首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the structure and properties of a chromosomal product recovered from a rare recombination event between a t haplotype and a wild-type form of mouse chromosome 17. Our embryological and molecular studies indicate that this chromosome (twLub2) is characterized by both a deletion and duplication of adjacent genetic material. The deletion appears to be responsible for a dominant lethal maternal effect and a recessive embryonic lethality. The duplication provides an explanation for the twLub2 suppression of the dominant T locus phenotype. A reanalysis of previously described results with another chromosome 17 variant called TtOrl indicates a structure for this chromosome that is reciprocal to that observed for twLub2. We have postulated the existence of an inversion over the proximal portion of all complete t haplotypes in order to explain the generation of the partial t haplotypes twLub2 and TtOrl. This proximal inversion and the previously described distal inversion are sufficient to account for all of the recombination properties that are characteristic of complete t haplotypes. The structures determined for twLub2 and TtOrl indicate that rare recombination can occur between nonequivalent genomic sequences within the inverted proximal t region when wild-type and t chromosomes are paired in a linear, nonhomologous configuration.  相似文献   

2.
3.
We demonstrated previously that 75% of infertile men with round, acrosomeless spermatozoa (globozoospermia) had a homozygous 200-Kb deletion removing the totality of DPY19L2. We showed that this deletion occurred by Non-Allelic Homologous Recombination (NAHR) between two homologous 28-Kb Low Copy Repeats (LCRs) located on each side of the gene. The accepted NAHR model predicts that inter-chromatid and inter-chromosome NAHR create a deleted and a duplicated recombined allele, while intra-chromatid events only generate deletions. Therefore more deletions are expected to be produced de novo. Surprisingly, array CGH data show that, in the general population, DPY19L2 duplicated alleles are approximately three times as frequent as deleted alleles. In order to shed light on this paradox, we developed a sperm-based assay to measure the de novo rates of deletions and duplications at this locus. As predicted by the NAHR model, we identified an excess of de novo deletions over duplications. We calculated that the excess of de novo deletion was compensated by evolutionary loss, whereas duplications, not subjected to selection, increased gradually. Purifying selection against sterile, homozygous deleted men may be sufficient for this compensation, but heterozygously deleted men might also suffer a small fitness penalty. The recombined alleles were sequenced to pinpoint the localisation of the breakpoints. We analysed a total of 15 homozygous deleted patients and 17 heterozygous individuals carrying either a deletion (n = 4) or a duplication (n = 13). All but two alleles fell within a 1.2-Kb region central to the 28-Kb LCR, indicating that >90% of the NAHR took place in that region. We showed that a PRDM9 13-mer recognition sequence is located right in the centre of that region. Our results therefore strengthen the link between this consensus sequence and the occurrence of NAHR.  相似文献   

4.
Lyon MF  Schimenti JC  Evans EP 《Genetics》2000,155(2):793-801
Previously a deletion in mouse chromosome 17, T(22H), was shown to behave like a t allele of the t complex distorter gene Tcd1, and this was attributed to deletion of this locus. Seven further deletions are studied here, with the aim of narrowing the critical region in which Tcd1 must lie. One deletion, T(30H), together with three others, T(31H), T(33H), and T(36H), which extended more proximally, caused male sterility when heterozygous with a complete t haplotype and also enhanced transmission ratio of the partial t haplotype t(6), and this was attributed to deletion of the Tcd1 locus. The deletions T(29H), T(32H), and T(34H) that extended less proximally than T(30H) permitted male fertility when opposite a complete t haplotype. These results enabled narrowing of the critical interval for Tcd1 to between the markers D17Mit164 and D17Leh48. In addition, T(29H) and T(32H) enhanced the transmission ratio of t(6), but significantly less so than T(30H). T(34H) had no effect on transmission ratio. These results could be explained by a new distorter located between the breakpoints of T(29H) and T(34H) (between T and D17Leh66E). It is suggested that the original distorter Tcd1 in fact consists of two loci: Tcd1a, lying between D17Mit164 and D17Leh48, and Tcd1b, lying between T and D17Leh66E.  相似文献   

