首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified M1 muscarinic cholinergic receptor and Gq/11 were coreconstituted in lipid vesicles. Addition of purified phospholipase C-beta 1 (PLC-beta 1) further stimulated the receptor-promoted steady-state GTPase activity of Gq/11 up to 20-fold. Stimulation depended upon receptor-mediated GTP-GDP exchange. Addition of PLC-beta 1 caused a rapid burst of hydrolysis of Gq/11-bound GTP that was at least 50-fold faster than in its absence. Thus, PLC-beta 1 stimulates hydrolysis of Gq/11-bound GTP and acts as a GTPase-activating protein (GAP) for its physiologic regulator, Gq/11. GTPase-stimulating activity was specific both for PLC-beta 1 and Gq/11. Such GAP activity by an effector coupled to a trimeric G protein can reconcile slow GTP hydrolysis by pure G proteins in vitro with fast physiologic deactivation of G protein-mediated signaling.  相似文献   

2.
RGS proteins act as negative regulators of G protein signaling by serving as GTPase-activating proteins (GAP) for alpha subunits of heterotrimeric G proteins (Galpha), thereby accelerating G protein inactivation. RGS proteins can also block Galpha-mediated signal production by competing with downstream effectors for Galpha binding. Little is known about the relative contribution of GAP and effector antagonism to the inhibitory effect of RGS proteins on G protein-mediated signaling. By comparing the inhibitory effect of RGS2, RGS3, RGS5, and RGS16 on Galpha(q)-mediated phospholipase Cbeta (PLCbeta) activation under conditions where GTPase activation is possible versus nonexistent, we demonstrate that members of the R4 RGS subfamily differ significantly in their dependence on GTPase acceleration. COS-7 cells were transiently transfected with either muscarinic M3 receptors, which couple to endogenous Gq protein and mediate a stimulatory effect of carbachol on PLCbeta, or constitutively active Galphaq*, which is inert to GTP hydrolysis and activates PLCbeta independent of receptor activation. In M3-expressing cells, all of the RGS proteins significantly blunted the efficacy and potency of carbachol. In contrast, Galphaq* -induced PLCbeta activation was inhibited by RGS2 and RGS3 but not RGS5 and RGS16. The observed differential effects were not due to changes in M3, Galphaq/Galphaq*, PLCbeta, or RGS expression, as shown by receptor binding assays and Western blots. We conclude that closely related R4 RGS family members differ in their mechanism of action. RGS5 and RGS16 appear to depend on G protein inactivation, whereas GAP-independent mechanisms (such as effector antagonism) are sufficient to mediate the inhibitory effect of RGS2 and RGS3.  相似文献   

3.
RGS (regulator of G protein signaling) proteins are GTPase-activating proteins (GAPs) for heterotrimeric G protein alpha subunits and negatively regulate G protein-mediated signal transduction. In this study, we determined the cDNA sequence of a novel Caenorhabditis elegans (C. elegans) RGS protein. The predicted protein, termed C2-RGS, consists of 782 amino acids, and contains a C2 domain and an RGS domain. C2 domains are typically known to be Ca(2+) and phospholipid binding sites, found in many proteins involved in membrane traffic or signal transduction, and most of their biological roles are not identified. To study the function of C2-RGS protein, a series of six truncated versions of C2-RGS were constructed. When the full-length protein of C2-RGS was expressed transiently in AT1a-293T cells, ET-1-induced Ca(2+) responses were strongly suppressed. When each of the mutants with either RGS domain or C2 domain was expressed, the Ca(2+) responses were suppressed moderately. Furthermore, we found that C2 domain of PLC-beta1 also had a similar moderate inhibitory effect. RGS domain of C2-RGS bound to mammalian and C. elegans Galphai/o and Galphaq subunits only in the presence of GDP/AlF(4)(-), and had GAP activity to Galphai3. On the other hand, C2 domains of C2-RGS and PLC-beta1 also bound strongly to Galphaq subunit, in the presence of GDP, GDP/AlF(4)(-), and GTPgammaS, suggesting the stable persistent association between these C2 domains and Galphaq subunit at any stage during GTPase cycle. These results indicate that both the RGS domain and the C2 domain are responsible for the inhibitory effect of the full-length C2-RGS protein on Galphaq-mediated signaling, and suggest that C2 domains of C2-RGS and PLC-beta1 may act as a scaffold module to organize Galphaq and the respective whole protein molecule in a stable signaling complex, both in the absence and presence of stimulus.  相似文献   

