共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Lei Wei Katsuaki Kanbe Xiaochun Wei Xiaojuan Sun Qian Chen 《Developmental biology》2010,341(1):236-26805
During endochondral bone formation, chondrocytes undergo differentiation toward hypertrophy before they are replaced by bone and bone marrow. In this study, we found that a G-protein coupled receptor CXCR4 is predominantly expressed in hypertrophic chondrocytes, while its ligand, chemokine stromal cell-derived factor 1 (SDF-1) is expressed in the bone marrow adjacent to hypertrophic chondrocytes. Thus, they are expressed in a complementary pattern in the chondro-osseous junction of the growth plate. Transfection of a CXCR4 cDNA into pre-hypertrophic chondrocytes results in a dose-dependent increase of hypertrophic markers including Runx2, Col X, and MMP-13 in response to SDF-1 treatment. In organ culture SDF-1 infiltrates cartilage and accelerates growth plate hypertrophy. Furthermore, a continuous infusion of SDF-1 into the rabbit proximal tibial physis results in early physeal closure, which is accompanied by a transient elevation of type X collagen expression. Blocking SDF-1/CXCR4 interaction suppresses the expression of Runx2. Thus, interaction of SDF-1 and CXCR4 is required for Runx2 expression. Interestingly, knocking down Runx2 gene expression results in a decrease of CXCR4 mRNA levels in hypertrophic chondrocytes. This suggests a positive feedback loop of stimulation of chondrocyte hypertrophy by SDF-1/CXCR4, which is mediated by Runx2. 相似文献
3.
Bone morphogenetic proteins (BMPs) play critical roles at various stages in endochondral bone formation. In vitro studies have demonstrated that Smad7 regulates transforming growth factor-beta and BMP signals by inhibiting Smad pathways in chondrocytes. However, the in vivo roles of Smad7 during cartilage development are unknown. To investigate distinct effects of Smad7 at different stages during chondrocyte differentiation, we generated a series of conditional transgenic mice that overexpress Smad7 in chondrocytes at various steps of differentiation by using the Cre/loxP system. We generated Col11a2-lacZ(floxed)-Smad7 transgenic mice and mated them with three types of Cre transgenic mice to obtain Smad7(Prx1), Smad7(11Enh), and Smad7(11Prom) conditional transgenic mice. Smad7(Prx1) mice overexpressing Smad7 in condensing mesenchymal cells showed disturbed mesenchymal condensation associated with decreased Sox9 expression, leading to poor cartilage formation. Smad7(11Enh) mice overexpressing Smad7 in round chondrocytes showed decreased chondrocyte proliferation rates. Smad7(11Prom) mice overexpressing Smad7 in flat chondrocytes showed inhibited maturation of chondrocytes toward hypertrophy. Micromass culture of mesenchymal cells showed that BMP-induced cartilaginous nodule formation was down-regulated by overexpression of Smad7, but not Smad6. Overexpression of Smad7, but not Smad6, down-regulated the phosphorylation of p38 MAPKs. Our data provide in vivo evidence for distinct effects of Smad7 at different stages during chondrocyte differentiation and suggest that Smad7 in prechondrogenic cells inhibits chondrocyte differentiation possibly by down-regulating BMP-activated p38 MAPK pathways. 相似文献
4.
5.
Koyama E Golden EB Kirsch T Adams SL Chandraratna RA Michaille JJ Pacifici M 《Developmental biology》1999,208(2):375-391
Retinoids have long been known to influence skeletogenesis but the specific roles played by these effectors and their nuclear receptors remain unclear. Thus, it is not known whether endogenous retinoids are present in developing skeletal elements, whether expression of the retinoic acid receptor (RAR) genes alpha, beta, and gamma changes during chondrocyte maturation, or how interference with retinoid signaling affects skeletogenesis. We found that immature chondrocytes present in stage 27 (Day 5.5) chick embryo humerus exhibited low and diffuse expression of RARalpha and gamma, while RARbeta expression was strong in perichondrium. Emergence of hypertrophic chondrocytes in Day 8-10 embryo limbs was accompanied by a marked and selective up-regulation of RARgamma gene expression. The RARgamma-rich type X collagen-expressing hypertrophic chondrocytes lay below metaphyseal prehypertrophic chondrocytes expressing Indian hedgehog (Ihh) and were followed by mineralizing chondrocytes undergoing endochondral ossification. Bioassays revealed that cartilaginous elements in Day 5.5, 8.5, and 10 chick embryo limbs all contained endogenous retinoids; strikingly, the perichondrial tissues surrounding the cartilages contained very large amounts of retinoids. Implantation of beads filled with retinoid antagonist Ro 41-5253 or AGN 193109 near the humeral anlagens in stage 21 (Day 3.5) or stage 27 chick embryos severely affected humerus development. In comparison to their normal counterparts, antagonist-treated humeri in Day 8.5-10 chick embryos were significantly shorter and abnormally bent; their diaphyseal chondrocytes had remained prehypertrophic Ihh-expressing cells, did not express RARgamma, and were not undergoing endochondral ossification. Interestingly, formation of an intramembranous bony collar around the diaphysis was not affected by antagonist treatment. Using chondrocyte cultures, we found that the antagonists effectively interfered with the ability of all-trans-retinoic acid to induce terminal cell maturation. The results provide clear evidence that retinoid-dependent and RAR-mediated mechanisms are required for completion of the chondrocyte maturation process and endochondral ossification in the developing limb. These mechanisms may be positively influenced by cooperative interactions between the chondrocytes and their retinoid-rich perichondrial tissues. 相似文献
6.
