首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inulinase gene cloned from the marine-derived yeast Pichia guilliermondii strain 1 was expressed in Pichia pastoris X-33 and the conditions for overexpression of the inulinase were optimized. After the optimization of the conditions for production of the recombinant inulinase, 286.8 ± 5.4 U/ml and 8873 ± 55.3 U/mg of the recombinanat inulinase in the supernatant of the culture of 2-l fermentor were attained at 120 h of the fermentation and fermentation efficiency was 13.04 μg ± 0.4 of protein/ml/d. The recombinant inulinase was purified and characterized. The molecular weight of the purified recombinant inulinase was 57.6 kDa, which was higher than that of the native iunlinase. The optimal pH and temperature of the purified recombinant inulinase were 6.0 and 60 °C, respectively. Other biochemical characteristics of the purified recombinant inulinase were the same as those of the native inulinase produced by the marine-derived P. guilliermondii strain 1. The purified recombinant inulinase also had high exoinulinase activity. Therefore, the recombinant inulinase may have highly potential applications in food and pharmaceutical industies.  相似文献   

2.
As an alternative carotenoid producer, non-carotenogenic Pichia pastoris was chosen for a reddish carotenoid lycopene production because it can grow to high cell density without accumulation of ethanol and utilize various classes of organic materials such as methanol as carbon sources. Two synthetic lycopene-pathway plasmids, pGAPZB-EBI* and pGAPZB-EpBpI*p, were designed and constructed. The pGAPZB-EpBpI*p plasmid encoded three carotenogenic enzymes that were engineered to be targeted into peroxisomes of P. pastoris whereas the pGAPZB-EBI* plasmid encoded non-targeted enzymes. After both plasmids were transformed into P. pastoris, the lycopene-producing clone containing the pGAPZB-EpBpI*p plasmid, referred to as Ω, was selected and used for further optimization study. Of the carbon sources tested, glucose resulted in the highest level of lycopene production in complex and minimal media. Batch fermentation of the Ω clone resulted in the production of 4.6 mg-lycopene/g-DCW, with a concentration of 73.9 mg/l of lycopene in minimal medium. For the first time non-carotenogenic yeast P. pastoris was metabolically engineered by heterologously expressing lycopene-pathway enzymes and the lycopene concentration of 73.9 mg/l was obtained. This serves as a basis for the development of biological process for carotenoids using P. pastoris at a commercial production level.  相似文献   

3.
The phospholipase c (plc) gene from Bacillus cereus was cloned into the pPICZC vector and integrated into the genome of Pichia pastoris. The phospholipase C (PLC) when expressed in P. pastoris was fused to the -factor secretion signal peptide of Saccharomyces cerevisiae and secreted into a culture medium. Recombinant P. pastoris X-33 had a clear PLC band at 28.5 kDa and produced an extracellular PLC with an activity of 678 U mg–1 protein which was more than a recombinant P. pastoris GS115 (552 U mg–1 protein) or KM71H (539 U mg–1 protein). The PLCs were purified using a HiTrap affinity column with a specific activity of 1335 U mg–1 protein by P. pastoris GS115, 1176 U mg–1 protein by P. pastoris KM71H and 1522 U mg–1 protein by P. pastoris X-33. The three recombinant PLCs had high PLC activity in the low pH range of 4-5 and higher thermal stability (e.g. stable at 75 °C) than the wild-type PLC from B. cereus. Some organic solvents, surfactants and metal ions, e.g. methanol, acetone, Co2+ and Mn2+ etc., also influenced the activity of the recombinant PLCs.  相似文献   

4.
To explore a new approach of high expression of -amino acid oxidase (DAAO) in Pichia pastoris, a gene encoding DAAO from Trigonopsis variabilis (TvDAAO gene) deleted intron was prepared by PCR amplification and cloned into the intracellular expression vector pPIC3.5K. The expression plasmid pPIC3.5K-DAAO linearized by SalI was transformed into Pichia pastoris strain GS115 (hismut+). By means of MM and MD plates and PCR, the recombinant P. pastoris strains (his+mut+) were obtained. Activity assay and SDS-PAGE demonstrated that DAAO was intracellularly expressed in P. pastoris with the induction of methanol. The recombinant strain PD27 with the highest expression of DAAO was screened through activity assay and its high-density fermentation was carried out in a 1-l fermentor. Activity assay and SDS-PAGE demonstrated that DAAO was intracellularly expressed in P. pastoris with the induction of methanol. The recombinant cells with high expression of DAAO were screened and the high-density fermentation was carried out in a 1-l fermentor. Interestingly, the DAAO expression level reached up to 473 U/g dry cell weight in fermentation yield. Finally, 1-hexanol was used to break recombinant cells and the specific activity of DAAO was 1.46 U/mg protein in crude extraction.  相似文献   