4.
Regulation of G protein-mediated signal transduction by RGS proteins   总被引:2,自引:0,他引:2  
Kozasa T 《Life sciences》2001,68(19-20):2309-2317
RGS proteins form a new family of regulatory proteins of G protein signaling. They contain homologous core domains (RGS domains) of about 120 amino acids. RGS domains interact with activated Galpha subunits. Several RGS proteins have been shown biochemically to act as GTPase activating proteins (GAPs) for their interacting Galpha subunits. Other than RGS domains, RGS proteins differ significantly in size, amino acid sequences, and tissue distribution. In addition, many RGS proteins have other protein-protein interaction motifs involved in cell signaling. We have shown that p115RhoGEF, a newly identified GEF(guanine nucleotide exchange factor) for RhoGTPase, has a RGS domain at its N-terminal region and this domain acts as a specific GAP for Galpha12 and Galpha13. Furthermore, binding of activated Galpha13 to this RGS domain stimulated GEF activity of p115RhoGEF. Activated Galpha12 inhibited Galpha13-stimulated GEF activity. Thus p115RhoGEF is a direct link between heterotrimeric G protein and RhoGTPase and it functions as an effector for Galpha12 and Galpha13 in addition to acting as their GAP. We also found that RGS domain at N-terminal regions of G protein receptor kinase 2 (GRK2) specifically interacts with Galphaq/11 and inhibits Galphaq-mediated activation of PLC-beta, apparently through sequestration of activated Galphaq. However, unlike other RGS proteins, this RGS domain did not show significant GAP activity to Galphaq. These results indicate that RGS proteins have far more diverse functions than acting simply as GAPs and the characterization of function of each RGS protein is crucial to understand the G protein signaling network in cells.  相似文献   

5.
Gbetagamma subunits modulate several distinct molecular events involved with G protein signaling. In addition to regulating several effector proteins, Gbetagamma subunits help anchor Galpha subunits to the plasma membrane, promote interaction of Galpha with receptors, stabilize the binding of GDP to Galpha to suppress spurious activation, and provide membrane contact points for G protein-coupled receptor kinases. Gbetagamma subunits have also been shown to inhibit the activities of GTPase-activating proteins (GAPs), both phospholipase C (PLC)-betas and RGS proteins, when assayed in solution under single turnover conditions. We show here that Gbetagamma subunits inhibit G protein GAP activity during receptor-stimulated, steady-state GTPase turnover. GDP/GTP exchange catalyzed by receptor requires Gbetagamma in amounts approximately equimolar to Galpha, but GAP inhibition was observed with superstoichiometric Gbetagamma. The potency of inhibition varied with the GAP and the Galpha subunit, but half-maximal inhibition of the GAP activity of PLC-beta1 was observed with 5-10 nM Gbetagamma, which is at or below the concentrations of Gbetagamma needed for regulation of physiologically relevant effector proteins. The kinetics of GAP inhibition of both receptor-stimulated GTPase activity and single turnover, solution-based GAP assays suggested a competitive mechanism in which Gbetagamma competes with GAPs for binding to the activated, GTP-bound Galpha subunit. An N-terminal truncation mutant of PLC-beta1 that cannot be directly regulated by Gbetagamma remained sensitive to inhibition of its GAP activity, suggesting that the Gbetagamma binding site relevant for GAP inhibition is on the Galpha subunit rather than on the GAP. Using fluorescence resonance energy transfer between cyan or yellow fluorescent protein-labeled G protein subunits and Alexa532-labeled RGS4, we found that Gbetagamma directly competes with RGS4 for high-affinity binding to Galpha(i)-GDP-AlF4.  相似文献   