Veronica Ulici Katie D Hoenselaar J Ryan Gillespie Frank Beier 《BMC developmental biology》2008,8(1):40
Background
The majority of our bones develop through the process of endochondral ossification that involves chondrocyte proliferation and hypertrophic differentiation in the cartilage growth plate. A large number of growth factors and hormones have been implicated in the regulation of growth plate biology, however, less is known about the intracellular signaling pathways involved. PI3K/Akt has been identified as a major regulator of cellular proliferation, differentiation and death in multiple cell types. 相似文献7.
Tenascin-W inhibits proliferation and differentiation of preosteoblasts during endochondral bone formation 总被引:1,自引:0,他引:1
Kimura H Akiyama H Nakamura T de Crombrugghe B 《Biochemical and biophysical research communications》2007,356(4):935-941
We identified a cDNA encoding mouse Tenascin-W (TN-W) upregulated by bone morphogenetic protein (Bmp)2 in ATDC5 osteo-chondroprogenitors. In adult mice, TN-W was markedly expressed in bone. In mouse embryos, during endochondral bone formation TN-W was localized in perichondrium/periosteum, but not in trabecular and cortical bones. During bone fracture repair, cells in the newly formed perichondrium/periosteum surrounding the cartilaginous callus expressed TN-W. Furthermore, TN-W was detectable in perichondrium/periosteum of Runx2-null and Osterix-null embryos, indicating that TN-W is expressed in preosteoblasts. In CFU-F and -O cells, TN-W had no effect on initiation of osteogenesis of bone marrow cells, and in MC3T3-E1 osteoblastic cells TN-W inhibited cell proliferation and Col1a1 expression. In addition, TN-W suppressed canonical Wnt signaling which stimulates osteoblastic differentiation. Our results indicate that TN-W is a novel marker of preosteoblasts in early stage of osteogenesis, and that TN-W inhibits cell proliferation and differentiation of preosteoblasts mediated by canonical Wnt signaling. 相似文献
8.
9.
Transforming growth factor β (Tgfb) signaling plays an important role in endochondral ossification. Previous studies of mice in which the Tgfb type II receptor gene (Tgfbr2) was deleted in the limb bud mesenchymal cells or differentiated chondrocytes showed defects in the development of the long bones or the axial skeleton, respectively. Here, we generated mouse embryos in which the Tgfbr2 gene was ablated in hypertrophic chondrocytes. These mice exhibited delays in both the hypertrophic conversion of proliferating chondrocytes and the subsequent terminal chondrocyte differentiation. The expression domains of Col10a1, Matrix metalloproteinase 13, and Osteopontin were small, and the expression of Vascular endothelial growth factor and Platelet endothelial cell adhesion molecule was downregulated. The calcification of the bone collar in the mutant mice was markedly delayed and the periosteum was thin, possibly because of the downregulation of Indian hedgehog expression. We conclude that Tgfb signaling in hypertrophic chondrocytes positively regulates terminal chondrocyte differentiation, angiogenesis in calcified cartilage, and osteogenesis in the bone collar, at least partly through Indian hedgehog signaling in vivo. 相似文献
10.
11.
12.
13.
14.
Opposite functions for E2F1 and E2F4 in human epidermal keratinocyte differentiation 总被引:6,自引:0,他引:6
Paramio JM Segrelles C Casanova ML Jorcano JL 《The Journal of biological chemistry》2000,275(52):41219-41226
15.
Eames BF Yan YL Swartz ME Levic DS Knapik EW Postlethwait JH Kimmel CB 《PLoS genetics》2011,7(8):e1002246
Differentiating cells interact with their extracellular environment over time. Chondrocytes embed themselves in a proteoglycan (PG)-rich matrix, then undergo a developmental transition, termed "maturation," when they express ihh to induce bone in the overlying tissue, the perichondrium. Here, we ask whether PGs regulate interactions between chondrocytes and perichondrium, using zebrafish mutants to reveal that cartilage PGs inhibit chondrocyte maturation, which ultimately dictates the timing of perichondral bone development. In a mutagenesis screen, we isolated a class of mutants with decreased cartilage matrix and increased perichondral bone. Positional cloning identified lesions in two genes, fam20b and xylosyltransferase1 (xylt1), both of which encode PG synthesis enzymes. Mutants failed to produce wild-type levels of chondroitin sulfate PGs, which are normally abundant in cartilage matrix, and initiated perichondral bone formation earlier than their wild-type siblings. Primary chondrocyte defects might induce the bone phenotype secondarily, because mutant chondrocytes precociously initiated maturation, showing increased and early expression of such markers as runx2b, collagen type 10a1, and ihh co-orthologs, and ihha mutation suppressed early perichondral bone in PG mutants. Ultrastructural analyses demonstrated aberrant matrix organization and also early cellular features of chondrocyte hypertrophy in mutants. Refining previous in vitro reports, which demonstrated that fam20b and xylt1 were involved in PG synthesis, our in vivo analyses reveal that these genes function in cartilage matrix production and ultimately regulate the timing of skeletal development. 相似文献
16.