5.
【背景】植酸是一种能螯合金属离子和蛋白质的有机磷类化合物,广泛存在于植物组织中,影响动物对营养元素的吸收。在饲料中加入植酸酶可有效降解植酸。【目的】构建毕赤酵母异源表达卡氏德巴利酵母(Debaryomyces castellii,D. castellii)植酸酶的菌株,促进卡氏德巴利酵母植酸酶的研究及工业应用。【方法】将卡氏德巴利酵母植酸酶基因进行密码子优化后转入毕赤酵母GS115中,通过筛选多拷贝、敲除蛋白酶、过表达分子伴侣及转运蛋白的方法获取优势菌株。【结果】所得重组菌株GS115/DCphy(ΔPep4)(BFR2)的产酶酶活是低拷贝菌株的7倍。【结论】研究结果为卡氏德巴利酵母植酸酶的异源表达及潜在工业应用提供了一定的指导。  相似文献   

6.
To improve the expression level of recombinant Drosophila melanogaster AChE (R-DmAChE) in Pichia pastoris, the cDNA of DmAChE was first optimized and synthesized based on the preferred codon usage of P. pastoris. The synthesized AChE cDNA without glycosylphosphatidylinositol (GPI) signal peptide sequence was then ligated to the P. pastoris expression vector, generating the plasmid pPIC9K/DmAChE. The linearized plasmid was homologously integrated into the genome of P. pastoris GS115 via electrotransformation. Finally seven transformants with high expression level of R-DmAChE activity were obtained. The highest production of R-DmAChE in shake-flask culture after 5-day induction by methanol was 718.50 units/mL, which was about three times higher than our previous expression level of native DmAChE gene in P. pastoris. Thus, these new strains with the ability to secret R-DmAChE in the medium could be used for production of R-DmAChE to decrease the cost of the enzyme expense for rapid detection of organophosphate and carbamate insecticide residues.  相似文献   

7.
Staphylokinase (SAK) is a promising thrombolytic agent for treating blood-clotting disorders. Recombinant SAK (rSAK) was produced after integration of the gene into Pichia pastoris genome. The recombinant Pichia carrying multiple insertions of the SAK gene yielded high-level (~1 g/l) of extracellular glycosylated rSAK (~18 kDa) with negligible plasminogen activation activity. Addition of tunicamycin during the induction phase resulted in expression of non-glycosylated and highly active rSAK (~15 kDa) from the same clone. Two simple steps of ion-exchange chromatography produced an homogenous rSAK of >95% purity which suitable for future structural and functional studies.  相似文献   

8.
Human interleukin-8 (hIL-8) is a member of interleukin family which functions as a chemotactic factor as well as an angiogenesis mediator. Previously, a study reported that hIL-8 could be purified from inclusion bodies using a prokaryotic expression system, however, the required re-naturation step limits the recovery of fully active protein. In this study, soluble recombinant hIL-8 was expressed as a secreted protein at high level in Pichia pastoris under the control of AOX1 (alcohol oxidase 1) promoter. A simple purification strategy was established to recover rhIL-8 from the fermentation supernatant. The process includes precipitation with 80% saturation ammonium sulfate and CM Sepharose ion exchange chromatography, yielding 30 mg/L purified rhIL-8 at over 95% purity. The obtained rhIL-8 displays high specific activity, stimulating the migration of mouse neutrophils at concentrations as low as 0.25 ng/mL. Our results demonstrate that P. pastoris expression system is an efficient tool for large-scale manufacture of active recombinant hIL-8 for various applications.  相似文献   

9.
Genes encoding Δ6 desaturase, Δ6 fatty acid elongase, and Δ5 desaturase from the alga, Phaeodactylum tricornutum, were co-expressed in Pichia pastoris to produce arachidonic acid (ARA; 20:4 Δ5, 8, 11, 14) and eicosapentaenoic acid (EPA; 20:5 Δ5, 8, 11, 14, 17). A panel of Pichia clones carrying progressively increasing copies of the heterologous gene expression cassette was created using an in vitro multimerization approach. ARA and EPA accumulated up to 0.3 and 0.1% of total fatty acids, respectively, in the recombinant P. pastoris carrying with double copies of these three heterologous genes, as compared to 0.1 and 0.05%, respectively, in the recombinant P. pastoris with single copy. Yun-Tao Li and Mao-Teng Li contributed equally to this work.  相似文献   