6.
We describe the reconstitution using purified proteins of the m1 muscarinic cholinergic pathway that activates phosphatidylinositol 4,5-bisphosphate-specific phospholipase C via the G protein Gq/11. Recombinant m1 muscarinic receptor was co-reconstituted in lipid vesicles with either hepatic Gq/11 or with cerebral alpha q/11 and beta gamma subunits. The rate of [35S]GTP gamma S binding to the reconstituted vesicles was stimulated 20-50-fold by agonist. Maximal receptor-catalyzed binding was 7 mol of GTP gamma S bound per mol of receptor. The m2 muscarinic receptor was a poor activator of Gq/11. The binding of [alpha-32P]GTP to [gamma-32P]GTP to m1/Gq/11 vesicles indicated that the receptor could maintain up to 40% of the total coupled Gq/11 in the GTP bound state. The rate of hydrolysis of bound GTP, 0.8 min-1, is consistent with the rate predicted from the GTP binding data but is 3-5-fold lower than rates reported for other trimeric G proteins. Agonist-stimulated photo-affinity labeling with gamma-(4-azidoanilido)-[alpha-32P]GTP indicated that the receptor catalyzed binding to both alpha q and alpha 11 with about equal efficiency. Receptor-catalyzed activation of Gq/11 by GTP gamma S, measured as the ability to activate purified phospholipase C-beta 1, paralleled receptor-catalyzed [35S]GTP gamma S binding. Co-reconstitution of receptor, Gq/11, and phospholipase C-beta 1 restored GTP gamma S-dependent carbachol-stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate. The m1 receptor, Gq/11, and phospholipase C-beta 1 are thus sufficient to initiate the hormonal inositol trisphosphate/diacylglycerol signaling pathway without additional proteins.  相似文献   

7.
The crystal structure of the complex between a G protein alpha subunit (Gi alpha 1) and its GTPase-activating protein (RGS4) demonstrated that RGS4 acts predominantly by stabilization of the transition state for GTP hydrolysis [Tesmer, J. J., et al. (1997) Cell 89, 251]. However, attention was called to a conserved Asn residue (Asn128) that could play a catalytic role by interacting, directly or indirectly, with the hydrolytic water molecule. We have analyzed the effects of several disparate substitutions for Asn128 on the GAP activity of RGS4 toward four G alpha substrates (Go, Gi, Gq, and Gz) using two assay formats. The results substantiate the importance of this residue but indicate that it is largely involved in substrate binding and that its function may vary with different G alpha targets. Various mutations decreased the apparent affinity of RGS4 for substrate G alpha proteins by several orders of magnitude, but had variable and modest effects on maximal rates of GTP hydrolysis when tested with different G alpha subunits. One mutation, N128F, that differentially decreased the GAP activity toward G alpha i compared with that toward G alpha q could be partially suppressed by mutation of the nearby residue in G alpha i to that found in G alpha q (K180P). Detection of GAP activities of the mutants was enhanced in sensitivity up to 100-fold by assay at steady state in proteoliposomes that contain heterotrimeric G protein and receptor.  相似文献   

8.
The photoreceptor-specific G protein transducin acts as a molecular switch, stimulating the activity of its downstream effector in its GTP-bound form and inactivating the effector upon GTP hydrolysis. This activity makes the rate of transducin GTPase an essential factor in determining the duration of photoresponse in vertebrate rods and cones. In photoreceptors, the slow intrinsic rate of transducin GTPase is accelerated by the complex of the ninth member of the regulators of G protein signaling family with the long splice variant of type 5 G protein beta subunit (RGS9.Gbeta5L). However, physiologically rapid GTPase is observed only when transducin forms a complex with its effector, the gamma subunit of cGMP phosphodiesterase (PDEgamma). In this study, we addressed the mechanism by which PDEgamma regulates the rate of transducin GTPase. We found that RGS9.Gbeta5L alone has a significant ability to activate transducin GTPase, but its affinity for transducin is low. PDEgamma acts by enhancing the affinity between activated transducin and RGS9.Gbeta5L by more than 15-fold, which is evident both from kinetic measurements of transducin GTPase rate and from protein binding assays with immobilized transducin. Furthermore, our data indicate that a single RGS9.Gbeta5L molecule is capable of accelerating the GTPase activity of approximately 100 transducin molecules/s. This rate is faster than the rates reported previously for any RGS protein and is sufficient for timely photoreceptor recovery in both rod and cone photoreceptors.  相似文献   

