首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
重组类弹性蛋白多肽(elastin-like polypeptides,ELPs)是一种通过基因工程方法合成的多肽聚合物,其结构由类弹性蛋白的肽段单元重复串连组成,具有刺激响应性、自组装特性、显著的弹性和良好的生物学特性,如低血小板黏附性和低免疫原性等,因此ELPs材料已被广泛应用于组织工程、药物输送和纳米生物器件制备...  相似文献   

2.

Background  

Elastin-like polypeptides (ELPs) are useful tools that can be used to non-chromatographically purify proteins. When paired with self-cleaving inteins, they can be used as economical self-cleaving purification tags. However, ELPs and ELP-tagged target proteins have been traditionally expressed using highly enriched media in shake flask cultures, which are generally not amenable to scale-up.  相似文献   

3.
Protein polymers are repetitive polypeptides produced by ribosomal biosynthetic pathways; furthermore, they offer emerging opportunities in drug and biopharmaceutical delivery. As for any polymer, biodegradation is one of the most important determinants affecting how a protein polymer can be utilized in the body. This study was designed to characterize the proteolytic biodegradation for a library of protein polymers derived from the human tropoelastin, the Elastin-like polypeptides (ELPs). ELPs are of particular interest for controlled drug delivery because they reversibly transition from soluble to insoluble above an inverse phase transition temperature (T(t)). More recently, ELP block copolymers have been developed that can assemble into micelles; however, it remains unclear if proteases can act on these ELP nanoparticles. For the first time, we demonstrate that ELP nanoparticles can be degraded by two model proteases and that comparable proteolysis occurs after cell uptake into a transformed culture of murine hepatocytes. Both elastase and collagenase endopeptidases can proteolytically degrade soluble ELPs. To our surprise, the ELP phase transition was protective against collagenase but not to elastase activity. These findings enhance our ability to predict how ELPs will biodegrade in different physiological microenvironments and are essential to develop protein polymers into biopharmaceuticals.  相似文献   

4.
温敏类弹性蛋白多肽(elastin-like polypeptides, ELPs)作为新型的药物载体,在肿瘤治疗中具有广阔的应用前景。本研究根据大肠杆菌密码子的偏好性和简并性,将高度连续重复氨基酸的多种遗传密码引入基因序列中,利用依次插入单体基因和递归定向连接技术,成功构建了以缬氨酸为客座氨基酸的ELPs基因的表达质粒库,即p ET28-ELP-V_5~pET28-ELP-V50。将pET28-V50转化至表达宿主Escherichia coli BL21(DE3)中,经重组菌的培养和IPTG诱导,SDS-PAGE结果显示ELP-V50在大肠杆菌中成功获得了可溶性表达,与预期分子量大小一致。本研究为进一步构建不同分子量的ELPs基因库提供了新的思路,并为重组表达获得特定相变特性的多肽分子奠定了基础。  相似文献   

5.
Elastin-like polypeptides (ELPs) have a distinctive thermal property, transition temperature (Tt), which leads to phase transition. This thermal property depends on the molecular weight (MW) of ELP, ELP concentration, composition of the amino acids constituting ELPs, and ionic strength of the aqueous solution. In order to investigate the effects of ELP length, ionic strength and existence of fusion protein, ELP genes of three different sizes were cloned using the recursive directional ligation (RDL) method and expressed in Escherichia coli. Following purification, thermal behaviors of ELPs were monitored using a spectrophotometer with temperature scanning. The results of our study indicated that Tt shifted to low in accordance with ELP length or increased ionic strength. Additionally, it was observed that Tt was affected by the physical properties of the protein fused with ELPs.  相似文献   

6.
Like natural tropoelastin, polypeptides based on an elastin-like VPGXG repeat have a characteristic inverse temperature response, which leads to coacervate formation above a certain transition temperature and which could be useful for a variety of applications. The key advantage of elastin-like polypeptides (ELPs) over (tropo)elastin is a full control over this temperature response by adjustment of either the amino acid composition or the chain length, according to insights provided by extensive research. Future application of ELPs will require efficient ELP production systems, and in a previous article, we described the successful use of Pichia pastoris for secreted production of an ELP, with an overall yield of ≈ 200 mg L(-1). In this study, we investigated the influence of changed amino acid composition and chain length on the yield of secreted ELP. We have found that both parameters have a distinct impact on the overall yield, with higher yield for shorter and more hydrophilic ELPs. Because yield and transition temperature (Tt) thus appear to be positively correlated, we hypothesize that good solubility of ELP below the Tt promotes the secreted production and coacervate formation above Tt decreases it.  相似文献   

