首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorogenic peptide substrates designed to encompass the reportedα-secretory and amyloidogenic cleavage sites of the amyloid-β precursor protein (βPP) were used to analyze proteinase activities in brain extracts from control patients and those with Alzheimer's disease (AD). Activity against the secretory substrate atpH 7.5 in control and AD brains produced a major endopeptidase cleavage at the Lys687-Leu688 bond (βPP770 numbering), consistent with theβPP secretase cleavage. Activity in control brains against the amyloidogenic substrate atpH 7.5 produced one cleavage at the Ala673-Glu674 bond, two residues C-terminal to the amyloidogenic Met-Asp site. However, in three of four AD brains, the major cleavage was at the Asp-Ala bond, one residue from the amyloidogenic site. Both endopeptidase and carboxypeptidase activities in AD brains were lower than in control brains. Proteinase activities against the secretory substrate had a major optimum atpH 3.0–4.0 and another atpH 6.0–7.5. Proteinase activities against the amyloidogenic substrate had a major optimum at or belowpH 3.0 and another atpH 6.0. Using both substrates, activities at lowpH were higher in AD brains than in controls, while atpH above 6.5, activities in control brains were higher than in AD. These results indicate that the levels of proteolytic enzymes in AD brains are altered relative to controls.  相似文献   

2.
    
Fluorogenic peptide substrates designed to encompass the reported-secretory and amyloidogenic cleavage sites of the amyloid- precursor protein (PP) were used to analyze proteinase activities in brain extracts from control patients and those with Alzheimer's disease (AD). Activity against the secretory substrate atpH 7.5 in control and AD brains produced a major endopeptidase cleavage at the Lys687-Leu688 bond (PP770 numbering), consistent with thePP secretase cleavage. Activity in control brains against the amyloidogenic substrate atpH 7.5 produced one cleavage at the Ala673-Glu674 bond, two residues C-terminal to the amyloidogenic Met-Asp site. However, in three of four AD brains, the major cleavage was at the Asp-Ala bond, one residue from the amyloidogenic site. Both endopeptidase and carboxypeptidase activities in AD brains were lower than in control brains. Proteinase activities against the secretory substrate had a major optimum atpH 3.0–4.0 and another atpH 6.0–7.5. Proteinase activities against the amyloidogenic substrate had a major optimum at or belowpH 3.0 and another atpH 6.0. Using both substrates, activities at lowpH were higher in AD brains than in controls, while atpH above 6.5, activities in control brains were higher than in AD. These results indicate that the levels of proteolytic enzymes in AD brains are altered relative to controls.Abbreviations A Amyloid- - ACN acetonitrile - AD Alzheimer's disease - PP amyloid- precursor protein - DABCYL 4-(4-dimethylaminophenylazo)-benzoic acid - EDANS 5-{(2-aminoethyl)amino}napthalene-1-sulfonic acid - MES morpholinoethane sulfonic acid - MOPS morpholino-propane sulfonic acid - RP-HPLC reverse-phase high-performance liquid chromatography - SDS-PAGE sodium do-decyl sulfate-polyacrylamide gel electrophoresis - TFA tri-fluoroacetic acid - Tris tris(hydroxyethyl)aminomethane  相似文献   