9.
Regulator of G-protein signaling 3 (RGS3) enhances the intrinsic rate at which Galpha(i) and Galpha(q) hydrolyze GTP to GDP, thereby limiting the duration in which GTP-Galpha(i) and GTP-Galpha(q) can activate effectors. Since GDP-Galpha subunits rapidly combine with free Gbetagamma subunits to reform inactive heterotrimeric G-proteins, RGS3 and other RGS proteins may also reduce the amount of Gbetagamma subunits available for effector interactions. Although RGS6, RGS7, and RGS11 bind Gbeta(5) in the absence of a Ggamma subunit, RGS proteins are not known to directly influence Gbetagamma signaling. Here we show that RGS3 binds Gbeta(1)gamma(2) subunits and limits their ability to trigger the production of inositol phosphates and the activation of Akt and mitogen-activated protein kinase. Co-expression of RGS3 with Gbeta(1)gamma(2) inhibits Gbeta(1)gamma(2)-induced inositol phosphate production and Akt activation in COS-7 cells and mitogen-activated protein kinase activation in HEK 293 cells. The inhibition of Gbeta(1)gamma(2) signaling does not require an intact RGS domain but depends upon two regions in RGS3 located between acids 313 and 390 and between 391 and 458. Several other RGS proteins do not affect Gbeta(1)gamma(2) signaling in these assays. Consistent with the in vivo results, RGS3 inhibits Gbetagamma-mediated activation of phospholipase Cbeta in vitro. Thus, RGS3 may limit Gbetagamma signaling not only by virtue of its GTPase-activating protein activity for Galpha subunits, but also by directly interfering with the activation of effectors.  相似文献   

10.
The GTPase-accelerating protein (GAP) complex RGS9-1.G beta(5) plays an important role in the kinetics of light responses by accelerating the GTP hydrolysis of G alpha(t) in vertebrate photoreceptors. Much, but not all, of this complex is tethered to disk membranes by the transmembrane protein R9AP. To determine the effect of the R9AP membrane complex on GAP activity, we purified recombinant R9AP and reconstituted it into lipid vesicles along with the photon receptor rhodopsin. Full-length RGS9-1.G beta(5) bound to R9AP-containing vesicles with high affinity (K(d) < 10 nm), but constructs lacking the DEP (dishevelled/EGL-10/pleckstrin) domain bound with much lower affinity, and binding of those lacking the entire N-terminal domain (i.e. the dishevelled/EGL-10/pleckstrin domain plus intervening domain) was not detectable. Formation of the membrane-bound complex with R9AP increased RGS9-1 GAP activity by a factor of 4. Vesicle titrations revealed that on the time scale of phototransduction, the entire reaction sequence from GTP uptake to GAP-catalyzed hydrolysis is a membrane-delimited process, and exchange of G alpha(t) between membrane surfaces is much slower than hydrolysis. Because in rod cells different pools exist of RGS9-1.G beta(5) that are either associated with R9AP or not, regulation of the association between R9AP and RGS9-1.G beta(5) represents a potential mechanism for the regulation of recovery kinetics.  相似文献   

11.
Regulator of G-protein signaling (RGS) proteins are GTPase activating proteins (GAPs) of heterotrimeric G-proteins that alter the amplitude and kinetics of receptor-promoted signaling. In this study we defined the G-protein alpha-subunit selectivity of purified Sf9 cell-derived R7 proteins, a subfamily of RGS proteins (RGS6, -7, -9, and -11) containing a Ggamma-like (GGL) domain that mediates dimeric interaction with Gbeta(5). Gbeta(5)/R7 dimers stimulated steady state GTPase activity of Galpha-subunits of the G(i) family, but not of Galpha(q) or Galpha(11), when added to proteoliposomes containing M2 or M1 muscarinic receptor-coupled G-protein heterotrimers. Concentration effect curves of the Gbeta(5)/R7 proteins revealed differences in potencies and efficacies toward Galpha-subunits of the G(i) family. Although all four Gbeta(5)/R7 proteins exhibited similar potencies toward Galpha(o), Gbeta(5)/RGS9 and Gbeta(5)/RGS11 were more potent GAPs of Galpha(i1), Galpha(i2), and Galpha(i3) than were Gbeta(5)/RGS6 and Gbeta(5)/RGS7. The maximal GAP activity exhibited by Gbeta(5)/RGS11 was 2- to 4-fold higher than that of Gbeta(5)/RGS7 and Gbeta(5)/RGS9, with Gbeta(5)/RGS6 exhibiting an intermediate maximal GAP activity. Moreover, the less efficacious Gbeta(5)/RGS7 and Gbeta(5)/RGS9 inhibited Gbeta(5)/RGS11-stimulated GTPase activity of Galpha(o). Therefore, R7 family RGS proteins are G(i) family-selective GAPs with potentially important differences in activities.  相似文献   

