首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanobacteria are a rich source of natural products and are known to produce terpenoids. These bacteria are the major source of the musty-smelling terpenes geosmin and 2-methylisoborneol, which are found in many natural water supplies; however, no terpene synthases have been characterized from these organisms to date. Here, we describe the characterization of three sesquiterpene synthases identified in Nostoc sp. strain PCC 7120 (terpene synthase NS1) and Nostoc punctiforme PCC 73102 (terpene synthases NP1 and NP2). The second terpene synthase in N. punctiforme (NP2) is homologous to fusion-type sesquiterpene synthases from Streptomyces spp. shown to produce geosmin via an intermediate germacradienol. The enzymes were functionally expressed in Escherichia coli, and their terpene products were structurally identified as germacrene A (from NS1), the eudesmadiene 8a-epi-α-selinene (from NP1), and germacradienol (from NP2). The product of NP1, 8a-epi-α-selinene, so far has been isolated only from termites, in which it functions as a defense compound. Terpene synthases NP1 and NS1 are part of an apparent minicluster that includes a P450 and a putative hybrid two-component protein located downstream of the terpene synthases. Coexpression of P450 genes with their adjacent located terpene synthase genes in E. coli demonstrates that the P450 from Nostoc sp. can be functionally expressed in E. coli when coexpressed with a ferredoxin gene and a ferredoxin reductase gene from Nostoc and that the enzyme oxygenates the NS1 terpene product germacrene A. This represents to the best of our knowledge the first example of functional expression of a cyanobacterial P450 in E. coli.  相似文献   

2.
3.
Abstract The cyanobacterium Nostoc sp. strain PCC 73102, cultured under nitrogen-fixing conditions, was investigated for the occurrence of ferrodoxins by SDS-PAGE/Western immunoblots using antisera directed against both a major plant-type and a bacterial-type ferredoxin purified from Anabaena variabilis . Immunocytological labelling and transmission electron microscopy were used to study the distribution of both types of ferredoxins in the Nostoc cells. SDS-PAGE/Western immunoblots revealed two proteins/polypeptides in the Nostoc strain, immunologically related to two soluble ferredoxins purified from Anabaena variabilis : the major plant-type ferredoxin (Fd I) and a bacterial-type ferredoxin (Fd III). Immunolocalization showed a uniform distribution of the plant-type and the bacterial-type ferredoxin in both the photosynthetic vegetative cells and in the nitrogen-fixing heterocysts, with no specific association with any subcellular inclusions. Using the particle analysis of an image processor, the labelling associated with the vegetative cells, expressed as number of gold particles per cell area, was found to be only slightly higher (1.2x) or almost twice as high (1.9x) compared to the heterocysts for the major plant-type and the bacterial-type ferredoxin, respectively.  相似文献   

4.
N2-fixing Nostoc sp. strain PCC 73102 was examined for the presence of hydrogenases. Native-PAGE/immunoblots demonstrated that two proteins with molecular masses of approximately 200 kDa and 215 kDa are immunologically related to hydrogenases purified from Bradyrhizobium japonicum, Azotobacter vinelandii, Methanosarcina barkeri, and Thiocapsa roseopersicina. SDS-PAGE/immunoblots showed that one polypeptide, with a molecular mass of about 58 kDa, is immunologically related to the hydrogenases purified from all the microorganisms mentioned above. In addition, two polypeptides, with molecular masses of approximately 34 and 70 kDa, are immunologically related to the hydrogenases purified from T. roseopersicina and M. barkeri respectively. Immunogold/transmission electron microscopy showed that the hydrogenase proteins are present in both the heterocysts and the vegetative cells.  相似文献   

5.
Structural genes encoding an uptake hydrogenase of Nostoc sp. strain PCC 73102 were isolated. From partial libraries of genomic DNA, two clones (pNfo01 and pNfo02) were selected and sequenced, revealing the complete sequence of both a hupS (960 bases) and a hupL (1,593 bases) homologue in Nostoc sp. strain PCC 73102. A comparison between the deduced amino acid sequences of HupS and HupL of Nostoc sp. strain PCC 73102 and Anabaena sp. strain PCC 7120 showed that the HupS proteins are 89% identical and the HupL proteins are 91% identical. However, the noncoding region between the genes in Nostoc sp. strain PCC 73102 (192 bases) is longer than that of Anabaena sp. strain PCC 7120 and of many other microorganisms. Southern hybridizations using DNA from both N2-fixing and non-N2-fixing cells of Nostoc sp. strain PCC 73102 and different probes from within hupL clearly demonstrated that, in contrast to Anabaena sp. strain PCC 7120, there is no rearrangement within hupL of Nostoc sp. strain PCC 73102. Indeed, 6 nucleotides out of 16 within the potential recombination site are different from those of Anabaena sp. strain PCC 7120. Furthermore, we have recently published evidence demonstrating the absence of the bidirectional/reversible hydrogenase in Nostoc sp. strain PCC 73102. The present knowledge, in combination with the unique characteristics, makes Nostoc sp. strain PCC 73102 an interesting candidate for the study of deletion mutants lacking the uptake-type enzyme. Received: 20 August 1997 / Accepted: 24 November 1997  相似文献   

