首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flurbiprofen has been shown to inhibit cyclo-oxygenase metabolism of arachidonic acid to thromboxane A2 (TxA2), resulting in the inhibition of platelet aggregation. Recently, our laboratory reported that the "irreversible" phase of platelet aggregation and adhesion were regulated, in part, by the lipoxygenase metabolism of arachidonic acid to 12-hydroxy-eicosatetraenoic acid (12-HETE) in platelets, and that selective inhibition of one enzyme i.e. either cyclo-oxygenase or lipoxygenase, resulted in paradoxical effects on the metabolism of arachidonic acid and platelet response related to the other pathway. Therefore, we performed experiments to assess the relative effects of flurbiprofen on TxA2 and 12-HETE synthesis, and on collagen-induced platelet aggregation and platelet adhesion to collagen-coated surfaces. "Irreversible" collagen-induced platelet aggregation was only partially inhibited by pre-incubation with 1 x 10(-6) M flurbiprofen, while TxA2 production was elevated and 12-HETE production was maximally inhibited in these platelets. At this concentration of flurbiprofen (1 x 10(-6)M), collagen-induced platelet adhesion was also reduced by 50%. At higher concentrations of flurbiprofen, both platelet aggregation and adhesion were further reduced, with a corresponding inhibition of TxA2 production. Thus it appears that the lipoxygenase pathway of arachidonic acid metabolism in platelets is not only inhibited by flurbiprofen, but is more sensitive to inhibition by flurbiprofen than the cyclo-oxygenase pathway. This differential effect of flurbiprofen on arachidonic acid metabolism in the platelet is related to differential effects on platelet function.  相似文献   

2.
3.
Although it is already known that prostaglandins inhibit lymphocyte responses to mitogens the role of other products of arachidonic acid (AA) metabolism has not previously been investigated. Various inhibitors of AA metabolism were studied for their effects on mitogenesis in human lymphocytes, including imidazole, benzylimidazole, N-0164, L-8027, 5, 8, 11, 14 eicosatetraynoic acid, nordihydroguaiaretic acid, indomethacin, and aspirin. Selective or partially selective inhibitors of thromboxane synthesis, such as imidazole, benzylimidazole, N-0164, and L-8027 inhibited the mitogenic response at concentrations that also substantially affect thromboxane B2 synthesis in platelet-free lymphocyte preparations. Since indomethacin failed to reverse the inhibition by imidazole or N-0164, it is probably due to decreased thromboxane synthesis per se rather than secondary increases in prostaglandin synthesis. Eicosatetraynoic acid and nordihydroguaiaretic acid were more effective inhibitors of mitogenesis than of thromboxane synthesis. Since these agents also affect the lipoxygenase pathway, it is possible that part of their action is at this level. Thus, in addition to the inhibitory effects of prostaglandins on mitogenesis, other products of AA metabolism may promote the response.  相似文献   

4.
Dialyzed fetal calf serum (FCS) was a poor source of serum supplement for in vitro cytotoxic T lymphocyte (CTL) generation. Serum dialysate or biotin fully restored dialyzed FCS to activities comparable to FCS. It was concluded that the active principal in serum dialysate was biotin because its further dialysis was prevented by addition of avidin, a biotin binding protein. Avidin inhibited CTL generation only when added during the early stages of mixed lymphocyte cultures, whereas biotin could restore activity even if added at a later time. When FCS enriched in a fatty acid mixture, or in palmitic acid alone, was used as the serum supplement, avidin-mediated inhibition of CTL generation was markedly reduced. Avidin also inhibited CTL generation in cultures containing killed macrophages as the stimulating cell, and supplemented with Con-A-induced spleen cell supernatant, a source of helper factor(s). These experiments suggest that fatty acid biosynthesis and the attendant synthesis of structural lipids of appropriate fatty acid composition play a prominent role in the generation of CTL  相似文献   