12.
A subfamily of regulators of G protein signaling (RGS) proteins consisting of RGS6, -7, -9, and -11 is characterized by the presence of a unique Ggamma-like domain through which they form obligatory dimers with the G protein subunit Gbeta5 in vivo. In Caenorhabditis elegans, orthologs of Gbeta5.RGS dimers are implicated in regulating both Galphai and Galphaq signaling, and in cell-based assays these dimers regulate Galphai/o- and Galphaq/11-mediated pathways. However, initial studies with purified Gbeta5.RGS6 or Gbeta5.RGS7 showed that they only serve as GTPase activating proteins for Galphao. Pull-down assays and co-immunoprecipitation with these dimers failed to detect their binding to either Galphao or Galphaq, indicating that the interaction might require additional factors present in vivo. Here, we asked if the RGS7.Gbeta5 complex binds to Galphaq using fluorescence resonance energy transfer (FRET) in transiently transfected mammalian cells. RGS7, Gbeta5, and Galpha subunits were tagged with yellow variants of green fluorescent protein. First we confirmed the functional activity of the fusion proteins by co-immunoprecipitation and also their effect on signaling. Second, we again demonstrate the interaction between RGS7 and Gbeta5 using FRET. Finally, using both FRET spectroscopy on cell suspensions and microscopy of individual cells, we showed FRET between the yellow fluorescence protein-tagged RGS7.Gbeta5 complex and cyan fluorescence protein-tagged Galphaq, indicating a direct interaction between these molecules.  相似文献   

13.
Heterotrimeric G protein subunits regulate their effectors by protein-protein interactions. The regions involved in these direct interactions have either signal transfer or general binding functions (Buck, E., Li, J., Chen, Y., Weng, G., Scarlata, S., and Iyengar, R. (1999) Science 283, 1332-1335). Although key determinants of signal transfer regions for G protein subunits have been identified, the mechanisms of signal transfer are not fully understood. We have used a combinatorial peptide approach to analyze one Gbeta region, Gbeta86-105, involved in signal transfer to the effector phospholipase C (PLC)-beta2 to gain a more mechanistic understanding of Gbeta/PLC-beta2 signaling. Binding and functional studies with the combinatorial peptides on interaction with and stimulation/inhibition of phospholipase Cbeta2 indicate that binding affinity can be resolved from EC(50) for functional effects, such that peptides that have wild type binding affinities have 15- to 20-fold lower EC(50) values. Although more potent, these peptides display a much lower extent of maximal stimulation. These peptides synergize with Gbetagamma or peptides encoding the second Gbeta42-54 signal transfer region in maximally stimulating phospholipase C-beta2. Other combinatorial peptides from the Gbeta86-105 region that bind to PLC-beta2 by themselves submaximally stimulate and extensively inhibit Gbetagamma stimulation of PLC-beta2. The intrinsic stimulation function can be attributed to Arg-96 and Ser-97, the synergy function to Trp-99, and the binding affinity to Thr-87, Val-90, Pro-94, Arg-96, Ser-97, and Val-100. These results indicate that, even within signal transfer regions, residues involved in binding can be resolved from those involved in signal transfer and that signal transfer is likely to be achieved through dynamic rather than steady-state interactions.  相似文献   