3.
Upon activation, platelets secrete a 120-kDa protein that competes for the binding and internalization of acetyl low density lipoproteins (AcLDL) by macrophages. From the amino-terminal amino acid sequence, amino acid composition, and immunoblot analysis, we identified the active factor in platelet secretion products as sAPP, an alpha-secretase cleavage product of the beta-amyloid precursor protein (APP), that contains a Kunitz-type protease inhibitor (KPI) domain. We showed that both sAPP751 (also called Nexin II) and sAPP695, which does not contain a KPI domain, are ligands for the class A scavenger receptor (SR-A). Chinese hamster ovary cells stably transfected to express the SR-A bound and internalized 4-fold more human platelet-derived sAPP than control cells. The binding and internalization of sAPP were inhibited by the SR-A antagonist fucoidin. In addition, sAPP competed as effectively as fucoidin for SR-A-mediated cell association and degradation of (125)I-AcLDL. To determine if the KPI domain is required for the binding of sAPP to the SR-A, APP751 and APP695 were expressed in Chinese hamster ovary cells, and sAPP751 and sAPP695 purified from the medium were tested for their binding to the SR-A. sAPP751 and sAPP695 were equally effective in competing for the cell association of (125)I-AcLDL by SR-A-expressing cells, demonstrating that the KPI domain is not essential for binding. We also found that sAPP751 is present in extracts of atherosclerotic lesions and that sAPP competes for the SR-A-mediated cell association of oxidized low density lipoprotein. Deletion mutagenesis indicated that a negatively charged region of APP (residues 191-264) contributes to binding to the SR-A. These results suggest that the SR-A contributes to the clearance of sAPP and that sAPP competes for the cell association of other SR-A ligands.  相似文献   

4.
The two major isoforms of human APP, APP695 and APP751, differ by the presence of a Kunitz-type protease inhibitor (KPI) domain in the extracellular region. APP processing and function is thought to be regulated by homodimerization. We used bimolecular fluorescence complementation (BiFC) to study dimerization of different APP isoforms and mutants. APP751 was found to form significantly more homodimers than APP695. Mutation of dimerization motifs in the TM domain did not affect fluorescence complementation, but native folding of KPI is critical for APP751 homodimerization. APP751 and APP695 dimers were mostly localized at steady state in the Golgi region, suggesting that most of the APP751 and 695 dimers are in the secretory pathway. Mutation of the KPI led to the retention of the APP homodimers in the endoplasmic reticulum. We finally showed that APP751 is more efficiently processed through the nonamyloidogenic pathway than APP695. These findings provide new insight on the particular role of KPI domain in APP dimerization. The correlation observed between dimerization, subcellular localization, and processing suggests that dimerization acts as an efficient regulator of APP trafficking in the secretory compartments that has major consequences on its processing.  相似文献   

5.
Abstract: α-Secretase cleaves the full-length Alzheimer's amyloid precursor protein (APP) within the amyloid β peptide sequence, thus precluding amyloid formation. The resultant soluble truncated APP is constitutively secreted. This nonamyloidogenic processing of APP is increased on stimulation of the phospholipase C/protein kinase C pathway by phorbol esters. Here we used C6 cells transfected with APP751 to examine whether the α-secretase cleavage is regulated by the adenylate cyclase signal transduction pathway. Forskolin, an activator of adenylate cyclase, inhibited both the constitutive and phorbol ester-stimulated secretion of nexin II (NXII), the secreted product of the α-secretase cleavage of APP751. At 1 µ M , forskolin inhibited secretion of NXII by ∼50% without affecting either the intracellular levels of total APP or the secretion of secretory alkaline phosphatase. In contrast, 1,9-dideoxyforskolin, an inactive analogue of forskolin, did not affect secretion of NXII. These results indicated that forskolin specifically inhibited the α-secretase cleavage of APP751. Forskolin treatment increased the intracellular concentration of cyclic AMP (cAMP), suggesting that the forskolin effects on APP cleavage may be mediated by cAMP. In support of this suggestion, both dibutyryl cAMP, a cAMP analogue, and isoproterenol, an activator of adenylate cyclase, also inhibited secretion of NXII. These data indicate that forskolin inhibition of the nonamyloidogenic cleavage of APP is mediated by the second messenger cAMP, which together with the protein kinase C signal transduction pathway modulates the secretory cleavage of APP.  相似文献   