5.
The effects of the arachidonic acid metabolites prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) on the in vitro random migration of cloned murine T lymphocytes (derived from limiting dilution analysis of a C57BL/6 anti-DBA/2 mixed leukocyte culture) were examined. Experiments were also performed to study the effects of the cyclooxygenase inhibitor indomethacin on both random lymphocyte migration and lymphocyte migration in the presence of PGE2. The responses of cloned lymphocytes to PGE2 and LTB4 were compared with those of unsensitized lymph node lymphocytes. PGE2 at 100 ng/ml significantly inhibited (p less than 0.001) the in vitro migration of helper clones of T lymphocytes, but had no effect on random migration of cytotoxic T cells or helper independent cytotoxic (HIT) cloned cells. In contrast, LTB4 significantly (p less than 0.001) enhanced the random locomotion of helper, cytotoxic, and "HIT" cloned cells at 0.1 and 0.3 ng/ml. The effects of both PGE2 and LTB4 were found to be completely reversible by cell washing. Indomethacin (10(-7) M) did not alter random migration of any of the clones, and in particular, did not affect the inhibition of helper lymphocyte migration induced by PGE2. Unsensitized bulk lymph node lymphocyte migration was not affected by either PGE2 or LTB4. The results suggest that modulation of lymphocyte locomotor function by environmental stimuli may depend on cellular activation, and the locomotor responses of activated lymphocytes to arachidonic acid metabolites may be subset specific.  相似文献   

6.
Because products of arachidonic acid metabolism, particularly the PG, have been implicated as modulators of growth and differentiation of adult thymocytes, we investigated relations between metabolism of arachidonic acid and growth, as well as differentiation, of thymocytes during fetal thymic organ culture. Fetal thymic cells synthesized immunoreactive PGE2 during organ culture and were found to be capable of metabolizing exogenous arachidonic acid to products that cochromatographed with authentic 6-keto-PGF1 alpha, PGE2, PGF2 alpha. Synthesis of these products and growth and expression of Thy-1 and Lyt-1 Ag were inhibited by culture of fetal thymic lobes with indomethacin, a cyclooxygenase inhibitor, as well as meclofenamate and eicosatetraynoic acid, inhibitors of cyclooxygenase and lipoxygenase pathways of arachidonic acid metabolism. Only indomethacin inhibited expression of Lyt-2. Culture with eicosatetraynoic acid also inhibited the capacity of thymic lobes to synthesize 15-hydroxyeicosatetraenoic acid-like products. The inhibitory effects of indomethacin on growth and expression of Thy-1 were partially reversed by simultaneous addition of arachidonic acid. Thus, fetal thymic cells appear to require an intact cyclooxygenase, and possibly lipoxygenase, pathway of arachidonic acid metabolism for growth and differentiation. These data also provide evidence that Lyt-1 and Lyt-2 may be regulated by different requirements with respect to arachidonic acid metabolism.  相似文献   

7.
Thrombin and certain prostaglandins are both capable of stimulating the proliferation of cultured cells. Since thrombin stimulates the release and metabolism of arachidonic acid, the precursor of prostaglandins, we examined the relationship between this release and metabolism and the stimulation of cell division in cultured fibroblasts. We also examined the role of prostaglandin synthesis in thrombin-stimulated phosphatidylinositol synthesis. The data in this report demonstrate that the release and metabolism of arachidonic acid are not necessary for thrombin-stimulated cell division. The presence of a low concentration of chymotrypsin prevented thrombin-stimulated arachidonic acid release and metabolism without affecting the stimulation of cell division. Furthermore, thrombin-stimulated cell division occurred in the presence of indomethacin concentrations that prevented cyclooxygenase-mediated metabolism of arachidonic acid. The following experiments showed that thrombin-stimulated phosphatidylinositol synthesis was brought about by a cyclooxygenase-mediated metabolite(s) of arachidonic acid. Indomethacin inhibited the cyclooxygenase-mediated metabolism of arachidonic acid without affecting the thrombin-stimulated release of arachidonic acid. Indomethacin also inhibited thrombin-stimulated phosphatidylinositol synthesis. The dose dependence of this inhibition paralleled the inhibition by indomethacin of cyclooxygenase-mediated metabolism of arachidonic acid. In addition, prostaglandin F2 alpha stimulated phosphatidylinositol synthesis in the presence of indomethacin concentrations which prevented thrombin-stimulated phosphatidylinositol synthesis.  相似文献   