14.
Regulators of G-protein signaling (RGS) proteins are critical for attenuating G protein-coupled signaling pathways. The membrane association of RGS4 has been reported to be crucial for its regulatory activity in reconstituted vesicles and physiological roles in vivo. In this study, we report that RGS4 initially binds onto the surface of anionic phospholipid vesicles and subsequently inserts into, but not through, the membrane bilayer. Phosphatidic acid, one of anionic phospholipids, could dramatically inhibit the ability of RGS4 to accelerate GTPase activity in vitro. Phosphatidic acid is an effective and potent inhibitor of RGS4 in a G alpha(i1)-[gamma-(32)P]GTP single turnover assay with an IC(50) approximately 4 microm and maximum inhibition of over 90%. Furthermore, phosphatidic acid was the only phospholipid tested that inhibited RGS4 activity in a receptor-mediated, steady-state GTP hydrolysis assay. When phosphatidic acid (10 mol %) was incorporated into m1 acetylcholine receptor-G alpha(q) vesicles, RGS4 GAP activity was markedly inhibited by more than 70% and the EC(50) of RGS4 was increased from 1.5 to 7 nm. Phosphatidic acid also induced a conformational change in the RGS domain of RGS4 measured by acrylamide-quenching experiments. Truncation of the N terminus of RGS4 (residues 1-57) resulted in the loss of both phosphatidic acid binding and lipid-mediated functional inhibition. A single point mutation in RGS4 (Lys(20) to Glu) permitted its binding to phosphatidic acid-containing vesicles but prevented lipid-induced conformational changes in the RGS domain and abolished the inhibition of its GAP activity. We speculate that the activation of phospholipase D or diacylglycerol kinase via G protein-mediated signaling cascades will increase the local concentration of phosphatidic acid, which in turn block RGS4 GAP activity in vivo. Thus, RGS4 may represent a novel effector of phosphatidic acid, and this phospholipid may function as a feedback regulator in G protein-mediated signaling pathways.  相似文献   

15.
The R7 family of RGS proteins (RGS6, -7, -9, -11) is characterized by the presence of three domains: DEP, GGL, and RGS. The RGS domain interacts with Galpha subunits and exhibits GAP activity. The GGL domain permanently associates with Gbeta5. The DEP domain interacts with the membrane anchoring protein, R7BP. Here we provide evidence for a novel interaction within this complex: between the DEP domain and Gbeta5. GST fusion of the RGS7 DEP domain (GST-R7DEP) binds to both native and recombinant Gbeta5-RGS7, recombinant Gbetagamma complexes, and monomeric Gbeta5 and Gbeta1 subunits. Co-immunoprecipitation and FRET assays supported the GST pull-down experiments. GST-R7DEP reduced FRET between CFP-Gbeta5 and YFP-RGS7, indicating that the DEP-Gbeta5 interaction is dynamic. In transfected cells, R7BP had no effect on the Gbeta5/RGS7 pull down by GST-R7DEP. The DEP domain of RGS9 did not bind to Gbeta5. Substitution of RGS7 Glu-73 and Asp-74 for the corresponding Ser and Gly residues (ED/SG mutation) of RGS9 diminished the DEP-Gbeta5 interaction. In the absence of R7BP both the wild-type RGS7 and the ED/SG mutant attenuated muscarinic M3 receptor-mediated Ca2+ mobilization. In the presence of R7BP, wild-type RGS7 lost this inhibitory activity, whereas the ED/SG mutant remained active. Taken together, our results are consistent with the following model. The Gbeta5-RGS7 molecule can exist in two conformations: "closed" and "open", when the DEP domain and Gbeta5 subunit either do or do not interact. The closed conformation appears to be less active with respect to its effect on Gq-mediated signaling than the open conformation.  相似文献   