7.
类弹性蛋白多肽及其在生物医学材料的应用   总被引:1,自引:0,他引:1  
类弹性蛋白多肽是一种人造基因工程蛋白质聚合物,其结构主要由五肽重复串连序列单元 (GVGXP) 的这一肽段单元重复组成。由于具有可逆相变特征,并可进行高通量生产,加之良好的生物相容性及生物可降解性,使其在新型生物医学材料方面展示了广阔的应用前景。概括了类弹性蛋白多肽的相变机理、合成方法及在生物医学材料上的应用,重点阐述了类弹性蛋白多肽在组织工程、靶向肿瘤、构造药物载体微粒的应用。  相似文献   

8.
Elastin-like polypeptides (ELPs) undergo a reversible, inverse phase transition. Below their transition temperature (Tt), ELPs are soluble in water, but when the temperature is raised above Tt, phase transition occurs, leading to aggregation of the polypeptide. We demonstrate a method for purification of soluble fusion proteins incorporating an ELP tag. Advantages of this method, termed "inverse transition cycling," include technical simplicity, low cost, ease of scale-up, and capacity for multiplexing. More broadly, the ability to environmentally modulate the physicochemical properties of recombinant proteins by fusion with ELPs will allow diverse applications in bioseparation, immunoassays, biocatalysis, and drug delivery.  相似文献   

9.
Elastin-like polypeptides (ELPs) are artificial polypeptides with unique properties that make them attractive as a biomaterial for tissue-engineered cartilage repair. ELPs are composed of a pentapeptide repeat, Val-Pro-Gly-Xaa-Gly (Xaa is any amino acid except Pro), that undergo an inverse temperature phase transition. They are soluble in aqueous solution below their transition temperature (T(t)) but aggregate when the solution temperature is raised above their T(t). This study investigates the rheological behavior of an un-cross-linked ELP, below and above its T(t), and also examines the ability of ELP to promote chondrogenesis in vitro. A thermally responsive ELP with a T(t) of 35 degrees C was synthesized using recombinant DNA techniques. The complex shear modulus of the ELP increased by 3 orders of magnitude as it underwent its inverse temperature phase transition, forming a coacervate, or gel-like, ELP phase. Values for the complex shear moduli of the un-cross-linked ELP coacervate are comparable to those reported previously for collagen, hyaluronan, and cross-linked synthetic hydrogels. Cell culture studies show that chondrocytes cultured in ELP coacervate maintain a rounded morphology and their chondrocytic phenotype, characterized by the synthesis of a significant amount of extracellular matrix composed of sulfated glycosaminoglycans and collagen. These results suggest that ELPs demonstrate great potential for use as in situ forming scaffolds for cartilaginous tissue repair.  相似文献   

10.
本文利用SpyTag/SpyCatcher特性构建了三臂星型结构的类弹性蛋白多肽(elastin like polypeptides, ELPs),考察其在不同溶剂,如分子拥挤试剂、osmolytes及深共熔溶剂(deep eutectic solvents,DESs)中的相变温度及行为,并与含有相同ELPs重复数的线性ELPs120作对比。结果表明:在不同浓度拥挤试剂PEG2000作用下,两种结构的ELPs相变温度均降低,当其各自浓度均为25 μmol/L时,三臂星型ELPs相变温度降低3℃~13℃,而ELPs120相变温度仅降低1.5℃~10.8℃。此外,在添加PEG2000后,三臂星型ELPs相变缓慢;在不同类型和浓度的osmolytes溶液中,25 μmol/L三臂星型ELPs相变温度明显要比线性ELPs高8℃左右;在DESs体系中,三臂星型ELPs有类似与水溶液中的相变行为,且其相变温度受到抑制,另外三臂星型ELPs和ELPs120在DESs/PBS体系中,与在(氯化胆碱+尿素)/PBS体系中的相变行为一致,其中当DESs体积含量为50%,ELPs120相变温度是最低的。由于ELPs在非单一缓冲液体系中的相变行为不同,这丰富了ELPs作为纯化标签的应用,且在非单一缓冲液体系中因降低了相变温度,节约了纯化融合蛋白的经济成本,同时也为研究ELPs拓扑结构与其相变行为之间的关系奠定理论基础。  相似文献   