5.
C H Park  J H Pruitt  D Bennett 《Teratology》1989,39(3):303-312
Curtailed (Tc), a dominant mutation on mouse chromosome 17, causes a tailless phenotype and occasional hindlimb paralysis in heterozygotes. Histologically, Tc/+ embryos show a variety of abnormalities including budding and ventral duplication of the developing spinal cord, duplication and intermittent absence of the notochord, and partial or complete absence of bony vertebrae, all posterior to midliver level. When Tc is heterozygous with t-haplotypes that contain the "tail interaction factor," tct, the phenotype is more severe, and a dorsal blood blister exists in the lumbosacral area. Our microscopic observations reveal that Tc/tw5 mice have a lumbosacral spina bifida with meningomyelocele. This results from the absence of bony vertebrae, extensive thinning of the dermis dorsally, and the rupturing of the previously closed neural tube, probably by increased cerebrospinal fluid (CSF) pressure on the necrotic, attenuated roof plate. Thinning of the roof plate, which facilitates the rupturing of the spinal cord, is not observed in Tc/+, which suggests that this phenomenon is associated with the interaction of Tc with the t-allele. Later in the development of Tc/tw5 embryos, adjacent blood vessels are ruptured, resulting in hemorrhage into the CSF space to give the external appearance of a blood blister. Tc/+ mice also show an absence of bony vertebrae dorsally in the lumbosacral region, but they lack the dorsal blood blister, and the dermal layer overlying the bony defect retains its normal thickness; these observations describe a spina bifida occulta.  相似文献   

6.
Molecular studies of DiGeorge syndrome.   总被引:9,自引:2,他引:7       下载免费PDF全文
DiGeorge Syndrome (DGS) is often associated with loss of a portion of the proximal long arm of chromosome 22. Using a probe for the D22S9 locus, we have examined DNA from eight DGS cell lines and from one balanced-translocation carrier parent of a DGS proband. The D22S9 locus is deleted in four DGS patients, with deletion of 22pter----q11 because of unbalanced translocation. The locus is not deleted from three DGS probands with normal chromosomes or from two DGS probands with interstitial deletions of 22q11. The interstitial deletion DGS probands are also heterozygous for D22S43, another proximal 22q11 locus. This suggests that D22S9 and D22S43 are in a flanking but not critical region for DGS. One of the interstitial deletion DGS probands is monosomic for BCRL2 but has two copies of the flanking BCRL4 and BCR loci. Thus, the region critical to DGS (DGCR) may be in proximity to the BCRL2 locus.  相似文献   

7.
Studies have suggested that binding of the SATB1 protein to L2a, a matrix association region located 4.5 kb 5' to the mouse CD8alpha gene, positively affects CD8 expression in T cells. Therefore, experiments were performed to determine the effect on T cell development of reduced expression of SATB1. Because homozygous SATB1-null mice do not survive to adulthood due to non-thymus autonomous defects, mice were produced that were homozygous for a T cell-specific SATB1-antisense transgene and heterozygous for a SATB1-null allele. Thymic SATB1 protein was reduced significantly in these mice, and the major cellular phenotype observed was a significant reduction in the percentage of CD8SP T cells in thymus, spleen, and lymph nodes. Mice were smaller than wild type but generally healthy, and besides a general reduction in cellularity and a slight increase in surface CD3 expression on CD8SP thymocytes, the composition of the thymus was similar to wild type. The reduction in thymic SATB1 does not lead to the variegated expression of CD8-negative single positive thymocytes seen upon deletion of several regulatory elements and suggested by others to reflect failure to activate the CD8 locus. Thus, the present results point to an essential role for SATB1 late in the development and maturation of CD8SP T cells.  相似文献   

8.
The circling phenotype of thechakragatimouse is a result of a transgenic insertional mutation. The absence of the phenotype in mice heterozygous for the transgene insertion suggests that this is due to a loss of function of an endogenous gene. Efforts to identify this gene have led to a previous report that sequences flanking the transgene,D16Ros1andD16Ros2,map 10 cM apart in wildtype mice. We present here physical mapping data indicating that the proximity ofD16Ros1andD16Ros2in theckrmouse is explained by a duplication ofD16Ros2and its insertion along with the transgene atD16Ros1.We further demonstrate thatD16Ros1sequences are also duplicated and that this duplication is also part of the insertion at the endogenousD16Ros1locus.  相似文献   