6.
Although alterations in the functions of neurotransmitter systems have been implicated in the pathology of Alzheimer’s disease (AD), the mechanisms that give rise to these alterations are not well understood. The amount of p25, an aberrant cleavage product of p35 that activates cyclin-dependent kinase 5 (Cdk5), is elevated in AD brains. The role of Cdk5 in neurotransmitter release has been well established. In this study, we examined whether p25 was linked to altered neurotransmitter release in AD. Transient or stable expression of p25 significantly increased basal secretion of human growth hormone (hGH) or neurotransmitter in PC12 cells. Expression of a p25 phosphorylation-deficient mutant, T138A, inhibited basal hGH secretion relative to the p25 wild type, suggesting the involvement of Thr138 phosphorylation in secretion. The expression and activity of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), a key protease in the generation of β-amyloid, are increased in AD brains. Our previous studies indicated that overexpression of BACE1 enhanced basal secretion of hGH in PC12 cells. Transient coexpression of p25 and BACE1 further stimulated spontaneous basal secretion. These results indicate a novel role for p25 in the secretory pathway and suggest that elevated levels of p25 and BACE1 in AD brains may contribute to altered neurotransmitter pathology of AD through enhancing spontaneous basal secretion.  相似文献   

7.
Abstract: A major histopathological hallmark in Alzheimer's disease consists of the extracellular deposition of the amyloid β-peptide (Aβ) that is proteolytically derived from the β-amyloid precursor protein (βAPP). An alternative, nonamyloidogenic cleavage, elicited by a protease called α-secretase, occurs inside the Aβ sequence and gives rise to APPα, a major secreted C-terminal-truncated form of βAPP. Here, we demonstrate that human embryonic kidney 293 (HK293) cells contain a chymotryptic-like activity that can be ascribed to the proteasome and that selective inhibitors of this enzyme reduce the phorbol 12,13-dibutyrate-sensitive APPα secretion by these cells. Furthermore, we establish that a specific proteasome blocker, lactacystin, also induces increased secretion of Aβ peptide in stably transfected HK293 cells overexpressing wild-type βAPP751. Altogether, this study represents the first identification of a proteolytic activity, namely, the proteasome, contributing likely through yet unknown intracellular relays, to the α-secretase pathway in human cells.  相似文献   

8.
The 39-43 residue polypeptide (amyloid beta protein, beta A4) deposited as amyloid in Alzheimer's disease (AD) is derived from a set of 695-770 residue precursors referred to as the amyloid beta A4 protein precursor (beta APP). In each of the 695, 751, and 770 residue precursors, the 43 residue beta A4 is an internal peptide that begins 99 residues from the COOH-terminus of the beta APP. Each holoform is normally cleaved within the beta A4 to produce a large secreted derivative as well as a small membrane associated fragment. Neither of these derivatives can produce amyloid because neither contains the entire beta A4 peptide. In this study, we employ cells stably transfected with full length beta APP695, beta APP751, or beta APP770 expression constructs to show that phorbol ester activation of protein kinase C substantially increases the production of secreted forms from each isoform. By increasing processing of beta APP in the secretory pathway, PKC phosphorylation may help to prevent amyloid deposition.  相似文献   

9.
Abstract: Almost all patients >40 years of age with Down's syndrome (DS) develop the pathology characteristic of Alzheimer's disease: abundant β-amyloid plaques and neurofibrillary tangles. We have investigated the gene expression of β-amyloid protein precursor (APR) and τ in DS and age-matched control brains and found that levels of both mRNAs were significantly elevated in DS. Such up-regulation was not observed in two other neuronal proteins. A correlation between total APP and τ mRNA levels was also found in DS brain but distinct from the pattern observed in normal brain. Although a proportionality existed between APP-695 mRNA and three-repeat τ mRNA in DS, the proportionality between APP-751 mRNA and four-repeat τ mRNA, which is normally present, was not observed. Thus, DS brains are primarily characterized by the up-regulation of τ mRNA as well as APP mRNA and disruption of the coordinate expression between APP-751 and four-repeat τ.  相似文献   