8.
Summary We described that oxygen deprivation induced in cultures of heart muscle cells, biochemical events similar to those described in ischemic tissue: arachidonic acid liberation, loss of membrane phospholipids and increase in neutral lipids. Since glucocorticoids have been described to inhibit phospholipase activity and to exert beneficial effects during myocardial infarction, we studied in our experimental model the action of dexamethasone on the metabolism of arachidonic acid and on the synthesis of immunoreactive prostaglandins. Our results show that heart muscle cells produce prostaglandin E2 and 6-keto-prostaglandin-F1. This synthesis, inhibited by dexamethasone (70% inhibition), decreased after oxygen-deprivation (–45%). The effect of oxygen deprivation and dexamethasone (–60%) are not additive. Moreover, steroid treatment failed to counteract the loss of polyunsaturated fatty acids from the phospholipids, the increase in neutral lipids and the liberation of arachidonic acid induced by oxygen deprivation in muscle cells. These results may indicate that the cardiovascular effects of glucosteroids are not the consequence of a direct effect on heart metabolism at cellular level.  相似文献   

9.
Studies from our laboratory have suggested a role for ferrous iron in the metabolism of arachidonic acid and demonstrated that inhibitors of prostaglandin synthesis exert their effect by complexing with the heme group of cyclooxygenase. Docosahexaenoic acid (DHA) is a potent competitive inhibitor of arachidonic acid metabolism by sheep vesicular gland prostaglandin synthetase. In this study we have evaluated the effect of exogenously added DHA on platelet function and arachidonic acid metabolism. DHA at 150 microM concentration inhibited aggregation of platelets to 450 microM arachidonic acid. At this concentration DHA also inhibited the second wave of the platelet response to the action of agonists such as epinephrine, adenosine diphosphate and thrombin. Inhibition induced by this fatty acid could be overcome by the agonists at higher concentrations. DHA inhibited the conversion of labeled arachidonic acid to thromboxane by intact, washed platelet suspensions. However, platelets in plasma incubated first with DHA then washed and stirred with labeled arachidonate generated as much thromboxane as control platelets. These results suggest that the polyenoic acids, if released in sufficient quantities in the vicinity of cyclooxygenase, could effectively compete for the heme site and inhibit the conversion of arachidonic acid.  相似文献   

10.
Leptin, a hormone produced in adipocytes, is a key signal in the regulation of food intake and energy expenditure. Several studies have suggested that leptin can be regulated by macronutrients intake. Arachidonic acid is a dietary fatty acid known to affect cell metabolism. Controversial effects of this fatty acid on leptin have been reported. The aim of this experimental trial was to evaluate the effect of the arachidonic acid on basal and insulin-stimulated leptin secretion and expression in isolated rat adipocytes. Because insulin-stimulated glucose metabolism is an important regulator of leptin expression and secretion by the adipocytes, the effects of the arachidonic acid on indices of adipocyte metabolism were also examined. Isolated adipocytes were incubated with arachidonic acid (1-200 microM) in the absence and presence of insulin (1.6 nM). Leptin secretion and expression, glucose utilization and lactate production were determined at 96 h. The arachidonic acid (200 microM) inhibited both the basal and insulin stimulated leptin secretion and expression. Glucose utilization was not affected by the acid. Basal lactate production was increased by the fatty acid at the highest concentration used (200 microM), however lactate production in presence of insulin was not modified. Finally, the percentage of glucose carbon released as lactate was significantly increased (200 microM). These results suggest that the inhibitory effect of the arachidonic acid on leptin secretion and expression may be due, al least in part, to the increase in the anaerobic utilization of glucose.  相似文献   