11.
类弹性蛋白(Elastin-like polypeptides,ELPs)是属于弹性蛋白中的一种且具有温控性的生物大分子,本文研究拥挤试剂对不同拓扑结构ELPs相变温度的影响,利用温控-紫外分光光度计研究其相变特性,结果发现,随着PEG2000浓度的增加,T-E-F的相变温度下降11.9~17.1℃;在固定Tadpole-like-E浓度下,随着PEG2000浓度的增加,Tadpole-like-E的相变温度降低11.5~16℃,其中,25 μmol/L的Tadpole-like-E其相变速度缓慢;ELPs浓度越大,其相变温度降低愈大,且PEG2000影响ELPs相变温度的趋势与ELPs的拓扑结构关系不大。另外,在简单的PBS缓冲溶液中加入PEG2000,可以使E-C在浓度<0.5 mol/L的Na2CO3中发生相变,且随着PEG2000浓度的增加,E-C相变温度逐渐降低。本研究为今后ELPs在复杂体系的应用提供前期的基础研究。  相似文献   

12.
Elastin-like polypeptides (ELPs) are recombinant peptide-based biopolymers that contain repetitive sequences enriched in glycine, valine, proline, and alanine. Because of the unusually large fraction of these amino acids in ELPs as compared to other cellular proteins, we hypothesized that intracellular pools of these amino acids can be selectively depleted and limit protein yields during expression. In this study, we examined how culture conditions and individual medium components affect protein yields by monitoring cell growth and protein expression kinetics of E. coli expressing an ELP tagged with a green fluorescent protein (GFP). By determining the underlying principles of superior fusion protein yields generated by the hyperexpression protocol, we further improved protein yields through the addition of glycerol and certain amino acids such as proline and alanine and found that amino acid concentrations and the type of basal medium used strongly influenced this beneficial effect. Surprisingly, amino acids other than those that are abundant in ELPs, for example, asparagine, aspartic acid, glutamine, and glutamic acid, also enhanced protein yields even in a nutrient-rich medium. Compared to commonly used Luria-Bertani medium, the protein yield was improved by 36-fold to the remarkable level of 1.6 g/L in shaker flask cultures with a modified medium and optimized culture conditions, which also led to a 8-fold reduction in the cost of the fusion protein. To our knowledge, this is the highest yield of an ELP-fusion protein purified from E. coli cultured in shaker flasks. This study also suggests a useful strategy to improve the yields of other ELP fusion proteins and repetitive polypeptides.  相似文献   

13.
While elastin‐like polypeptides and peptides (ELPs) have been used for various stimulus‐responsive applications, details of their switching remain unclear. We therefore constructed a novel series of filamentous phage particles displaying a high surface density of short ELPs. The surface display of ELPs did not disrupt either particle shape or dimensions, and the resulting ELP‐phage particles were colloidally stable over several weeks. However, in spite of a saturating surface density, macroscopic aggregation of ELP‐phages cannot be triggered in water. To investigate the underlying mechanisms we examined conformational changes in the secondary structure of the phage proteins by circular dichroism and tryptophan fluorescence, which indicate partial protein unfolding in ELP‐phage particles. To gain further insight into the ELP itself, analogous “free” ELP peptides were synthesized and characterized. Circular dichroism of these peptides shows the onset of β‐type conformations with increasing temperature, consistent with the accepted view of the microscopic transition that underlies the inverse phase behavior of ELPs. Increased guest residue hydrophobicity was found to depress the microscopic transition temperature of the peptides, also consistent with a previously proposed intramolecular hydrogen‐bonding mechanism. Importantly, our results indicate that although the nanoscale presentation state can suppress macroscopic aggregation of ELPs, microscopic transitions of the ELP can still occur. Given the growing use of ELPs within supra‐molecular scaffolds, such effects are important design considerations for future applications. Biotechnol. Bioeng. 2013; 110: 1822–1830. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Wang E  Lee SH  Lee SW 《Biomacromolecules》2011,12(3):672-680
In nature, organic matrix macromolecules play a critical role in enhancing the mechanical properties of biomineralized composites such as bone and teeth. Designing artificial matrix analogues is promising but challenging because relatively little is known about how natural matrix components function. Therefore, in lieu of using natural components, we created biomimetic matrices using genetically engineered elastin-like polypeptides (ELPs) and then used them to construct mechanically robust ELP-hydroxyapatite (HAP) composites. ELPs were engineered with well-defined backbone charge distributions by periodic incorporation of negative, positive, or neutral side chains or with HAP-binding octaglutamic acid motifs at one or both protein termini. ELPs exhibited sequence-specific capacities to interact with ions, bind HAP, and disperse HAP nanoparticles. HAP-binding ELPs were incorporated into calcium phosphate cements, resulting in materials with improved mechanical strength, injectability, and antiwashout properties. The results demonstrate that rational design of genetically engineered polymers is a powerful system for determining sequence-property relationships and for improving the properties of organic-inorganic composites. Our approach may be used to further develop novel, multifunctional bone cements and expanded to the design of other advanced composites.  相似文献   