9.
Somatic cell hybrids heterozygous at the emetine resistance locus (emtr/emt+) or the chromate resistance locus (chrr/chr+) are known to segregate the recessive drug resistance phenotype at high frequency. We have examined mechanisms of segregation in Chinese hamster cell hybrids heterozygous at these two loci, both of which map to the long arm of Chinese hamster chromosome 2. To follow the fate of chromosomal arms through the segregation process, our hybrids were also heterozygous at the mtx (methotrexate resistance) locus on the short arm of chromosome 2 and carried cytogenetically marked chromosomes with either a short-arm deletion (2p-) or a long-arm addition (2q+). Karyotype and phenotype analysis of emetine- or chromate-resistant segregants from such hybrids allowed us to distinguish four potential segregation mechanisms: (i) loss of the emt+- or chr+-bearing chromosome; (ii) mitotic recombination between the centromere and the emt or chr loci, giving rise to homozygous resistant segregants; (iii) inactivation of the emt+ or chr+ alleles; and (iv) loss of the emt+- or chr+-bearing chromosome with duplication of the homologous chromosome carrying the emtr or chrr allele. Of 48 independent segregants examined, only 9 (20%) arose by simple chromosome loss. Two segregants (4%) were consistent with a gene inactivation mechanism, but because of their rarity, other mechanisms such as mutation or submicroscopic deletion could not be excluded. Twenty-one segregants (44%) arose by either mitotic recombination or chromosome loss and duplication; the two mechanisms were not distinguishable in that experiment. Finally, in hybrids allowing these two mechanisms to be distinguished, 15 segregants (31%) arose by chromosome loss and duplication, and none arose by mitotic recombination.  相似文献   

10.
We report a new mutation at the albino locus in SELH/Bc mice. The mutation arose spontaneously in a male mouse that appeared to be a somatic and germ line mosaic for a new albino (c) allele, provisionally named cBc. The mutation is a recessive lethal, causing embryonic death soon after implantation. We have shown that there is no detectable activity of the Mod-2 allele in cis with the mutation and conclude that the mutation is probably a deletion that includes the c locus, the Mod-2 locus, the intervening 2 cM, and at least one locus essential for postimplantation embryonic survival, either proximal to the c locus or distal to the Mod-2 locus. This new mutation is similar to most previously reported spontaneous mutations at the albino locus in that it arose in a somatic and germ line mosaic mutant animal but differs from them in that it is an embryonic lethal when homozygous and is apparently a deletion. SELH/Bc mice appear to have a high mutation rate. This lethal albino mutation that appears to be a postmeiotic deletion should be useful in the search for the mechanism of mutagenesis in SELH/Bc mice. It may also be useful in mapping essential genes in the c-locus region.  相似文献   

11.
The WS4 mouse is an animal model for human Waardenburg syndrome type 4 (WS4), showing pigmentation anomalies, deafness and megacolon, which are caused by defects of neural crest-derived cells. We have previously reported that the gene responsible for the WS4 mouse is an allele of the piebald mutations of the endothelin B receptor gene (Ednrb). In this study, we examined the genomic sequence of the Ednrb gene in WS4 mice and found a 598-bp deletion in the gene. The deleted region contains the entire region of exon 2 and the 5' part of exon 3 and is flanked by inverted repeat sequences which are suggested to trigger the deletion. We concluded that the deletion in the Ednrb gene is the causative mutation for the phenotype of WS4 mice.  相似文献   