11.
Effects of thromboxane A2 on lymphocyte proliferation   总被引:2,自引:0,他引:2  
The main cyclooxygenase-dependent arachidonic acid derivatives produced by monocytes and macrophages have been shown to be thromboxane A2 and prostaglandin E2. The immunomodulatory effects of thromboxane A2 were examined using a specific thromboxane synthase inhibitor (dazoxiben), a thromboxane A2 analog (U46619), and a thromboxane A2 receptor blocker (BM13.177). Dazoxiben inhibited lymphocyte proliferation in response to mitogens (PHA and OKT3), but also reoriented cyclic endoperoxide metabolism towards the production of prostaglandin E2. Prostaglandin E2 has been shown previously to inhibit mitogen-induced lymphocyte proliferation. U46619, a stable thromboxane A2 analog, slightly enhanced lymphocyte responses to mitogens in the presence of dazoxiben and in the presence of a cyclooxygenase inhibitor (indomethacin). This occurred at concentrations of U46619 which are probably supraphysiological in view of the short half-life of natural thromboxane A2. Finally, the thromboxane A2 receptor blocker BM13.177 did not have any effect on mitogen-induced lymphocyte proliferation. It is concluded that thromboxane A2 has no or minimal modulatory effects on lymphocyte proliferative responses to mitogens and that the effect of thromboxane A2 synthase inhibition is rather due to reorientation of cyclic endoperoxide metabolism, resulting in increased prostaglandin E2 production.  相似文献   

12.
The mammalian sperm acrosome reaction (AR) is a fusion and fenestration of sperm head membranes which is essential for fertilization. Our earlier work demonstrated that arachidonic acid could stimulate the AR 15 min after addition to hamster sperm capacitated by incubation for 4.5 h. The present study was undertaken to determine whether inhibitors of arachidonic acid metabolism could affect the stimulation of the AR by arachidonic acid and whether products of its metabolism could stimulate the AR. Phenidone or nordihydroguaiaretic acid, inhibitors of both the cyclo-oxygenase and lipoxygenase pathways of arachidonic acid metabolism, and docosahexaenoic acid, a cyclo-oxygenase pathway inhibitor, inhibited the AR induced by arachidonic acid. PGE2, a product of the cyclo-oxygenase pathway of arachidonic acid metabolism and 5- or 12-hydroxyeicosatetraenoic acid (HETEs) products of the lipoxygenase pathway, stimulated the AR when added to sperm capacitated by incubation for 4.5 h. Prostaglandins not derived from arachidonic were also tested: PGE1 stimulated the AR, but PGF1 alpha and PGA2 did not. We suggest that arachidonic acid metabolites produced by the sperm and by the female reproductive tract are important for the mammalian sperm AR.  相似文献   

13.
Immunoregulatory activity of culture-induced suppressor macrophages   总被引:2,自引:0,他引:2  
Rat splenic cells precultured in vitro for 5 days exhibited marked suppressive activity on the secondary cytotoxic T lymphocyte (CTL) response to a Gross virus-induced lymphoma. Suppressive activity was produced by macrophages (MØ) rather than lymphocytes and as low as 1% MØ content was sufficient to achieve completely inhibited CTL responses. Aspirin, indomethacin, and d,l-6-chloro-2-methylcarbazole-2-acetic acid prevented cultured splenic MØ from exerting their inhibitory effect, thereby suggesting a role for prostaglandins in suppression. Events which occurred within the first 24 to 48 hr of the CTL response were susceptible to the suppressive action of MØ since normal CTL responses were obtained if suppressive MØ were added later than Day 2 or if indomethacin was added within the first 24 to 48 hr of culture. Two processes of lymphocyte activation, namely blast transformation and DNA synthesis, were inhibited in the presence of suppressive MØ. However, suppression of these processes did not result in the loss of CTL progenitor cells since CTL responses that were inhibited in the presence of suppressive MØ proceeded normally following their removal.  相似文献   

14.
Mitogen stimulation of lymphocytes activates phospholipase A2, which in turn generates arachidonic acid by its action on phospholipids. Cyclooxygenases catalyze the conversion of arachidonic acid to prostaglandins and related cyclic compounds, whereas lipoxygenases direct the formation of straight-chain hydroxylated derivatives such as, for example, the leukotrienes. The studies in this report suggest a correlation between arachidonic acid metabolism and production of the lymphokine, interleukin-2 (IL-2). Inhibitors of phospholipase A2 activation, mepacrine, tetracaine, glucocorticoids and estradiol, all inhibited the expression of IL-2 activity in concanavalin A-stimulated mouse spleen cells. Inhibition of cyclooxygenase and lipoxygenase activities also resulted in decreased IL-2 production. This was established by the use of the inhibitors 5,8,11,14-eicosatetraynoic acid (ETYA), indomethacin, and nordihydroguajaretic acid (NDGA). A more direct attempt at influencing the arachidonic acid metabolism by addition of the fatty acid to IL-2 production cultures demonstrated that arachidonic acid bound very tightly to IL-2. Extensive dialysis or partial purification of the lymphokine by reverse-phase high-performance liquid chromatography failed to remove the bound arachidonic acid. It was shown, however, that no covalent interactions were involved. In addition to an active arachidonic acid metabolism, continuous protein synthesis was required for expression of IL-2 activity. Thus incubation with puromycin inhibited IL-2 production.  相似文献   