10.
从包含牛流行热病毒G蛋白基因的质粒pMD-G中克隆G1抗原表位区基因,亚克隆进表达载体pPIC9K,构建重组载体pPIC9K-G1,线性化后电转化毕赤酵母GS115,通过G418压力和PCR法筛选阳性重组酵母进行诱导表达。经SDS-PAGE、脱糖基化分析、Western blot、ELISA、兔体免疫实验和特异性分析,表明该基因在GS115中表达并进行了适度的糖基化,表达蛋白有良好的生物学活性和特异性,可作为包被抗原,开发ELISA诊断试剂盒。  相似文献   

11.
从包含牛流行热病毒G蛋白基因的质粒pMD-G中克隆G1抗原表位区基因,亚克隆进表达载体pPIC9K,构建重组载体pPIC9K-G1,线性化后电转化毕赤酵母GS115,通过G418压力和PCR法筛选阳性重组酵母进行诱导表达。经SDS-PAGE、脱糖基化分析、Western blot、ELISA、兔体免疫实验和特异性分析,表明该基因在GS115中表达并进行了适度的糖基化,表达蛋白有良好的生物学活性和特异性,可作为包被抗原,开发ELISA诊断试剂盒。  相似文献   

12.
Pichia pastoris is an efficient host for the expression and secretion of heterologous proteins and the most important feature of P. pastoris is the existence of a strong and tightly regulated promoter from the alcohol oxidase I (AOX1) gene. The AOX1 promoter (pAOX1) has been used to express foreign genes and to produce a variety of recombinant proteins in P. pastoris. However, some efforts have been made to develop new alternative promoters to pAOX1 to avoid the use of methanol. The glyceraldehyde-3-phosphate dehydrogenase promoter (pGAP) has been used for constitutive expression of many heterologous proteins. The pGAP-based expression system is more suitable for large-scale production because the hazard and cost associated with the storage and delivery of large volume of methanol are eliminated. Some important developments and features of this expression system will be summarized in this review. Supported by the National High-tech R&D Program (863 program) (No.2007AA021307).  相似文献   

13.
Apolipoprotein E3 (ApoE3) is an important apolipoprotein in plasma and plays a critical role in lipid transport and cholesterol homeostasis. As the only natural source of this protein, human blood cannot provide large-scale ApoE3 for research and applications. Therefore, in our study, a Pichia pastoris expression system was first used to obtain a high-level expression of secreted, recombinant human ApoE3 (rhApoE3).The full-length sequence encoding ApoE3, gained by RT-PCR, was inserted into the pPICZαC vector and transformed into P. pastoris strain X33, and then the high expression transformants with zeocin resistance were obtained. The growth conditions of the transformant strains were optimized in 50 ml conical tubes including pH and inducing time. After induction with methanol, the expression level of rhApoE3 was 120 mg/L in 80 L fermentor. RhApoE3 was purified more than 94% purity using SP Sepharose ion exchange chromatography and source™ 30RPC. A preliminary biochemical characterization of purified rhApoE3 was performed by analyzing the ability of inhibiting PDGF-induced proliferation of rat coronary artery smooth muscle cells (SMCs), and the results demonstrated that the function of purified rhApoE3 was similar to natural human ApoE3.  相似文献   

14.
鲈鱼生长激素在甲醇酵母中的胞内表达   总被引:9,自引:0,他引:9  
甲醇酵母pichia pastoris是一种理想的真核蛋白高水平表达系统.将鲈鱼(Lateolabrax japonicus)生长激素基因克隆到酵母整合型质粒载体pHIL-D2,经转化his4缺陷型酵母GS115,用PCR方法筛选阳性转化子,并用斑点印迹法筛选多拷贝转化子,经甲醇诱导表达,SDS-PAGE和蛋白质印迹杂交结果证实了表达产物为重组的鲈鱼生长激素.  相似文献   

15.
β-Mannanase catalyzes endo-wise hydrolysis of the backbone of mannan and heteromannan, which are abundant in the cell wall structure of ungerminated leguminous seeds. The mature β-mannanase originated from Bacillus subtilis was expressed in Pichia pastoris, a methylotrophic yeast, using the leader peptide sequence of Saccharomyces cerevisiae α-factor. The cultivation of β-mannanase expressing Pichia pastoris yields up to 1.8 g/L protein. In the supernatant the activity of the 40 kDa—total mannanase attained a level of 1102.0 IU/mL. The properties of the β-mannanase were characterized. Optimum pH and temperature for the recombinant enzyme were 5.5 and 50°C respectively. The enzyme was stable at pH 5.0–10.0 and maintained over 30% original activity after incubating at 70°C for 30 min. __________ Translated from China Biotechnology, 2005, 26(7): 52–56 [译自: 中国生物工程杂志]  相似文献   