6.
Ornithine carbamoyl transferase (OCT) catalyzes the formation of citrulline and orthophosphate from ornithine and carbamoyl phosphate. We have partially purified OCT from the filamentous cyanobacterium Nostoc sp. strain PCC 73102, using ammonium sulfate precipitation (35–55%), a gel-filtration column (Sephacryl S-200), followed by an affinity column (Sepharose-6B-PALO). The partially purified OCT was analyzed on native-PAGE and shown to be an active enzyme with an estimated molecular weight of approximately 80 kDa. The isoelectric point was determined to be about 6.2. Varying the ornithine concentration resulted in a hyperbolic response of the reaction velocity at lower concentrations. Ornithine concentrations above 2 mM inhibited the enzyme. A hyperbolic response of the OCT reaction was observed when increasing the carbamoyl phosphate concentration. From a double reciprocal plot, a saturation concentration of 0.8 mM and a Vmax of 0.4 U/mg may be calculated. None of the tested compounds (argininosuccinate, arginine, aspartic acid, urea) had any significant positive effect on the in vitro activity of the partially purified OCT. Moreover, at concentrations higher than 10 mM, all tested compounds had an inhibitory effect. Received: 23 March 1998 / Accepted: 6 May 1998  相似文献   

7.
A gene argH, encoding argininosuccinate lyase (ASL), has been cloned from a cosmid library of the filamentous cyanobacterium Nostoc sp. strain PCC 73102. The argH open reading frame encodes a protein comprised of 461 amino acids with a calculated molecular mass of 51,349 Da. Protein sequence comparisons reveal significant similarities of the Nostoc PCC 73102 ASL to related proteins from other organisms. In an Escherichia coliΔargH strain, the Nostoc PCC 73102 ASL expressed from a recombinant plasmid could restore the ability to grow on medium without arginine. Moreover, cell extracts show a specific ASL activity of 16.2 nmoles of urea · min−1· (mg protein)−1. Partially purified, His-tagged ASL runs as a 53-kDa protein band in SDS-PAGE and about 215-kDa protein in native-PAGE, suggesting that the native protein is a tetramer. Received: 6 December 2000 / Accepted: 9 February 2001  相似文献   

8.
Lang I  Feussner I 《Phytochemistry》2007,68(8):1120-1127
The dioxygenation of polyunsaturated fatty acids is mainly catalyzed by members of the lipoxygenase enzyme family in flowering plants and mosses. Lipoxygenase products can be metabolized further and are known as signalling substances that play a role in plant development as well as in plant responses to wounding and pathogen attack. Apart from accumulating data in mammals, flowering and non-flowering plants, information on the relevance of lipid peroxide metabolism in prokaryotic organisms is scarce. Thus we aimed to isolate and analyze lipoxygenases and oxylipin patterns from cyanobacterial origin. DNA isolated from Nostoc punctiforme strain PCC73102 yielded sequences for at least two different lipoxygenases. These have been cloned as cDNAs and named NpLOX1 and NpLOX2. Both proteins were identified as linoleate 13-lipoxygenases by expression in E. coli. NpLOX1 was characterized in more detail: It showed a broad pH optimum ranging from pH 4.5 to pH 8.5 with a maximum at pH 8.0 and alpha-linolenic acid was the preferred substrate. Bacterial extracts contain more 13-lipoxygenase-derived hydroperoxides in wounded than in non-wounded cells with a 30-fold excess of non-esterified over esterified oxylipins. 9-Lipoxygenase-derived derivatives were not detectable. 13-Lipoxygenase-derived hydroperoxides in esterified lipids were present at almost equal amounts compared to non-esterified hydroperoxides in non-wounded cells. These results suggest that 13-lipoxygenases acting on free fatty acids dominate in N. punctiforme strain PCC73102 upon wounding.  相似文献   