10.
Mitochondrial dysfunction is a prominent feature of Alzheimer’s disease (AD) and this can be contributed by aberrant metabolic enzyme function. But, the mechanism causing this enzymatic impairment is unclear. Amyloid precursor protein (APP) is known to be alternatively spliced to produce three major isoforms in the brain (APP695, APP751, APP770). Both APP770 and APP751 contain the Kunitz Protease Inhibitory (KPI) domain, but the former also contain an extra OX-2 domain. APP695 on the other hand, lacks both domains. In AD, up-regulation of the KPI-containing APP isoforms has been reported. But the functional contribution of this elevation is unclear. In the present study, we have expressed and compared the effect of the non-KPI containing APP695 and the KPI-containing APP751 on mitochondrial function. We found that the KPI-containing APP751 significantly decreased the expression of three major mitochondrial metabolic enzymes; citrate synthase, succinate dehydrogenase and cytochrome c oxidase (COX IV). This reduction lowers the NAD+/NADH ratio, COX IV activity and mitochondrial membrane potential. Overall, this study demonstrated that up-regulation of the KPI-containing APP isoforms is likely to contribute to the impairment of metabolic enzymes and mitochondrial function in AD.  相似文献   

11.
The beta-amyloid peptide is derived from a larger membrane bound protein and accumulates as amyloid in Alzheimer's diseased brains. beta-amyloid precursor protein (beta APP) proteolytically processed during constitutive secretion cannot be a source of deposited amyloid because this processing results in cleavage within the amyloidogenic peptide. To see if other secretory pathways could be responsible for generating potentially amyloidogenic molecules we tested the possibility that beta APP is targeted to the regulated secretory pathway. Stable AtT20 cell lines expressing exogenous human beta APP were genetically engineered. These cells were labeled with [35S]-methionine, and chased in the presence or absence of secretagogue. The beta APP both inside the cells and released from the cells was analyzed by immunoprecipitation and gel analysis. Quantitation of autoradiograms showed that virtually all of the synthesized beta APP was secreted by the constitutive pathway, and that no detectable (less than 1%) beta APP was targeted to the regulated secretory pathway.  相似文献   

12.
The amyloid A4 (or beta protein), a 4.2 kD polypeptide, is a major component of amyloid deposits in the brains of patients with Alzheimer's Disease (AD). The self-aggregating amyloid A4 protein of AD is encoded as part of three larger proteins by the amyloid A4 precursor gene. The corresponding proteins have 695, 751 and 770 amino acid residues. To investigate the utility of amyloid beta protein precursor (A beta PP) as a diagnostic marker for AD an antiserum against a synthetic peptide (175-186), predicted from cDNA sequence for A beta PP, was used. The immunoreactivity of A beta PP in normal and AD cerebrospinal fluid (CSF) was measured by Western blot and detected with radiolabeled protein A. A total of fifty-seven CSF samples (AD = 27 and normal = 30) were analyzed for A beta PP immunoreactivity. A polyclonal antibody detected two major protein bands with apparent molecular weights of 105kD and 90kD both in normal and AD CSF. The difference between normal and AD CSF was not significant. These results indicate that immunoreactivity of A beta PP is present both in normal and AD CSF, and that the difference is too small to be used as a diagnostic marker.  相似文献   

13.
Muscle fiber degeneration in sporadic inclusion‐body myositis (s‐IBM) is characterized by accumulation of multiprotein aggregates, including aggregated amyloid‐β (Aβ)‐precursor protein 751 (AβPP751), Aβ, phosphorylated tau, and other ‘Alzheimer‐characteristic’ proteins. Proteasome inhibition is an important component of the s‐IBM pathogenesis. In brains of Alzheimer’s disease (AD) patients and AD transgenic‐mouse models, phosphorylation of neuronal AβPP695 (p‐AβPP) on Thr668 (equivalent to T724 of AβPP751) is considered detrimental because it increases generation of cytotoxic Aβ and induces tau phosphorylation. Activated glycogen synthase kinase3β (GSK3β) is involved in phosphorylation of both AβPP and tau. Lithium, an inhibitor of GSK3β, was reported to reduce levels of both the total AβPP and p‐AβPP in AD animal models. In relation to s‐IBM, we now show for the first time that (1) In AβPP‐overexpressing cultured human muscle fibers (human muscle culture IBM model: (a) proteasome inhibition significantly increases GSK3β activity and AβPP phosphorylation, (b) treatment with lithium decreases (i) phosphorylated‐AβPP, (ii) total amount of AβPP, (iii) Aβ oligomers, and (iv) GSK3β activity; and (c) lithium improves proteasome function. (2) In biopsied s‐IBM muscle fibers, GSK3β is significantly activated and AβPP is phosphorylated on Thr724. Accordingly, treatment with lithium, or other GSK3β inhibitors, might benefit s‐IBM patients.  相似文献   

