel malate dehydrogenase isoform was found in a liver of rats suffering from the alloxan diabetes. The isocitrate lyase was isolated by selective (NH4)2SO4 precipitation and DEAE-Toyopearl chromatography. The resulting enzyme preparation had specific activity 6.1 U/mg protein, corresponding to 76.25-fold purification with 32.6% yield. The isocitrate lyase was found to follow the Michaelis--Menten kinetic scheme (Km for isocitrate, 0.08 mM) and to be competitively inhibited by glucose 1-phosphate (Ki = 1. 25 mM), succinate (Ki = 1.75 mM), and citrate (Ki = 1.0 mM); the pH optimum of the enzyme was 7.5 in Tris-HCl buffer.  相似文献   

19.
Isocitrate lyase (EC 4.1.3.1), a key enzyme in the glyoxylate cycle, was purified 76-fold with 23% yield as an electrophoretically homogeneous protein from the wood-destroying basidiomycete Fomitopsis palustris grown on glucose. The native enzyme has a molecular mass of 186 kDa, consisting of three identical subunits of 60 kDa. The K(m) for DL-isocitrate was found to be 1.6 mM at the optimum pH (7.0). The enzyme required Mg(2+) (K(m) 92 microM) and sulfhydryl compounds for optimal activity. The enzyme activity was strongly inhibited by oxalate and itaconate with a K(i) of 37 and 68 microM, respectively. The inhibition by the glycolysis and tricarboxylic acid cycle intermediates and related compounds suggested that the isocitrate lyase was a regulatory enzyme playing a crucial role in the fungal growth.  相似文献   

20.
Inositol-1,4-bisphosphate 4-phosphohydrolase (inositol-1,4-bisphosphatase) was highly purified from a soluble fraction of rat brain. On SDS-polyacrylamide gel electrophoresis, the purified enzyme gave a single protein band and its molecular weight was estimated to be 42000. The isoelectric point of the enzyme was 4.3. The enzyme specifically hydrolyzed the 4-phosphomonoester linkage of inositol 1,4-bisphosphate. The Km value for inositol 1,4-bisphosphate was 30 microM, and it required Mg2+ for activity. Ca2+ was a competitive inhibitor with a Ki value of 60 microM as regards the Mg2+ binding. Li+, which is known to be a strong inhibitor of inositol 1-phosphatase (EC 3.1.3.25), inhibited the enzyme activity and caused 50% inhibition at a concentration of 1 mM (IC50 = 1 mM). Li+ was an uncompetitive inhibitor of substrate binding with a Ki value of 0.6 mM. These inhibitory parameters of Li+ were quite similar to those for inositol 1-phosphatase (IC50 = 1 mM, Ki = 0.3 mM). Thus, the effect of Li+ on decreasing the free inositol level with a subsequent decrease in agonist-sensitive phosphoinositides, is caused by its inhibition of multiple enzymes involved in conversion of inositol 1,4-bisphosphate to inositol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号