首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In V(D)J recombination, the RAG1 and RAG2 protein complex cleaves the recombination signal sequences (RSSs), generating a hairpin structure at the coding end. The cleavage occurs only between two RSSs with different spacer lengths of 12 and 23 bp. Here we report that in the synaptic complex, recombination-activating gene (RAG) proteins interact with the 7-mer and unstack the adjacent base in the coding region. We generated a RAG1 mutant that exhibits reduced RAG-7-mer interaction, unstacking of the coding base, and hairpin formation. Mutation of the 23-RSS at the first position of the 7-mer, which has been reported to impair the cleavage of the partner 12-RSS, demonstrated phenotypes similar to those of the RAG1 mutant; the RAG interaction and base unstacking in the partner 12-RSS are reduced. We propose that the RAG-7-mer interaction is a critical step for coding DNA distortion and hairpin formation in the context of the 12/23 rule.  相似文献   

2.
In V(D)J joining of antigen receptor genes, two recombination signal sequences (RSSs), 12-RSS and 23-RSS, are paired and complexed with the protein products of recombination-activating genes RAG1 and RAG2. Using magnetic beads, we purified the pre- and postcleavage complexes of V(D)J joining and analyzed them by DNase I footprinting. In the precleavage synaptic complex, strong protection was seen not only in the 9-mer and spacer regions but also near the coding border of the 7-mer. This is a sharp contrast to the single RSS-RAG complex where the 9-mer plays a major role in the interaction. We also analyzed the postcleavage signal end complex by footprinting. Unlike what was seen with the precleavage complex, the entire 7-mer and its neighboring spacer regions were protected. The present study indicates that the RAG-RSS interaction in the 7-mer region drastically changes once the synaptic complex is formed for cleavage.  相似文献   

3.
Ag receptor variable region gene assembly is initiated through the formation of a synaptic complex which minimally includes the recombination-activating gene (RAG) 1/2 proteins and a pair of recombination signals (RSs) flanking the recombining gene segments. RSs are composed of conserved heptamer and nonamer sequences flanking relatively nonconserved spacers of 12 or 23 bp. RSs regulate variable region gene assembly within the context of the 12/23 rule which mandates that recombination only occurs between RSs of dissimilar spacer length. RSs can exert additional constraints on variable region gene assembly beyond imposing spacer length requirements. At a minimum this restriction, termed B12/23, is imposed on the Vbeta to DJbeta rearrangement step by the 5' Dbeta RS and is enforced at or before the DNA cleavage step of the V(D)J recombination reaction. In this study, the components of the 5' Dbeta RS required for enforcing the B12/23 rule are assessed on chromosomal substrates in vivo in the context of normal murine thymocyte development and on extrachromosomal substrates induced to undergo recombination in nonlymphoid cell lines. These analyses reveal that the integrity of the nonamer sequence as well as the highly conserved spacer nucleotides of the 5' Dbeta1 RS are critical for enforcing the B12/23 restriction. These findings have important implications for understanding the B12/23 restriction and the manner in which RS synaptic complexes are assembled in vivo.  相似文献   

4.
The 12/23 rule is a critical step for regulation of V(D)J recombination. To date, only the RAG proteins and high mobility group protein 1 or 2 have been implicated in 12/23 regulation. Through protein fractionation and biochemical experiments, we find that Ku70/Ku80 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) modulate RAG-mediated cleavage. Modulation of cleavage by Ku70/80 and DNA-PKcs results in preferential inhibition of 12/12 and 23/23 DNA cleavage, thus increasing 12/23 rule specificity. This observation indicates that DNA repair factors, Ku70/80 and DNA-PKcs, might be present upstream of the DNA cleavage events and not recruited downstream as is currently thought, assigning new nonrepair functions to the DNA-dependent protein kinase.  相似文献   

5.
Enzymes for DNA replication and recombination need to gain access to single-stranded DNA (ssDNA) but ssDNA-binding proteins (SSBs) present an obstacle to the formation of enzyme-ssDNA replication and recombination complexes. A specialized class of SSBs, which we designate as recombination/replication mediator proteins (RMPs), promotes enzyme- ssDNA assembly by overcoming SSB inhibition. RMPs exhibit strong conservation of function across divergent species, and display species-specific interactions with SSB and enzymes to neutralize the SSB barrier to enzyme-ssDNA assembly.  相似文献   