16.
Various yeast strains were examined for the microbial reduction of ethyl-3-oxo-3-phenylpropanoate (OPPE) to ethyl-(S)-3-hydroxy-3-phenylpropanoate (S-HPPE), which is the chiral intermediate for the synthesis of a serotonin uptake inhibitor, Fluoxetine. Kluyveromyces lactis KCTC 7133 was found as the most efficient strain in terms of high yield (83% at 50 mM) and high optical purity ee > 99% of S-HPPE. Based on the protein purification, activity analysis and the genomic analysis, a fatty acid synthase (FAS) was identified as the responsible β-ketoreductase. To increase the productivity, a recombinant Pichia pastoris GS115 over-expressing FAS2 (α-subunit of FAS) of K. lactis KCTC7133 was constructed. In the optimized media condition, the recombinant P. pastoris functionally over-expressed the FAS2. Recombinant P. pastoris showed 2.3-fold higher reductase activity compared with wild type P. pastoris. With the recombinant P. pastoris, the 91% yield of S-HPPE was achieved at 50 mM OPPE maintaining the high optical purity of the product (ee > 99%).  相似文献   

17.
原位双膜法是一种基于免疫原理的快速筛选高表达甲醇酵母转化子的方法,即首先将固体培养基上的菌落转印至醋酸纤维素薄膜上,再利用硝酸纤维素薄膜原位捕获穿过醋酸纤维素薄膜的菌落外泌蛋白,然后用免疫方法检测与硝酸纤维素薄膜结合的蛋白.利用此法筛选到人Flt3配体(hFL)的甲醇酵母高表达转化子,液体诱导表达量约20 mg/L.ELISA结果证明,原位双膜法所得的菌落染色强度与该菌落液体诱导表达水平正相关.蛋白质印迹结果显示,培养上清在25 ku处有明显杂交条带,而对照组杂交呈阴性,且表达量随诱导天数增加.原位双膜法是一种良好的筛选方法,可以快捷、准确地筛选高表达酵母转化子.  相似文献   

18.
巴斯德毕赤酵母的基因表达系统研究进展   总被引:52,自引:1,他引:51  
巴斯德毕赤酵母是一种近年来广泛使用的基因表达系统,它具有表达率高、遗传稳定、产物可分泌、发酵工艺成熟等许多优点.综述了该系统在载体类型、载体元件(包括启动子、选择标记和信号肽序列)、受体类型、以及提高整合拷贝数等方面的进展.  相似文献   

19.
Cellular targeting of lycopene biosynthetic enzymes was investigated in Pichia pastoris X-33. Three lycopene pathway enzymes, CrtE, CrtB, and CrtI, were fused to fluorescent EGFPs with or without a peroxisomal targeting sequence (PTS1) and then expressed in P. pastoris. When P. pastoris was grown in YPD, the PTS1 fusion enzymes were found to be localized in peroxisomes, whereas the enzymes not fused with PTS1 were equally distributed throughout the entire cell. A similar targeting pattern was also observed in P. pastoris strains that were grown in peroxisome-proliferating medium, YPOT. Analysis of the fluorescent images of isolated peroxisomes showed that the PTS1 fused enzymes were dominantly present in peroxisomes whereas small amount of the enzymes not fused with PTS1 were non-specifically sent to peroxisomes. These results indicate that PTS1 specifically target lycopene pathway enzymes into peroxisomes and this targeting pathway was strong enough to overcome their inherent targeting program. In conclusion, we first showed that carotenogenic enzymes can be targeted into the specific cellular location of recombinant hosts and this targeting strategy can serve as the basis for the subsequent development of sophisticated pathway engineering in microorganisms.  相似文献   

20.
High-level extracellular production of Fusarium solani cutinase was achieved using a Pichia pastoris expression system. The cutinase-encoding gene was cloned into pPICZαA with the Saccharomyces cerevisiae α-factor signal sequence and methanol-inducible alcohol oxidase promoter by two different ways. The additional sequences of the c-myc epitope and (His)6-tag of the vector were fused to the C-terminus of cutinase, while the other expression vector was constructed without any additional sequence. P. pastoris expressing the non-tagged cutinase exhibited about two- and threefold higher values of protein amount and cutinase activity in the culture supernatant, respectively. After simple purification by diafiltration process, both cutinases were much the same in the specific activity and the biochemical properties such as the substrate specificity and the effects of temperature and pH. In conclusion, the high-level secretion of F. solani cutinase in P. pastoris was demonstrated for the first time and would be a promising alternative to many expression systems previously used for the large-scale production of F. solani cutinase in Saccharomyces cerevisiae as well as Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号