首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aerobic chemostat cultures of Saccharomyces cerevisiae were performed under carbon-, nitrogen-, and dual carbon- and nitrogen-limiting conditions. The glucose concentration was kept constant, whereas the ammonium concentration was varied among different experiments and different dilution rates. It was found that both glucose and ammonium were consumed at the maximal possible rate, i.e., the feed rate, over a range of medium C/N ratios and dilution rates. To a small extent, this was due to a changing biomass composition, but much more important was the ability of uncoupling between anabolic biomass formation and catabolic energy substrate consumption. When ammonium started to limit the amount of biomass formed and hence the anabolic flow of glucose, this was totally or at least partly compensated for by an increased catabolic glucose consumption. The primary response when glucose was present in excess of the minimum requirements for biomass production was an increased rate of respiration. The calculated specific oxygen consumption rate, at D = 0.07 h-1, was more than doubled when an additional nitrogen limitation was imposed on the cells compared with that during single glucose limitation. However, the maximum respiratory capacity decreased with decreasing nitrogen concentration. The saturation level of the specific oxygen consumption rate decreased from 5.5 to 6.0 mmol/g/h under single glucose limitation to about 4.0 mmol/g/h at the lowest nitrogen concentration tested. The combined result of this was that the critical dilution rate, i.e., onset of fermentation, was as low as 0.10 h-1 during growth in a medium with a low nitrogen concentration compared with 0.20 h-1 obtained under single glucose limitation.  相似文献   

2.
A starvation-based dissolved oxygen (DO) transient controller was developed to supply growth-limiting substrate to high cell density fed-batch cultures of recombinant Escherichia coli. The algorithm adjusted a preexisting feed rate in proportion to the culture's oxygen demand, which was estimated from transients in the DO concentration after short periods of feed interruption. In this manner, the addition of glucose feed was precisely controlled at a rate that did not exceed the acetate production threshold, thus preventing acetate accumulation. In comparison to exponential feed algorithms commonly used in industry, the implementation of the new feeding strategy increased the final cell density from 32 to 44 g (dry cell weight).L(-1), with less than 16 mM acetate accumulated, producing an ideal culture for subsequent induction. Despite a constant starvation level and relatively low levels of acetate, experimental cultivations still tended to produce acetate towards the end of the process. The use of a simple Monod model provided an explanation as to why this may occur in high cell density cultivations and suggests how it may be overcome.  相似文献   

3.
Yeast production on hydrolysate is a likely process solution in large-scale ethanol production from lignocellulose. The hydrolysate will be available on site, and the yeast has furthermore been shown to acquire an increased inhibitor tolerance when cultivated on hydrolysate. However, due to over-flow metabolism and inhibition, efficient yeast production on hydrolysate can only be achieved by well-controlled substrate addition. In the present work, a method was developed for controlled addition of hydrolysate to PDU (process development unit)-scale aerobic fed-batch cultivations of Saccharomyces cerevisiae TMB 3000. A feed rate control strategy, which maintains the ethanol concentration at a low constant level, was adapted to process-like conditions. The ethanol concentration was obtained from on-line measurements of the ethanol mole fraction in the exhaust gas. A computer model of the system was developed to optimize control performance. Productivities, biomass yields, and byproduct formation were evaluated. The feed rate control worked satisfactorily and maintained the ethanol concentration close to the setpoint during the cultivations. Biomass yields of 0.45 g/g were obtained on added hexoses during cultivation on hydrolysate and of 0.49 g/g during cultivation on a synthetic medium with glucose as the carbon source. Exponential growth was achieved with a specific growth rate of 0.18 h-1 during cultivation on hydrolysate and 0.22 h-1 during cultivation on glucose.  相似文献   

4.
The maximization of biomass productivity in fed-batch cultures of hybridoma cells is analyzed based on the overflow metabolism model. Due to overflow metabolism, often attributed to limited oxygen capacity, lactate and ammonia are formed when the substrate concentrations (glucose and glutamine) are above a critical value, which results in a decrease in biomass productivity. Optimal feeding rate, on the one hand, for a single feed stream containing both glucose and glutamine and, on the other hand, for two separate feed streams of glucose and glutamine are determined using a Nelder–Mead simplex optimization algorithm. The optimal multi exponential feed rate trajectory improves the biomass productivity by 10 % as compared to the optimal single exponential feed rate. Moreover, this result is validated by the one obtained with the analytical approach in which glucose and glutamine are fed to the culture so as to control the hybridoma cells at the critical metabolic state, which allows maximizing the biomass productivity. The robustness analysis of optimal feeding profiles obtained with different optimization strategies is considered, first, with respect to parameter uncertainties and, finally, to model structure errors.  相似文献   

5.
The growth and metabolism of Saccharomyces cerevisiae was studied in steady-state chemostat cultures under conditions of scarce oxygen and excess glucose. The specific ethanol productivity and specific glucose uptake rate were stimulated by 50% within a narrow range of air/nitrogen mixtures to the fermentor. Fermentation was inhibited at slightly higher and lower air/nitrogen ratios, confirming similar results by previous investigators. This stimulation could not be caused by obvious mechanisms, such as the Pasteur or Crabtree effects. Since this maximum in the fermentation rate occurred in a steady-state chemostat and at a constant dilution rate, the ATP yield of the culture necessarily attained a minimum. Thus, changes in the energetic efficiency of growth or the degree of wasting of ATP were surmised. The steady-state biomass concentration at various oxygenation rates exhibited hysteresis phenomena. Ignition and extinction of the biomass concentration occurred as critical oxygen feed rates were passed. The hysteresis was prevented by adding yeast extract to or reducing the antifoam concentration in the medium. These medium alterations had the simultaneous effect of stimulating the fermentation rate, suggesting that ATP has a critical role in dictating the biomass concentration in micro-aerobic culture. Silicone polymer antifoam was found to stimulate glycerol production at the expense of ethanol production, having consequences for the energy generation and the biomass concentration of the culture.  相似文献   