Hany Mohamed Khattab Eriko Aoyama Satoshi Kubota Masaharu Takigawa 《Journal of cell communication and signaling》2015,9(3):247-254
CCN family member 2 (CCN2) has been shown to promote the proliferation and differentiation of chondrocytes, osteoblasts, osteoclasts, and vascular endothelial cells. In addition, a number of growth factors and cytokines are known to work in harmony to promote the process of chondrogenesis and chondrocyte differentiation toward endochondral ossification. Earlier we showed that CCN2 physically interacts with some of them, suggesting that multiple effects of CCN2 on various differentiation stages of chondrocytes may be attributed to its interaction with these growth factors and cytokines. However, little is known about the functional interaction occurring between CCN2 and other growth factors and cytokines in promoting chondrocyte proliferation and differentiation. In this study we sought to shed light on the binding affinities between CCN2 and other essential growth factors and cytokines known to be regulators of chondrocyte differentiation. Using the surface plasmon resonance assay, we analyzed the dissociation constant between CCN2 and each of the following: TGF-β1, TGF-β3, IGF-I, IGF-II, PDGF-BB, GDF5, PTHrP, and VEGF. We found a strong association between CCN2 and VEGF, as well as a relatively high association with TGF-β1, TGF-β3, PDGF-BB, and GDF-5. However, the sensorgrams obtained for possible interaction between CCN2 and IGF-I, IGF-II or PTHrP showed no response. This study underlines the correlation between CCN2 and certain other growth factors and cytokines and suggests the possible participation of such interaction in the process of chondrogenesis and chondrocyte differentiation toward endochondral ossification. 相似文献
17.
Regulation of chondrocyte differentiation by Cbfa1 总被引:18,自引:0,他引:18
18.
19.
Horiki M Imamura T Okamoto M Hayashi M Murai J Myoui A Ochi T Miyazono K Yoshikawa H Tsumaki N 《The Journal of cell biology》2004,165(3):433-445
Biochemical experiments have shown that Smad6 and Smad ubiquitin regulatory factor 1 (Smurf1) block the signal transduction of bone morphogenetic proteins (BMPs). However, their in vivo functions are largely unknown. Here, we generated transgenic mice overexpressing Smad6 in chondrocytes. Smad6 transgenic mice showed postnatal dwarfism with osteopenia and inhibition of Smad1/5/8 phosphorylation in chondrocytes. Endochondral ossification during development in these mice was associated with almost normal chondrocyte proliferation, significantly delayed chondrocyte hypertrophy, and thin trabecular bone. The reduced population of hypertrophic chondrocytes after birth seemed to be related to impaired bone growth and formation. Organ culture of cartilage rudiments showed that chondrocyte hypertrophy induced by BMP2 was inhibited in cartilage prepared from Smad6 transgenic mice. We then generated transgenic mice overexpressing Smurf1 in chondrocytes. Abnormalities were undetectable in Smurf1 transgenic mice. Mating Smad6 and Smurf1 transgenic mice produced double-transgenic pups with more delayed endochondral ossification than Smad6 transgenic mice. These results provided evidence that Smurf1 supports Smad6 function in vivo. 相似文献
20.
Cyclin E overexpression impairs progression through mitosis by inhibiting APC(Cdh1) 总被引:2,自引:0,他引:2 下载免费PDF全文
Keck JM Summers MK Tedesco D Ekholm-Reed S Chuang LC Jackson PK Reed SI 《The Journal of cell biology》2007,178(3):371-385
Overexpression of cyclin E, an activator of cyclin-dependent kinase 2, has been linked to human cancer. In cell culture models, the forced expression of cyclin E leads to aneuploidy and polyploidy, which is consistent with a direct role of cyclin E overexpression in tumorigenesis. In this study, we show that the overexpression of cyclin E has a direct effect on progression through the latter stages of mitotic prometaphase before the complete alignment of chromosomes at the metaphase plate. In some cases, such cells fail to divide chromosomes, resulting in polyploidy. In others, cells proceed to anaphase without the complete alignment of chromosomes. These phenotypes can be explained by an ability of overexpressed cyclin E to inhibit residual anaphase-promoting complex (APC(Cdh1)) activity that persists as cells progress up to and through the early stages of mitosis, resulting in the abnormal accumulation of APC(Cdh1) substrates as cells enter mitosis. We further show that the accumulation of securin and cyclin B1 can account for the cyclin E-mediated mitotic phenotype. 相似文献