15.
We report a new strategy for the synthesis of genes encoding repetitive, protein-based polymers of specified sequence, chain length, and architecture. In this stepwise approach, which we term "recursive directional ligation" (RDL), short gene segments are seamlessly combined in tandem using recombinant DNA techniques. The resulting larger genes can then be recursively combined until a gene of a desired length is obtained. This approach is modular and can be used to combine genes encoding different polypeptide sequences. We used this method to synthesize three different libraries of elastin-like polypeptides (ELPs); each library encodes a unique ELP sequence with systematically varied molecular weights. We also combined two of these sequences to produce a block copolymer. Because the thermal properties of ELPs depend on their sequence and chain length, the synthesis of these polypeptides provides an example of the importance of precise control over these parameters that is afforded by RDL.  相似文献   

16.
Elastin is the polymeric, extracellular matrix protein that provides properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Elastin assembles by crosslinking through lysine residues of its monomeric precursor, tropoelastin. Tropoelastin, as well as polypeptides based on tropoelastin sequences, undergo a process of self‐assembly that aligns lysine residues for crosslinking. As a result, both the full‐length monomer as well as elastin‐like polypeptides (ELPs) can be made into biomaterials whose properties resemble those of native polymeric elastin. Using both full‐length human tropoelastin (hTE) as well as ELPs, we and others have previously reported on the influence of sequence and domain arrangements on self‐assembly properties. Here we investigate the role of domain sequence and organization on the tensile mechanical properties of crosslinked biomaterials fabricated from ELP variants. In general, substitutions in ELPs involving similiar domain types (hydrophobic or crosslinking) had little effect on mechanical properties. However, modifications altering either the structure or the characteristic sequence style of these domains had significant effects on such properties. In addition, using a series of deletion and replacement constructs for full‐length hTE, we provide new insights into the role of conserved domains of tropoelastin in determining mechanical properties. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 392–407, 2013.  相似文献   

17.
Elastin-like polypeptides (ELP) are artificial, genetically encodable biopolymers, belonging to elastomeric proteins, which are widespread in a wide range of living organisms. They are composed of a repeating pentapeptide sequence Val–Pro–Gly–Xaa–Gly, where the guest residue (Xaa) can be any naturally occurring amino acid except proline. These polymers undergo reversible phase transition that can be triggered by various environmental stimuli, such as temperature, pH or ionic strength. This behavior depends greatly on the molecular weight, concentration of ELP in the solution and composition of the amino acids constituting ELPs. At a temperature below the inverse transition temperature (Tt), ELPs are soluble, but insoluble when the temperature exceeds Tt. Furthermore, this feature is retained even when ELP is fused to the protein of interest. These unique properties make ELP very useful for a wide variety of biomedical applications (e.g. protein purification, drug delivery etc.) and it can be expected that smart biopolymers will play a significant role in the development of most new materials and technologies. Here we present the structure and properties of thermally responsive elastin-like polypeptides with a particular emphasis on biomedical and biotechnological application.  相似文献   