16.
The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits   总被引:1,自引:0,他引:1  
The heterotrimeric G-protein alpha subunit has long been considered a bimodal, GTP-hydrolyzing switch controlling the duration of signal transduction by seven-transmembrane domain (7TM) cell-surface receptors. In 1996, we and others identified a superfamily of "regulator of G-protein signaling" (RGS) proteins that accelerate the rate of GTP hydrolysis by Galpha subunits (dubbed GTPase-accelerating protein or "GAP" activity). This discovery resolved the paradox between the rapid physiological timing seen for 7TM receptor signal transduction in vivo and the slow rates of GTP hydrolysis exhibited by purified Galpha subunits in vitro. Here, we review more recent discoveries that have highlighted newly-appreciated roles for RGS proteins beyond mere negative regulators of 7TM signaling. These new roles include the RGS-box-containing, RhoA-specific guanine nucleotide exchange factors (RGS-RhoGEFs) that serve as Galpha effectors to couple 7TM and semaphorin receptor signaling to RhoA activation, the potential for RGS12 to serve as a nexus for signaling from tyrosine kinases and G-proteins of both the Galpha and Ras-superfamilies, the potential for R7-subfamily RGS proteins to couple Galpha subunits to 7TM receptors in the absence of conventional Gbetagamma dimers, and the potential for the conjoint 7TM/RGS-box Arabidopsis protein AtRGS1 to serve as a ligand-operated GAP for the plant Galpha AtGPA1. Moreover, we review the discovery of novel biochemical activities that also impinge on the guanine nucleotide binding and hydrolysis cycle of Galpha subunits: namely, the guanine nucleotide dissociation inhibitor (GDI) activity of the GoLoco motif-containing proteins and the 7TM receptor-independent guanine nucleotide exchange factor (GEF) activity of Ric8/synembryn. Discovery of these novel GAP, GDI, and GEF activities have helped to illuminate a new role for Galpha subunit GDP/GTP cycling required for microtubule force generation and mitotic spindle function in chromosomal segregation.  相似文献   

17.
RGS (regulators of G protein signaling) proteins regulate G protein signaling by accelerating GTP hydrolysis, but little is known about regulation of GTPase-accelerating protein (GAP) activities or roles of domains and subunits outside the catalytic cores. RGS9-1 is the GAP required for rapid recovery of light responses in vertebrate photoreceptors and the only mammalian RGS protein with a defined physiological function. It belongs to an RGS subfamily whose members have multiple domains, including G(gamma)-like domains that bind G(beta)(5) proteins. Members of this subfamily play important roles in neuronal signaling. Within the GAP complex organized around the RGS domain of RGS9-1, we have identified a functional role for the G(gamma)-like-G(beta)(5L) complex in regulation of GAP activity by an effector subunit, cGMP phosphodiesterase gamma and in protein folding and stability of RGS9-1. The C-terminal domain of RGS9-1 also plays a major role in conferring effector stimulation. The sequence of the RGS domain determines whether the sign of the effector effect will be positive or negative. These roles were observed in vitro using full-length proteins or fragments for RGS9-1, RGS7, G(beta)(5S), and G(beta)(5L). The dependence of RGS9-1 on G(beta)(5) co-expression for folding, stability, and function has been confirmed in vivo using transgenic Xenopus laevis. These results reveal how multiple domains and regulatory polypeptides work together to fine tune G(talpha) inactivation.  相似文献   

18.
Activation of human phospholipase C-eta2 by Gbetagamma   总被引:1,自引:0,他引:1  
Zhou Y  Sondek J  Harden TK 《Biochemistry》2008,47(15):4410-4417
Phospholipase C-eta2 (PLC-eta2) was recently identified as a novel broadly expressed phosphoinositide-hydrolyzing isozyme [Zhou, Y., et al. (2005) Biochem. J. 391, 667-676; Nakahara, M., et al. (2005) J. Biol. Chem. 280, 29128-29134]. In this study, we investigated the direct regulation of PLC-eta2 by Gbetagamma subunits of heterotrimeric G proteins. Coexpression of PLC-eta2 with Gbeta 1gamma 2, as well as with certain other Gbetagamma dimers, in COS-7 cells resulted in increases in inositol phosphate accumulation. Gbeta 1gamma 2-dependent increases in phosphoinositide hydrolysis also were observed with a truncation mutant of PLC-eta2 that lacks the long alternatively spliced carboxy-terminal domain of the isozyme. To begin to define the enzymatic properties of PLC-eta2 and its potential direct activation by Gbetagamma, a construct of PLC-eta2 encompassing the canonical domains conserved in all PLCs (PH domain through C2 domain) was purified to homogeneity after expression from a baculovirus in insect cells. Enzyme activity of purified PLC-eta2 was quantified after reconstitution with PtdIns(4,5)P 2-containing phospholipid vesicles, and values for K m (14.4 microM) and V max [12.6 micromol min (-1) (mg of protein) (-1)] were similar to activities previously observed with purified PLC-beta or PLC-epsilon isozymes. Moreover, purified Gbeta 1gamma 2 stimulated the activity of purified PLC-eta2 in a concentration-dependent manner similar to that observed with purified PLC-beta2. Activation was dependent on the presence of free Gbeta 1gamma 2 since its sequestration in the presence of Galpha i1 or GRK2-ct reversed Gbeta 1gamma 2-promoted activation. The PH domain of PLC-eta2 is not required for Gbeta 1gamma 2-mediated regulation since a purified fragment encompassing the EF-hand through C2 domains but lacking the PH domain nonetheless was activated by Gbeta 1gamma 2. Taken together, these studies illustrate that PLC-eta2 is a direct downstream effector of Gbetagamma and, therefore, of receptor-activated heterotrimeric G proteins.  相似文献   