9.
10.
We identified the molecular structures of carotenoids in some Anabaena and Nostoc species. The myxoxanthophyll and ketomyxoxanthophyll in Anabaena (also known as Nostoc) sp. PCC 7120, Anabaena variabilis IAM M-3, Nostoc punctiforme PCC 73102 and Nostoc sp. HK-01 were (3R,2'S)-myxol 2'-fucoside and (3S,2'S)-4-ketomyxol 2'-fucoside, respectively. The glycoside moiety of the pigments was fucose, not rhamnose. The major carotenoids were beta-carotene and echinenone, and the minor ones were beta-cryptoxanthin, zeaxanthin, canthaxanthin and 3'-hydroxyechinenone. Based on the identification of the carotenoids and the completion of the entire nucleotide sequence of the genome in Anabaena sp. PCC 7120 and N. punctiforme PCC 73102, we proposed a biosynthetic pathway for the carotenoids and the corresponding genes and enzymes. Since only zeta-carotene desaturase (CrtQ) from Anabaena sp. PCC 7120 and beta-carotene ketolase (CrtW) from N. punctiforme PCC 73102 have been functionally identified, the other genes were searched by sequence homology only from the functionally confirmed genes. Finally, we investigated the phylogenetic relationships among some Anabaena and Nostoc species, including some newly isolated species.  相似文献   

11.
12.
13.
Previous studies have provided evidence that color measurements enable on site quantification of superficial biofilms, thereby avoiding the need for sampling. In the present study, the efficiency of color measurements to evaluate to what extent pigment production is affected by environmental parameters such as light intensity, combined nitrogen and nutrient availability, was tested with two cyanobacteria, Nostoc sp. strains PCC 9104 and PCC 9025, which form biofilms on stone. Both strains were acclimated, in aerated batch cultures for 2 weeks, to three different culture media: BG-11, BG-110, and BG-110/10 at either high or low light intensity. The content of chlorophyll a, carotenoids, and phycocyanins was measured throughout the experiment, together with variations in the color of the cyanobacteria, which were represented in the CIELAB color space. The results confirmed that the CIELAB color parameters are correlated with pigment content in such a way that variations in the latter are reflected as variations in color.  相似文献   

14.
Two mutants that grew faster than the wild-type (WT) strain under high light conditions were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in ssl1690 encoding NdhO. Deletion of ndhO increased the activity of NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET), while overexpression decreased the activity. Although deletion and overexpression of ndhO did not have significant effects on the amount of other subunits such as NdhH, NdhI, NdhK, and NdhM in the cells, the amount of these subunits in the medium size NDH-1 (NDH-1M) complex was higher in the ndhO-deletion mutant and much lower in the overexpression strain than in the WT. NdhO strongly interacts with NdhI and NdhK but not with other subunits. NdhI interacts with NdhK and the interaction was blocked by NdhO. The blocking may destabilize the NDH-1M complex and repress the NDH-CET activity. When cells were transferred from growth light to high light, the amounts of NdhI and NdhK increased without significant change in the amount of NdhO, thus decreasing the relative amount of NdhO. This might have decreased the blocking, thereby stabilizing the NDH-1M complex and increasing the NDH-CET activity under high light conditions.  相似文献   

15.
The effects of nitrogen source (N(2), NO(3)(-) and NH(4)(+)) on scytonemin synthesis were investigated in the heterocystous cyanobacterium Nostoc punctiforme PCC 73102. With the required UVA radiation included, Nostoc synthesized three to seven times more scytonemin while fixing nitrogen than when utilizing nitrate or ammonium. A similar increase in scytonemin synthesis occurred when nitrate or ammonium became depleted by growth and Nostoc switched to diazotrophic metabolism with the differentiation of heterocysts. In addition, UVA-exposed cultures grown in medium with both NO(3)(-) and NH(4)(+) synthesized some scytonemin but synthesis increased when NH(4)(+) was depleted and growth had become dependent on NO(3)(-) reduction. Although the mechanism is unclear, these results suggest that the greater the restriction in nitrogen accessibility, the greater the production of scytonemin. Perhaps the entire response may be an interaction between this restriction and a resultant sensitivity to UV radiation that acts as a cue for determining the level of scytonemin synthesis. Scytonemin is a stable UVR screening compound and appears to be synthesized by cyanobacteria as a long-term solution for reducing UVR exposure and damage, but mainly or solely, when metabolic activity is absent. It is likely that during metabolic resurgence, the presence of a dense scytonemin sheath would facilitate the recovery process without the need for active defenses against UV radiation.  相似文献   