12.
We have identified previously a Trypanosoma cruzi gene encoding a protein named Tc52 sharing structural and functional properties with the thioredoxin and glutaredoxin protein family involved in thiol-disulphide redox reactions. Furthermore, we have reported that Tc52 also played a role in T. cruzi-associated immunosuppression observed during Chagas' disease. In an effort to understand further the biological role of Tc52, we used a gene-targeted deletion strategy to create T. cruzi mutants. Although T. cruzi tolerates deletion of one wild-type Tc52 allele, deletion of both genes is a lethal event, indicating that at least one active Tc52 gene is required for parasite survival. Monoallelic disruption of Tc52 (Tc52+/-) resulted in the production of T. cruzi lines that express less Tc52 mRNA and produced lower amounts of Tc52 protein compared with wild-type cells. In axenic cultures, growth rates of epimastigote forms bearing an interrupted allele were not different from those of wild-type parasites. Furthermore, monoallelic disruption of the Tc52 gene did not modify the growth rate of epimastigotes or their sensitivity to inhibition by benznidazole and nifurtimox, the two drugs used to treat Chagasic patients. Moreover, the antimonial drug SbIII, which is known, at least in Leishmania parasites, to be conjugated to a thiol and extruded by an ATP-coupled pump, had a similar effect on wild-type and mutant parasites, being equally sensitive. Hence, parasite drug sensitivity was also observed in clones overexpressing the Tc52 protein as well as in those carrying an antisense plasmid construct. Surprisingly, a significant impairment of the ability of epimastigotes carrying a Tc52 single gene replacement or antisense construct to differentiate into metacyclic trypomastigotes and to proliferate in vitro and in vivo was observed, whereas no significant enhancement of these biological properties was seen in the case of parasites that overexpress Tc52 protein. Moreover, functional complementation of Tc52+/- single mutant or selection of antisense revertant clones demonstrated that the phenotype observed is a direct consequence of Tc52 gene manipulation. Taken together, these results may suggest that Tc52 could participate among other factors in the phenotypic expression of T. cruzi virulence.  相似文献   

13.
Somatic cell hybrids retaining the deleted chromosome 17 from 15 unrelated Smith-Magenis syndrome (SMS) [del(17)(p11.2p11.2)] patients were obtained by fusion of patient lymphoblasts with thymidine kinase-deficient rodent cell lines. Seventeen sequence-tagged sites (STSs) were developed from anonymous markers and cloned genes mapping to the short arm of chromosome 17. The STSs were used to determine the deletion status of these loci in these and four previously described human chromosome 17-retaining hybrids. Ten STSs were used to identify 28 yeast artificial chromosomes (YACs) from the St. Louis human genomic YAC library. Four of the 17 STSs identified simple repeat polymorphisms. The order and location of deletion breakpoints were confirmed and refined, and the regional assignment of several probes and cloned genes were determined. The cytogenetic band locations and relative order of six markers on 17p were established by fluorescence in situ hybridization mapping to metaphase chromosomes. The latter data confirmed and supplemented the somatic cell hybrid results. Most of the hybrids derived from [del(17)(p11.2p11.2)] patients demonstrated a similar pattern of deletion for the marker loci and were deleted for D17S446, D17S258, D17S29, D17S71, and D17S445. However, one of them demonstrated a unique pattern of deletion. This patient is deleted for several markers known to recognize a large DNA duplication associated with Charcot-Marie-Tooth (CMT) disease type 1A. These data suggest that the proximal junction of the CMT1A duplication is close to the distal breakpoint in [del(17)(p-11.2p11.2)] patients.  相似文献   

14.
Whirler (wi) mice display profound deafness and a head-tossing and circling phenotype, showing an autosomal recessive mode of inheritance. The wi mutation has been shown to map close to the Orm gene cluster on mouse Chromosome (Chr) 4. We have, therefore, investigated the Orm loci as candidates for the whirler gene. Detailed mapping and analysis of the Orm gene cluster in both normal and whirler mice indicates the presence of a <48-kb deletion in whirler mice that disrupts the Orm1 locus. The Orm1 locus is also deleted in the CE/J mouse strain, and we discuss the candidature of Orm1 for the whirler gene. Received: 22 June 1999 / Accepted: 17 September 1999  相似文献   

15.
J. H. Nadeau  D. Varnum    D. Burkart 《Genetics》1989,122(4):895-903
The t complex on chromosome 17 of the house mouse is an exceptional model for studying the genetic control of transmission ratio, gametogenesis, and embryogenesis. Partial haplotypes derived through rare recombination between a t haplotype and its wild-type homolog have been essential in the genetic analysis of these various properties of the t complex. A new partial t haplotype, which was derived from the complete tw71 haplotype and which is called tw71Jr1, was shown to have unexpected effects on tail length and unique recombination breakpoints. This haplotype, either when homozygous or when heterozygous with the progenitor tw71 haplotype, produced short-tailed rather than normal-tailed mice on certain genetic backgrounds. Genetic analysis of this exceptional haplotype showed that the recombination breakpoints were different from those leading to any other partial t haplotype. Based on this haplotype, a model is proposed that accounts for genetic interactions between the brachyury locus (T), the t complex tail interaction (tct) locus, and their wild-type homolog(s) that determine tail length. An important part of this model is the hypothesis that the tct locus, which enhances the tail-shortening effect of T mutations, is in fact at least two, genetically separable genes with different genetic activities. Genetic analysis of parental and recombinant haplotypes also suggests that intrachromosomal recombination involving an inverted duplicated segment can account for the variable orientation of loci within an inverted duplication on wild-type homologs of the t haplotype.  相似文献   