6.
The beyond 12/23 (B12/23) rule ensures inclusion of a Dbeta gene segment in the assembled T-cell receptor (TCR) beta variable region exon and is manifest by a failure of direct Vbeta-to-Jbeta gene segment joining. The restriction is enforced during the DNA cleavage step of V(D)J recombination by the recombination-activating gene 1 and 2 (RAG1/2) proteins and the recombination signal sequences (RSSs) flanking the TCRbeta gene segments. Nothing is known about the step(s) at which DNA cleavage is defective or how TCRbeta locus sequences contribute to these defects. To address this, we examined the steps of DNA cleavage by the RAG proteins using TCRbeta locus V, D, and J RSS oligonucleotide substrates. The results demonstrate that the B12/23 rule is enforced through slow nicking of Jbeta substrates and to some extent through poor synapsis of Vbeta and Jbeta substrates. Nicking is controlled largely by the coding flank and, unexpectedly, the RSS spacer, while synapsis is controlled primarily by the RSS nonamer. The results demonstrate that different Jbeta substrates are crippled at different steps of cleavage by distinct combinations of defects in the various DNA elements and strongly suggest that the DNA nicking step of V(D)J recombination can be rate limiting in vivo.  相似文献   

7.
Ig-alpha and Ig-beta mediate surface expression and signaling of diverse B cell receptor complexes on precursor, immature, and mature B cells. Their expression begins before that of the Ig chains in early progenitor B cells. In this study, we describe the generation of Ig-alpha-deficient mice and their comparative analysis to mice deficient for Ig-beta, the membrane-IgM, and recombination-activating gene 2 to determine the requirement of Ig-alpha and Ig-beta in survival and differentiation of pro-B cells. We find that in the absence of Ig-alpha, B cell development does not progress beyond the progenitor stage, similar to what is observed in humans lacking this molecule. However, neither in Ig-alpha- nor in Ig-beta-deficient mice are pro-B cells impaired in V(D)J recombination, in the expression of intracellular Ig micro-chains, or in surviving in the bone marrow microenvironment. Finally, Ig-alpha and Ig-beta are not redundant in their putative function, as pro-B cells from Ig-alpha and Ig-beta double-deficient mice are similar to those from single-deficient animals in every aspect analyzed.  相似文献   

8.
Initiation of V(D)J recombination involves the synapsis and cleavage of a 12/23 pair of recombination signal sequences by RAG-1 and RAG-2. Ubiquitous nonspecific DNA-bending factors of the HMG box family, such as HMG-1, are known to assist in these processes. After cleavage, the RAG proteins remain bound to the cut signal ends and, at least in vitro, support the integration of these ends into unrelated target DNA via a transposition-like mechanism. To investigate whether the protein complex supporting synapsis, cleavage, and transposition of V(D)J recombination signals utilized the same complement of RAG and HMG proteins, I compared the RAG protein stoichiometries and activities of discrete protein-DNA complexes assembled on intact, prenicked, or precleaved recombination signal sequence (RSS) substrates in the absence and presence of HMG-1. In the absence of HMG-1, I found that two discrete RAG-1/RAG-2 complexes are detected by mobility shift assay on all RSS substrates tested. Both contain dimeric RAG-1 and either one or two RAG-2 subunits. The addition of HMG-1 supershifts both complexes without altering the RAG protein stoichiometry. I find that 12/23-regulated recombination signal synapsis and cleavage are only supported in a protein-DNA complex containing HMG-1 and a RAG-1/RAG-2 tetramer. Interestingly, the RAG-1/RAG-2 tetramer also supports transposition, but HMG-1 is dispensable for its activity.  相似文献   

9.
Summary The construction of plasmids which facilitate the study of interplasmidic and intraplasmidic recombination is described. In this system, a single recombination event between two mutated Ter genes on separate plasmids or on one plasmid leads to a change in the host phenotype from sensitivity to resistance to tetracycline.Recombination proficiencies have been determined for different E. coli K-12 strains: both interplasmidic and intraplasmidic recombination are independent of the recBC gene product. RecA mutations decrease the proficiency of plasmidic recombination 40–100 fold. Intraplasmidic and interplasmidic recombination via the recE pathway are more efficient than via the recBC pathway. Intraplasmidic recombination, but not interplasmidic recombination via the recE pathway is independent of a functional recA product.  相似文献   