19.
In vertebrate photoreceptors, photoexcited rhodopsin interacts with the G protein transducin, causing it to bind GTP and stimulate the enzyme cGMP phosphodiesterase. The rapid termination of the active state of this pathway is dependent upon a photoreceptor-specific regulator of G protein signaling RGS9-1 that serves as a GTPase activating protein (GAP) for transducin. Here, we show that, in preparations of photoreceptor outer segments (OS), RGS9-1 is readily phosphorylated by an endogenous Ser/Thr protein kinase. Protein kinase C and MAP kinase inhibitors reduced labeling by about 30%, while CDK5 and CaMK II inhibitors had no effect. cAMP-dependent protein kinase (PKA) inhibitor H89 reduced RGS9-1 labeling by more than 90%, while dibutyryl-cAMP stimulated it 3-fold, implicating PKA as the major kinase responsible for RGS9-1 phosphorylation in OS. RGS9-1 belongs to an RGS subfamily also including RGS6, RGS7, and RGS11, which exist as heterodimers with the G protein beta subunit Gbeta5. Phosphorylated RGS9-1 remains associated with Gbeta5L, a photoreceptor-specific splice form, which itself was not phosphorylated. RGS9-1 immunoprecipitated from OS was in vitro phosphorylated by exogenous PKA. The PKA catalytic subunit could also phosphorylate recombinant RGS9-1, and mutational analysis localized phosphorylation sites to Ser(427) and Ser(428). Substitution of these residues for Glu, to mimic phosphorylation, resulted in a reduction of the GAP activity of RGS9-1. In OS, RGS9-1 phosphorylation required the presence of free Ca(2+) ions and was inhibited by light, suggesting that RGS9-1 phosphorylation could be one of the mechanisms mediating a stronger photoresponse in dark-adapted cells.  相似文献   

20.
Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by Galpha subunits speeding deactivation. Galpha deactivation kinetics mediated by RGS are too fast to be directly studied using conventional radiochemical methods. We describe a stopped-flow spectroscopic approach to visualize these rapid kinetics by measuring the intrinsic tryptophan fluorescence decrease of Galpha accompanying GTP hydrolysis and Galpha deactivation on the millisecond time scale. Basal k(cat) values for Galpha(o), Galpha(i1), and Galpha(i2) at 20 degrees C were similar (0.025-0.033 s(-1)). Glutathione S-transferase fusion proteins containing RGS4 and an RGS7 box domain (amino acids 305-453) enhanced the rate of Galpha deactivation in a manner linear with RGS concentration. RGS4-stimulated rates could be measured up to 5 s(-1) at 3 microm, giving a catalytic efficiency of 1.7-2.8 x 10(6) m(-1) s(-1) for all three Galpha subunits. In contrast, RGS7 showed catalytic efficiencies of 0.44, 0.10, and 0.02 x 10(6) m(-1) s(-1) toward Galpha(o), Galpha(i2), and Galpha(i1), respectively. Thus RGS7 is a weaker GTPase activating protein than RGS4 toward all Galpha subunits tested, but it is specific for Galpha(o) over Galpha(i1) or Galpha(i2). Furthermore, the specificity of RGS7 for Galpha(o) does not depend on N- or C-terminal extensions or a Gbeta(5) subunit but resides in the RGS domain itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号