15.
Peritoneal macrophages from normal mice were labelled with [1-14C]arachidonic acid after 2 h culture. The uptake of arachidonic acid into cellular lipids was rapid, time-dependent and can be represented within the limit of the studied times by a parabolic regression. Indomethacin decreased the kinetics of uptake; this inhibition is dose-dependent. Chloramphenicol had no effect on macrophage [1-14C]arachidonic acid uptake. After 3 h, the radioactivity was recovered in phosphatidylcholine (38.6%), phosphatidylserine-phosphatidylinositol (8.5%), phosphatidylethanolamine (22.1%), diacylglycerol (2.9%), triacyglycerol (2%) and cholesteryl ester (11.8%). Chloramphenicol and indomethacin inhibited the labelling of phospholipids and stimulated the labelling of neutral lipids and cholesteryl ester. Studies on arachidonic acid release from glycerolipids of prelabelled 2-h cultured macrophages showed that phosphatidylcholine and phosphatidylserine-phosphatidylinositol are the major source of arachidonic acid in prostaglandin synthesis in macrophages stimulated or not by zymosan. Chloramphenicol inhibited release of fatty acid from phosphatidylcholine and phosphatidylserine-phosphatidylinositol; indomethacin had no effect. Both drugs inhibited prostaglandin synthesis in stimulated or non-stimulated macrophages. In the culture medium, indomethacin increased the release of free arachidonic acid by stimulated macrophages. Possible explanations for the mechanisms underlying these effects are presented. It is concluded that indomethacin and chloramphenicol exert profound effects on the metabolism of phospholipids and its zymosan activation. Chloramphenicol appears to impair prostaglandin synthesis through several mechanisms and especially through phospholipase inhibition.  相似文献   

16.
The metabolism of exogenous and endogenous [14C] arachidonc acid was studied in purified human peripheral blood lymphocytes carefully freed of contaminating platelets. Formation of products co-migrating in a number of different solvent systems with 5-hydroxyarachidonic acid (5-HETE), thromboxane B2 (TB2), prostaglandins and probably 12-hydroxyarachidonic acid (12-HETE) was demonstrated. In cells prelabeled with [14C] arachidonic acid, phytohemagglutinin (PHA) produced substantial (3.5- to 12-fold) increases in 5-HETE, 12-HETE, and TB2 radiolabeling. The metabolism of exogenous [14C] arachidonic acid was much less affected by PHA. Since PHA releases cell-bound arachidonic acid, it appears that the response involving endogenous label is due to increased availability of free arachidonic acid rather than induction of arachidonic acid-metabolizing enzymes. Various inhibitors of arachidonic acid metabolism exerted similar effects in lymphocytes to those described previously in other tissues providing a possible basis for interpreting their inhibitory effects on mitogenesis, described in the preceding paper.  相似文献   

17.
Carnitine is a physiological cellular constituent that favors intracellular fatty acid transport, whose role on platelet function and O(2) free radicals has not been fully investigated. The aim of this study was to seek whether carnitine interferes with arachidonic acid metabolism and platelet function. Carnitine (10-50 microM) was able to dose dependently inhibit arachidonic acid incorporation into platelet phospholipids and agonist-induced arachidonic acid release. Incubation of platelets with carnitine dose dependently inhibited collagen-induced platelet aggregation, thromboxane A(2) formation, and Ca(2+) mobilization, without affecting phospholipase A(2) activation. Furthermore, carnitine inhibited platelet superoxide anion (O(2)(-)) formation elicited by arachidonic acid and collagen. To explore the underlying mechanism, arachidonic acid-stimulated platelets were incubated with NADPH. This study showed an enhanced platelet O(2)(-) formation, suggesting a role for NADPH oxidase in arachidonic acid-mediated platelet O(2)(-) production. Incubation of platelets with carnitine significantly reduced arachidonic acid-mediated NADPH oxidase activation. Moreover, the activation of protein kinase C was inhibited by 50 microM carnitine. This study shows that carnitine inhibits arachidonic acid accumulation into platelet phospholipids and in turn platelet function and arachidonic acid release elicited by platelet agonists.  相似文献   