16.
17.
We have investigated the genotypic changes that lead to expression of a recessive allele at a heterozygous autosomal locus in a human cell line. Mutant clones lacking thymidine kinase activity were derived from a B-cell lymphoblastoid line initially heterozygous at the tk locus, and restriction mapping was performed to detect intragenic structural alterations in the tk gene. In addition, informative molecular markers located elsewhere on chromosome 17 were analysed in order to detect large-scale (multilocus) events. We report that among 325 spontaneous and induced mutants, allele loss was more common than intragenic rearrangements or point mutations; in many cases, loss of heterozygosity appears to have extended well beyond the locus under selection. Cytogenetic analysis of a subset of these mutants showed that expression of the recessive TK-deficient phenotype and the associated loss of heterozygosity for chromosome 17 markers was not typically associated with detectable chromosomal changes.  相似文献   

18.
Xie HB  Golic KG 《Genetics》2004,168(3):1477-1489
Following the advent of a gene targeting technique in Drosophila, different methods have been developed to modify the Drosophila genome. The initial demonstration of gene targeting in flies used an ends-in method, which generates a duplication of the target locus. The duplicated locus can then be efficiently reduced to a single copy by generating a double-strand break between the duplicated segments. This method has been used to knock out target genes by introducing point mutations. A derivative of this method is reported here. By using different homologous regions for the targeting and reduction steps, a complete deletion of the target gene can be generated to produce a definitive null allele. The breakpoints of the deletion can be precisely controlled. Unlike ends-out targeting, this method does not leave exogenous sequence at the deleted locus. Three endogenous genes, Sir2, Sirt2, and p53 have been successfully deleted using this method.  相似文献   

19.
An increase in IL-17-producing CD8(+) T (Tc17) cells has been reported in the peripheral blood of children with recent onset type 1 diabetes (T1D), but their contribution to disease pathogenesis is still unknown. To directly study the pathogenic potential of β cell-specific Tc17 cells, we used an experimental model of T1D based on the expression of the neo-self Ag hemagglutinin (HA) in the β cells of the pancreas. When transferred alone, the IL-17-producing HA-specific CD8(+) T cells homed to the pancreatic lymph nodes without causing any pancreatic infiltration or tissue destruction. When transferred together with small numbers of diabetogenic HA-specific CD4(+) T cells, a strikingly different phenotype developed. Under these conditions, Tc17 cells sustained disease progression, driving the destruction of β-islet cells, causing hyperglycemia and ultimately death. Disease progression did not correlate with functional or numerical alterations among the HA-specific CD4(+) T cells. Rather, the transferred CD8(+) T cells accumulated in the pancreatic islets and a considerable fraction converted, under the control of IL-12, to an IFN-γ-producing phenotype. Our data indicate that Tc17 cells are not diabetogenic but can potentiate a Th1-mediated disease. Plasticity of the Tc17 lineage is associated with transition to overt disease in this experimental model of T1D.  相似文献   

20.
We have analyzed several aspects of the development of flies carrying mutations at the Glued locus. Optic lobe abnormalities in individuals heterozygous for the original Glued allele were previously shown to result from an action of this mutation in the retinula cells. We have estimated when the functioning of this gene or its product is required for normal visual system development by using genetic mosaicism induced by somatic recombination and temperature shifts of a temperature-sensitive mutation at this locus. Both methods point to a period in the mid-third instar, suggesting that early events in the formation of ommatidia and/or late events in the program of retinal cells are affected. Application of a new histological stain for developing axons indicates that individuals heterozygous for Glued exhibit abnormalities in the retinula fiber projection by the late third instar. Thus, the adult phenotype is not solely the result of later cellular degeneration or rearrangement. Beneath M+ Gl+ clones which encompass the entire eye were found optic lobe abnormalities with features not seen in either other mosaics or Gl heterozygotes. The possibility that these abnormalities result from temporal asynchrony in the development of eye and and optic lobe in these individuals is discussed and the results of attempts to test this hypothesis are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号