10.
Summary A review of the data on the genetic determination of general recombination in Escherichia coli introduces three alternative pathways of recombination, RecBC, RecF, and RecBCF. One recBC-dependent pathway is functional in recF cells. An initiating endonuclease is involved, acting on the chi-sites of DNA. The second is recF-dependent, acting in the double mutant recBC sbcB. The corresponding endonuclease uses the fre-sites as a substrate. A third pathway acting in wild-type cells is mixed. Both enzymatic systems participate in the overall process. We shall call it RecBCF.Using the thermosensitive recA44 mutant it became possible to study the kinetics of integration of donor DNA into the recipient chromosome via the RecF and RecBCF pathways of recombination. The RecF pathway is characterized by delayed recombination; not less than 14 h being needed to complete the process at 35° C. By the RecBCF pathway (wild-type recipient) the reaction is fast, as described by Lloyd and Johnson (1979). The two stage nature of the RecF pathway is important. First an intermediate product is formed during a short time interval. This product is resistant to the degrading exonuclease V. Afterward the intermediate product is slowly integrated into the recipient chromosome. Autoradiography of this intermediate product, extracted from exconjugants, shows that it consists of closed DNA circles. Their length is within the limits 2–15 min on the E. coli map. Their average value is in fair agreement with genetic estimations of the integrated DNA fragments.Taking into consideration the similarity between genetic determinations of the fre-effects and the heterogeneity of the progeny, we conclude that the intermediate structures formed contribute to this heterogeneity.  相似文献   

11.
Summary The recombination proficiency of three recipient strains of Escherichia coli K 12 carrying different plasmids was investigated by conjugal mating with Hfr Cavalli. Some plasmids (e.g. R1drd 19, R6K) caused a marked reduction in the yield of recombinants formed in crosses with Hfr but did not reduce the ability of host strains to accept plasmid F104. The effect of plasmids on recombination was host-dependent. In Hfr crosses with AB1157 (R1-19) used as a recipient the linkage between selected and unselected proximal markers of the donor was sharply decreased. Plasmid R1-19 also decreased the yield of recombinants formed by recF, recL, and recB recC sbcA mutants, showed no effect on the recombination proficiency of recB recC sbcB mutant, and increased the recombination proficiency of recB, recB recC sbcB recF, and recB recC sbcB recL mutants. An ATP-dependent exonuclease activity was found in all tested recB recC mutants carrying plasmid R1-19, while this plasmid did not affect the activity of exonuclease I in strain AB1157 and its rec derivatives. The same plasmid was also found to protect different rec derivatives of the strain AB1157 against the lethal action of UV light. We suppose that a new ATP-dependent exonuclease determined by R1-19 plays a role in both repair and recombination of the host through the substitution of or competition with the exoV coded for by the genes recB and recC.  相似文献   

12.

Background  

Initial step of β-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution.  相似文献   

13.
14.
Choreography of recombination proteins during the DNA damage response   总被引:1,自引:0,他引:1  
Michael Lisby  Rodney Rothstein   《DNA Repair》2009,8(9):1068-1076
Genome integrity is frequently challenged by DNA lesions from both endogenous and exogenous sources. A single DNA double-strand break (DSB) is lethal if unrepaired and may lead to loss of heterozygosity, mutations, deletions, genomic rearrangements and chromosome loss if repaired improperly. Such genetic alterations are the main causes of cancer and other genetic diseases. Consequently, DNA double-strand break repair (DSBR) is an important process in all living organisms. DSBR is also the driving mechanism in most strategies of gene targeting, which has applications in both genetic and clinical research. Here we review the cell biological response to DSBs in mitotically growing cells with an emphasis on homologous recombination pathways in yeast Saccharomyces cerevisiae and in mammalian cells.  相似文献   

15.
16.
Summary The efficacy of linear DNA as a substrate for general homologous recombination was demonstrated using BamHI-linearized pKLC8.5, a plasmid that carries internal direct repeats flanking the unique BamHI site. An analogous plasmid, pKLC2.31, was used in a parallel and comparative study of intramolecular homologous recombination in circular DNA substrates. When the rec + wild-type strain, AB1157, and its isogenic rec derivatives were transformed with linear pKLC8.5 DNA, intramolecular homologous recombination was independent of recA, recB, recN, recO and exonuclease III (xth-1) functions. Although the recBCsbcA and recBCsbcBC cells were both very recombination proficient, only linear but not circular DNA was used as substrate for intramolecular homologous recombination in the recBCsbcA cells. In both the recBCsbcA and recBCsbcBC genetic backgrounds, the recombination frequencies for linearized pKLC8.5 DNA were 100%. A notable difference between the two strains was that none of the recBCsbcA transformants obtained with circular pKLC8.5 DNA were Tcs recombinants, whereas 11% of the corresponding recBCsbcBC transformants were Tcs recombinants. The sbcB mutation was responsible for the recombination proficiency of the recBCsbcBC cells. Unlike the case in recBCsbcA cells, intramolecular homologous recombination of linear DNA in the recBCsbcBC cells was dependent on recA and recF as well as recN and recO gene functions, but was independent of recJ and reeL gene functions.  相似文献   