16.
In the case of nitrogenase-based photobiological hydrogen production systems of cyanobacteria, the inactivation of uptake hydrogenase (Hup) leads to significant increases in hydrogen production activity. However, the high-level-activity stage of the Hup mutants lasts only a few tens of hours under air, a circumstance which seems to be caused by sufficient amounts of combined nitrogen supplied by active nitrogenase. The catalytic FeMo cofactor of nitrogenase binds homocitrate, which is required for efficient nitrogen fixation. It was reported previously that the nitrogenase from the homocitrate synthase gene (nifV) disruption mutant of Klebsiella pneumoniae shows decreased nitrogen fixation activity and increased hydrogen production activity under N2. The cyanobacterium Nostoc sp. strain PCC 7120 has two homocitrate synthase genes, nifV1 and nifV2, and with the ΔhupL variant of Nostoc sp. strain PCC 7120 as the parental strain, we have constructed two single mutants, the ΔhupL ΔnifV1 strain (with the hupL and nifV1 genes disrupted) and the ΔhupL ΔnifV2 strain, and a double mutant, the ΔhupL ΔnifV1 ΔnifV2 strain. Diazotrophic growth rates of the two nifV single mutants and the double mutant were decreased moderately and severely, respectively, compared with the rates of the parent ΔhupL strain. The hydrogen production activity of the ΔhupL ΔnifV1 mutant was sustained at higher levels than the activity of the parent ΔhupL strain after about 2 days of combined-nitrogen step down, and the activity in the culture of the former became higher than that in the culture of the latter. The presence of N2 gas inhibited hydrogen production in the ΔhupL ΔnifV1 ΔnifV2 mutant less strongly than in the parent ΔhupL strain and the ΔhupL ΔnifV1 and ΔhupL ΔnifV2 mutants. The alteration of homocitrate synthase activity can be a useful strategy for improving sustained photobiological hydrogen production in cyanobacteria.  相似文献   

17.
铁离子是鱼腥蓝细菌PCC7120进行呼吸作用、光合作用和固氮作用中相关酶的重要辅基之一,缺铁将严重影响蓝细菌的生存.富氧的生态环境中铁通常以不溶的Fe3+形式存在,不易被细胞吸收利用.低铁条件下,鱼腥蓝细菌PCC7120分泌能螯合铁离子的嗜铁素,通过外膜上相应的转运体将嗜铁素-铁复合物转运到细胞内.综述了近年来在嗜铁素的种类及其生物合成途径、铁吸收系统的组成和功能等方面的最新进展,分析了铁吸收系统的调控机制,为进一步开展鱼腥蓝细菌铁吸收机制的研究提供依据.  相似文献   

18.
A 21-kDa novel polypeptide which possesses characteristics normally considered to be diagnostic of the calmodulin present in eukaryotic cells was isolated from the cyanobacterium Nostoc sp. PCC 6720. The major technique employed in the isolation of the polypeptide was ion-exchange chromatography on a Mono Q column. The 21-kDa polypeptide was shown: to activate pea NAD kinase in vitro, in a Ca2+ requiring reaction; to react with polyclonal antibodies raised against spinach calmodulin, but not with those raised against bovine brain calmodulin; and to exhibit a Ca2+ dependent shift in migration during SDS-PAGE.Abbreviations ATCC American Type Culture Collection - DCPIP 2,6-dichlorophenylindophenol - PBS Phosphate buffered saline  相似文献   

19.
Phytochelatins (PCs) are well known as the heavy metal-detoxifying peptides in higher plants, eukaryotic algae, fungi, and nematode. In contrast, neither PCs nor PC synthase genes have ever been identified in any prokaryotes. The genome sequences for the cyanobacterium Nostoc sp. PCC 7120 were recently completed and allowed us to identify a gene encoding a PC synthase-like protein, termed alr0975. The predicted product of alr0975 contains the conserved N-terminal domain but not the variable C-terminal domain found in eukaryotic PC synthases. The recombinant alr0975 protein strongly catalyzed the first step of PC synthesis, in which glutathione (GSH) is converted to gamma-glutamylcysteine (gamma-EC), although the protein only weakly catalyzed the second step of PC synthesis, namely the transfer of gamma-EC moiety to an acceptor GSH molecule to form PC(2). These results suggest alr0975 protein may be a more primitive form of the PC synthases found in eukaryotes.  相似文献   

20.
Arginase, ornithine carbamoyl transferase (OCT) and arginine deiminase activities were found in cell-free extracts of Nostoc PCC 73102, a free-living cyanobacterium originally isolated from the cycad Macrozamia. Addition of either arginine, ornithine or citrulline to the growth medium induced significant changes in their in vitro activities. Moreover, growth in darkness, compared to in light, induced higher in vitro activities. The in vitro activities of arginase and arginine deiminase, two catabolic enzymes primarily involved in the breakdown of arginine, increased substantially by a combination of growth in darkness and addition of either arginine, or ornithine, to the growth medium. The most significant effects on the in vitro OCT activities where observed in cells grown with the addition of ornithine. Cells grown in darkness exhibited about 6% of the in vivo nitrogenase activity observed in cells grown in light. However, addition of external carbon (glucose and fructose) to cells grown in darkness resulted in in vivo nitrogenase activity levels similar to, or even higher than, cells grown in light. Growth with high in vivo nitrogenase activity or in darkness with the addition of external carbon, resulted in repressed levels of in vitro arginase and arginine deiminase activities. It is suggested that nitrogen starvation induces a mobilization of the stored nitrogen, internal release of the amino compound arginine, and an induction of two catabolic enzymes arginase and arginine deiminase. A similar and even more pronunced induction can be observed by addition of external arginine to the growth medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号