18.
Peptide amphiphiles (PAs) self-assemble nanostructures with potential applications in drug delivery and tissue engineering. Some PAs share environmentally responsive behavior with their peptide components. Here we report a new type of PAs biologically inspired from human tropoelastin. Above a lower critical solution temperature (LCST), elastin-like polypeptides (ELPs) undergo a reversible inverse phase transition. Similar to other PAs, elastin-like PAs (ELPAs) assemble micelles with fiber-like nanostructures. Similar to ELPs, ELPAs have inverse phase transition behavior. Here we demonstrate control over the ELPAs fiber length and cellular uptake. In addition, we observed that both peptide assembly and nanofiber phase separation are accompanied by a distinctive secondary structure attributed primarily to a type-1 β turn. We also demonstrate increased solubility of hydrophobic paclitaxel (PAX) in the presence of ELPAs. Due to their biodegradability, biocompatibility, and environmental responsiveness, elastin-inspired biopolymers are an emerging platform for drug and cell delivery; furthermore, the discovery of ELPAs may provide a new and useful approach to engineer these materials into stimuli-responsive gels and drug carriers.  相似文献   

19.
Elastin-like polypeptides (ELPs) undergo a reversible inverse phase transition upon a change in temperature. This thermally triggered phase transition allows for a simple and rapid means of purifying a fusion protein. Recovery of ELPs-tagged fusion protein was easily achieved by aggregation, triggered either by raising temperature or by adding salt. In this study, levansucrase has been used as a model enzyme in the development of a simple one-step purification method using ELPs. The levansucrase gene cloned from Pseudomonas aurantiaca S-4380 was tagged with various sizes of ELPs to functionally express and optimize the purification of levansucrase. One of two ELPs, ELP[V-20] or ELP[V-40], was fused at the C-terminus of the levansucrase gene. A levansucrase-ELP fusion protein was expressed in Escherichia coli DH5alpha at 37 degrees C for 18 h. The molecular masses of levansucrase-ELP[V-20] and levansucrase-ELP[V-40] were determined as 56 kDa and 65 kDa, respectively. The phase transition of levansucrase-ELP[V-20] occurred at 20 degrees C in 50 mM Tris-Cl (pH 8) buffer with 3 M NaCl added, whereas the phase transition temperature (Tt) of levansucrase-ELP[V-40] was 17 degrees C with 2 M NaCl. Levansucrase was successfully purified using the phase transition characteristics of ELPs, with a recovery yield of higher than 80%, as verified by SDS-PAGE. The specific activity was measured spectrophotometrically to be 173 U/mg and 171 U/mg for levansucrase-ELP[V-20] and levansucrase-ELP[V-40], respectively, implying that the ELP-tagging system provides an efficient one-step separation method for protein purification.  相似文献   

20.
Elastin-like polypeptides (ELPs) are peptide-based biomaterials with residue sequence (VPGXG)n where X is any residue except proline. ELPs are a useful modality for delivering biologically active proteins (growth factors, protease inhibitors, anti-inflammatory peptides, etc.) as fusion proteins (ELP-FP). ELP-FPs are particularly cost-effective because they can be rapidly purified using Inverse Temperature Cycling (ITC) via the reversible formation and precipitation of entropically driven aggregates above a transition temperature (Tt). When ELP fusion proteins (ELP-FPs) contain significant charge density at physiological pH, electrostatic repulsion between them severely inhibits aggregate formation. The literature does not currently describe methods for purifying ELP-FPs containing charged proteins on either side of the ELP sequence as fusion partners without organic solvents. Here, the isoelectric point (pI) of ELP-FPs is discussed as a means of neutralizing surface charges on ELP-FPs and increasing ITC yield to dramatically high levels. We use pI-based phase separation (pI-BPS) to purify ELP-FPs containing cationic and anionic fusion proteins. We report a dramatic increase in protein yield when using pI-BPS for purification of ELP-FPs. Proteins purified by this method also retain the functional activity of the protein present in the ELP-FP. Techniques developed here enable significant diversification of possible fusion proteins delivered by ELPs as ELP-FPs by allowing them to be produced and purified at higher quantities and yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号