17.
Evidence of abortive recombination in ruv mutants of Escherichia coli K12   总被引:5,自引:0,他引:5  
Summary Genetic recombination in Escherichia coli was investigated by measuring the effect of mutations in ruv and rec genes on F-prime transfer and mobilization of nonconjugative plasmids. Mutation of ruv was found to reduce the recovery of F-prime transconjugants in crosses with recB recC sbcA strains by about 30-fold and with recB recC sbcB sbcC strains by more than 300-fold. Conjugative plasmids lacking any significant homology with the chromosome were transferred normally to these ruv mutants. Mobilization of the plasmid cloning vectors pHSG415, pBR322, pACYC184 and pUC18 were reduced by 20- to 100-fold in crosses with ruv rec + sbc + strains, depending on the plasmid used. Recombinant plasmids carrying ruv + were transferred efficiently. With both F-prime transfer and F-prime cointegrate mobilization, the effect of ruv was suppressed by inactivating recA. It is proposed that the failure to recover transconjugants in ruv recA +strains is due to abortive recombination and that the ruv genes define activities which function late in recombination to help convert recombination intermediates into viable products.  相似文献   

18.
Astrocytes as antigen-presenting cells: expression of IL-12/IL-23   总被引:1,自引:0,他引:1  
Interleukin-12 (IL-12, p70) a heterodimeric cytokine of p40 and p35 subunits, important for Th1-type immune responses, has been attributed a prominent role in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Recently, the related heterodimeric cytokine, IL-23, composed of the same p40 subunit as IL-12 and a unique p19 subunit, was shown to be involved in Th1 responses and EAE. We investigated whether astrocytes and microglia, CNS cells with antigen-presenting cell (APC) function can present antigen to myelin basic protein (MBP)-reactive T cells, and whether this presentation is blocked with antibodies against IL-12/IL-23p40. Interferon (IFN)-gamma-treated APC induced proliferation of MBP-reactive T cells. Anti-IL-12/IL-23p40 antibodies blocked this proliferation. These results support and extend our previous observation that astrocytes and microglia produce IL-12/IL-23p40. Moreover, we show that stimulated astrocytes and microglia produce biologically active IL-12p70. Because IL-12 and IL-23 share p40, we wanted to determine whether astrocytes also express IL-12p35 and IL-23p19, as microglia were already shown to express them. Astrocytes expressed IL-12p35 mRNA constitutively, and IL-23 p19 after stimulation. Thus, astrocytes, under inflammatory conditions, express all subunits of IL-12/IL-23. Their ability to present antigen to encephalitogenic T cells can be blocked by neutralizing anti-IL-12/IL-23p40 antibodies.  相似文献   

19.
Deletion between directly repeated DNA sequences in bacteriophage T7-infected Escherichia coli was examined. The phage ligase gene was interrupted by insertion of synthetic DNA designed so that the inserts were bracketed by 10-bp direct repeats. Deletion between the direct repeats eliminated the insert and restored the ability of the phage to make its own ligase. The deletion frequency of inserts of 85 bp or less was of the order of 10(-6) deletions per replication. The deletion frequency dropped sharply in the range between 85 and 94 bp and then decreased at a much lower rate over the range from 94 to 900 bp. To see whether a deletion was predominantly caused by intermolecular recombination between the leftmost direct repeat on one chromosome and the rightmost direct repeat on a distinct chromosome, genetic markers were introduced to the left and right of the insert in the ligase gene. Short deletions of 29 bp and longer deletions of approximately 350 bp were examined in this way. Phage which underwent deletion between the direct repeats had the same frequency of recombination between the left and right flanking markers as was found in controls in which no deletion events took place. These data argue against intermolecular recombination between direct repeats as a major factor in deletion in T7-infected E. coli.  相似文献   

20.
Ellegren H  Carmichael A 《Genetics》2001,158(1):325-331
Birds are characterized by female heterogamety; females carry the Z and W sex chromosomes, while males have two copies of the Z chromosome. We suggest here that full differentiation of the Z and W sex chromosomes of birds did not take place until after the split of major contemporary lineages, in the late Cretaceous. The ATP synthase alpha-subunit gene is now present in one copy each on the nonrecombining part of the W chromosome (ATP5A1W) and on the Z chromosome (ATP5A1Z). This gene seems to have evolved on several independent occasions, in different lineages, from a state of free recombination into two sex-specific and nonrecombining variants. ATP5A1W and ATP5A1Z are thus more similar within orders, relative to what W (or Z) are between orders. Moreover, this cessation of recombination apparently took place at different times in different lineages (estimated at 13, 40, and 65 million years ago in Ciconiiformes, Galliformes, and Anseriformes, respectively). We argue that these observations are the result of recent and traceable steps in the process where sex chromosomes gradually cease to recombine and become differentiated. Our data demonstrate that this process, once initiated, may occur independently in parallel in sister lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号