14.
Abstract: The β-amyloid precursor protein (βAPP) is the source of the amyloid β-peptide that accumulates in the brain in Alzheimer's disease. A major processing pathway for βAPP involves an enzymatic cleavage within the amyloid β-peptide sequence that liberates secreted forms of βAPP (APPSs) into the extracellular milieu. We now report that postischemic administration of these APPSs intracerebroventricularly protects neurons in the CA1 region of rat hippocampus against ischemic injury. Treatment with APPS695 or APPS751 resulted in increased neuronal survival, and the surviving cells were functional as demonstrated by their ability to synthesize protein. These data provide direct evidence for a neuroprotective action of APPSs in vivo.  相似文献   

15.
S1 nuclease analysis was used to determine the levels and patterns of three beta amyloid protein precursor (BPP) mRNAs in mouse developmental brain and in primary neuronal and glial cultures. BPP695 mRNA lacking the Kunitz proteinase inhibitor (KPI) domain was detected exclusively in neuronal cultures and increased considerably in late embryonic and early postnatal periods. On the other hand, BPP751 and 770 mRNAs with KPI domain were detected predominantly in astrocyte- and microglia-enriched cultures and increased slightly only in embryonic stages. These results suggest that the product of each BPP mRNA may play a different role in the brain.  相似文献   

16.
The mediator neuroprotectin D1 (NPD1) is an enzymatic derivative of the omega-3 essential fatty acid docosahexaenoic acid. NPD1 stereoselectively and specifically binds to human retinal pigment epithelium (RPE) cells and neutrophils. In turn, this lipid mediator induces dephosphorylation of Bcl-xL in a PP2A-dependent manner and induces PI3K/Akt and mTOR/p70S6K pathways leading to RPE cell survival during oxidative stress-induced apoptosis. As a proof of principle of its systemic in vivo bioactivity, NPD1 attenuates laser-induced choroidal neovascularization in mice. Using human neural cells transfected with amyloid precursor protein (APP)sw (Swedish double mutation APP695sw, K595N, M596L), NPD1 was shown to regulate secretase-mediated production of Aβ peptide, downregulates pro-inflammatory gene expression, and promotes cell survival. In human neural cells overexpressing beta-amyloid precursor protein (βAPP), the lipid mediator suppressed Aβ42 shedding by downregulating β-secretase (BACE1) while activating the α-secretase (ADAM10), thus shifting the βAPP cleavage from the noxious amyloidogenic pathway into a non-amyloidogenic, neurotrophic pathway. Furthermore, downregulation of Aβ42 peptide release by NPD1 may be dependent upon PPARγ activation. In conclusion, NPD1 exhibits anti-inflammatory, anti-amyloidogenic, and anti-apoptotic bioactivities in human neural cells in part via PPARγ signaling and through the targeting of α- and β-secretase systems.  相似文献   