18.
The pharmacological profiles of the endocannabinoid anandamide and exogenous cannabinoids (e.g., Delta9-tetrahydrocannabinol) are similar, but not exactly the same. One notable difference is that anandamide's in vivo effects in mice are not blocked by the brain cannabinoid (CB1) receptor antagonist SR141716A. The degree to which the rapid metabolism of anandamide to arachidonic acid might be involved in this unexpected lack of effect was the focus of this study. Mice were tested in a tetrad of tests sensitive to cannabinoids, consisting of spontaneous locomotion, ring immobility, rectal temperature and tail flick nociception. Anandamide and arachidonic acid produced a similar profile of effects, but neither drug was blocked by SR141716A. When hydrolysis of anandamide was inhibited by an amidase inhibitor (phenylmethyl sulfonyl fluoride; PMSF), however, SR141716A significantly attenuated anandamide's effects but did not completely block them. Similarly, the effects of the metabolically stable anandamide analog O-1812 were attenuated by SR141716A. The role of oxidative metabolism in anandamide's effects in the tetrad was also investigated through pharmacological modulation of cyclooxygenase and lipoxygenase, two major classes of enzymes that degrade arachidonic acid. Whereas the non-selective cyclooxygenase inhibitor ibuprofen blocked the in vivo effects of arachidonic acid, it did not alter anandamide's effects. Other modulators of the cyclooxygenase and lipoxygenase pathways also failed to block anandamide's effects. Together, these results offer partial support for a pharmacokinetic explanation of the failure of SR141716A to antagonize the effects of anandamide; however, they also suggest that non-CB1, non-CB2 receptors may be involved in mediation of anandamide's in vivo actions, particularly at higher doses.  相似文献   

19.
The comparative effects of three so called "thromboxane-synthetase-inhibitors" (imidazole, N-0164, and U-51605) on arachidonate metabolism and on platelet aggregation were studied. All three compounds blocked platelet microsomal thromboxane synthesis from prostaglandin endoperoxides without affecting platelet adenyl cyclase. Imidazole, blocked thromboxane synthesis in intact platelets either from arachidonic acid or PGH2, without affecting aggregation. U-51605 simultaneously inhibited thromboxane synthesis and platelet suspension aggregation. N-0164 inhibited aggregation probably at extracellular sites, at concentrations that did not alter arachidonate or PGH2 metabolism. High concentrations of N-0164 simultaneously inhibited PG cyclo-oxygenase and thromboxane synthetase. The lack of specificity of these compounds requires that other actions of these compound must be considered when they are used as pharmacological tools to inhibit thromboxane synthetase.  相似文献   

20.
In vitro studies of murine eosinophils indicated that lymphokine-stimulated metabolism of arachidonic acid by a lipoxygenase pathway was required for a migration response. In this study we tested the effects of drugs that affect arachidonic acid metabolism on lymphokine-dependent eosinophil accumulation in vivo by the use of 111In-labeled eosinophils. Indomethacin at different dosages either stimulated (1 mg/kg) or partially inhibited (5 to 25 mg/kg) eosinophil accumulation. Aspirin had no significant effects in doses up to 50 mg/kg. BW755C, a drug that inhibits both cyclooxygenase and lipoxygenase, dramatically inhibited eosinophil accumulation at 25 to 125 mg/kg. Pretreatment in vitro of 111In-labeled eosinophils with some drugs known to inhibit lipoxygenase reduced their subsequent accumulation at a lymphokine-injected site in vivo, but the high concentrations required for inhibition suggested that the effects of the drugs were at least partially reversible. Pretreatment with indomethacin did not inhibit the ability of 111In-labeled eosinophils to accumulate at the site of lymphokine injection in vivo. It may be anticipated from these results that drugs inhibiting lipoxygenase will have critical effects on manifestations of immunologic reactions that recruit eosinophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号