17.
Pharmacological modulation of the GABAA receptor has gained increasing attention as a potential treatment for central processes affected in Alzheimer disease (AD), including neuronal survival and cognition. The proteolytic cleavage of the amyloid precursor protein (APP) through the α-secretase pathway decreases in AD, concurrent with cognitive impairment. This APP cleavage occurs within the β-amyloid peptide (Aβ) sequence, precluding formation of amyloidogenic peptides and leading to the release of the soluble N-terminal APP fragment (sAPPα) which is neurotrophic and procognitive. In this study, we show that at nanomolar-low micromolar concentrations, etazolate, a selective GABAA receptor modulator, stimulates sAPPα production in rat cortical neurons and in guinea pig brains. Etazolate (20 nM–2 μM) dose-dependently protected rat cortical neurons against Aβ-induced toxicity. The neuroprotective effects of etazolate were fully blocked by GABAA receptor antagonists indicating that this neuroprotection was due to GABAA receptor signalling. Baclofen, a GABAB receptor agonist failed to inhibit the Aβ-induced neuronal death. Furthermore, both pharmacological α-secretase pathway inhibition and sAPPα immunoneutralization approaches prevented etazolate neuroprotection against Aβ, indicating that etazolate exerts its neuroprotective effect via sAPPα induction. Our findings therefore indicate a relationship between GABAA receptor signalling, the α-secretase pathway and neuroprotection, documenting a new therapeutic approach for AD treatment.  相似文献   

18.
Glycogen synthase kinase 3 (GSK-3) dysregulation is implicated in the two Alzheimer's disease (AD) pathological hallmarks: β-amyloid plaques and neurofibrillary tangles. GSK-3 inhibitors may abrogate AD pathology by inhibiting amyloidogenic γ-secretase cleavage of amyloid precursor protein (APP). Here, we report that the citrus bioflavonoid luteolin reduces amyloid-β (Aβ) peptide generation in both human 'Swedish' mutant APP transgene-bearing neuron-like cells and primary neurons. We also find that luteolin induces changes consistent with GSK-3 inhibition that ( i ) decrease amyloidogenic γ-secretase APP processing, and ( ii ) promote presenilin-1 (PS1) carboxyl-terminal fragment (CTF) phosphorylation. Importantly, we find GSK-3α activity is essential for both PS1 CTF phosphorylation and PS1-APP interaction. As validation of these findings in vivo , we find that luteolin, when applied to the Tg2576 mouse model of AD, decreases soluble Aβ levels, reduces GSK-3 activity, and disrupts PS1-APP association. In addition, we find that Tg2576 mice treated with diosmin, a glycoside of a flavonoid structurally similar to luteolin, display significantly reduced Aβ pathology. We suggest that GSK-3 inhibition is a viable therapeutic approach for AD by impacting PS1 phosphorylation-dependent regulation of amyloidogenesis.  相似文献   

19.
Abstract: The β-amyloid precursor protein undergoes a physiological cleavage by α-secretase that leads to the release of a secreted C-terminally truncated fragment called APPα and likely concomitantly reduces the formation of the amyloidogenic Aβ peptide. Here we demonstrate that APPα secretion is increased by the protein kinase A (PKA) effectors 8-bromo cyclic AMP and forskolin in human embryonic kidney cells (HK293), and that this can be prevented by a proteasome inhibitor. Furthermore, we establish that PKA effectors but not protein kinase C agonists increase the chymotrypsin-like activity and phosphorylation state of the proteasome in vitro and in vivo in HK293 cells. Altogether, this report demonstrates that the α-secretase pathway is under the control of PKA in human cells and that the proteasome likely contributes, either directly or through yet unknown intermediates, to the PKA-stimulated APPα secretion in human cells.  相似文献   

20.
The expression of the Alzheimer amyloid protein precursor (AAPP) was examined in human, monkey, dog and rat brains. Two proteins, one identified as AAPP695 and the other as AAPP751, were immunoprecipitated from the in vitro translation of human, dog and rat brain polysomes. The AAPP751 to AAPP695 ratio was highest in human, intermediate in dog and lowest in rat brain polysomes. Human cerebral cortex contained higher levels of the AAPP751 mRNA than either dog or rat cortex. AAPP695 was detected in both cerebral cortex and cerebellum of all species examined. In contrast, AAPP751 was detected predominantly in the cortex of human, monkey and to a lesser extent dog brains while it was not detected in rat brain. These findings indicate that the amyloid precursors are differentially expressed in different mammalian brains and suggest that AAPP751 is mainly expressed in the brain regions involved in plaque formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号