6.
This experimental study reports about production selectivity in the fermentation of glucose to citric acid by Yarrowia lipolytica as a function of substrate concentration. Batch runs featuring biomass growth and one or two citric acid production phases were carried out in a 15-l stirred tank fermentor. The presented results demonstrate that working at high initial substrate concentration in the production phase is beneficial both in terms of a higher production rate of citric acid, the desired metabolite (reaching 0.077 h(-1)) and of a higher utilization degree of the employed carbon source (yield up to 0.384 g(c.a.)/g(glucose)). The production rate of isocitric acid, the major undesired metabolite, was found to be practically constant over the tested initial substrate concentration range.  相似文献   

7.
The influence of the oxygen supply on the growth, acetic acid and ethanol production by Brettanomyces bruxellensis in a glucose medium was investigated with different air flow rates in the range 0-300 l h(-1 ) x (0-0.5 vvm). This study shows that growth of this yeast is stimulated by moderate aeration. The optimal oxygen supply for cellular synthesis was an oxygen transfer rate (OTR) of 43 mg O(2) l(-1) x h(-1). In this case, there was an air flow rate of 60 l h(-1) (0.1 vvm). Above this value, the maximum biomass concentration decreased. Ethanol and acetic acid production was also dependent on the level of aeration: the higher the oxygen supply, the greater the acetic acid production and the lower the ethanol production. At the highest aeration rates, we observed a strong inhibition of the ethanol yield. Over 180 l h(-1) x (0.3 vvm, OTR =105 mg O(2) l(-1) x h(-1)), glucose consumption was inhibited and a high concentration of acetic acid (6.0 g x l(-1)) was produced. The ratio of "ethanol + acetic acid" produced per mole of consumed glucose using carbon balance calculations was analyzed. It was shown that this ratio remained constant in all cases. This makes it possible to establish a stoichiometric equation between oxygen supply and metabolite production.  相似文献   

8.
The effect of the rate of oxygen supply on biomass growth, consumption of carbon source formation of metabolic by-products, biomass yeilds referred to C-source and oxygen, respiration rate and the respiratory quotient was studied in a multistage tower fermentor with an interstage backflow, i.e. with a continuous reinoculation of the preceding stages. Experiments were done with Klebsiella aerogenes CCM 2318 in a synthetic glucose medium with constant glucose concentration in the feed, at pH 7.0. temperature 30 degrees C, and dilution rates 0.6 and 0.178 h-1 (referred to one stage). Different behavior of the culture was found at different dilution rates both with oxygen and under oxygen limitation. As compared with the chemostat system, the regime with an interstage backflow exhibited differences in respiration rate and CO2 formation; this attests to a considerably different physiological state of the cells.  相似文献   

9.
In order to investigate the impact of high oxygen and carbon dioxide concentrations, Escherichia coli was grown in batch cultivations where the air supply was enriched with either oxygen or carbon dioxide. The effect of elevated concentrations of oxygen and carbon dioxide on stochiometric and kinetic constants was studied this way. The maximum growth rate was significantly reduced, the production of acetic acid and the biomass yield coefficient on glucose increased in cultures with carbon dioxide enriched air, compared to reference cultivations and cultivations with oxygen enriched air. The application of oxygen enriched air was studied in high cell density cultivations of Escherichia coli. Two production processes were chosen to investigate the impact of oxygen enrichment. Biomass concentration, specific growth rate, yield coefficient, respiration, mixed acid fermentation products and the product yield and quality for the recombinant product were investigated. First, a process for the production of biomass was investigated. Exponential growth could proceed for a longer time and higher growth rates could be maintained with oxygen enriched air supply. However, a higher specific oxygen consumption rate per glucose was measured after the start of the oxygen enrichment, indicating higher maintenance and consequently the growth rate and yield coefficient decreased drastically in the end of the process. Second, a process for the production of recombinant human growth hormone (rhGH) was investigated. Although the glucose feed rate and all medium components were doubled, the amount of produced biomass could only be increased by 77% when oxygen enriched air (40% oxygen) supply was applied. This was due to a decreased yield coefficient of biomass per glucose. The total amount of produced product was decreased by almost 50% compared to the control, although less proteolytically degraded variants were produced.  相似文献   

10.
Summary The central aspect of this work was to investigate the influence of nitrogen feed rate at constant C/N ratio on continuous citric acid fermentation by Candida oleophila ATCC 20177. Medium ammonia nitrogen and glucose concentrations influenced growth and production. Space-time yield (STY) meaning volumetric productivity, biomass specific productivity (BSP), product concentration, product selectivity and citrate/isocitrate ratio increased with increasing residence time (RT). BSP increased in an exponential mode lowering nitrogen feed rates. Highest BSP for citric acid of 0.13 g/(g h) was achieved at lowest NH4Cl concentration of 1.5 g/l and highest STY (1.2 g/l h) with 3 g NH4Cl/l at a RT of 25 h. Citric acid 74.2 g/l were produced at 58 h RT and 6 g NH4Cl/l. Glucose uptake rate seems to be strictly controlled by growth rate of the yeast cells. Optimum nitrogen concentration and adapted C/N ratio are essential for successful continuous citric acid fermentation. The biomass-specific nitrogen feed rate is the most important factor influencing continuous citric acid production by yeasts. Numerous chemostat experiments showed the feasibility of continuous citrate production by yeasts.  相似文献   

11.
The fructose supply rate to continuous cultures of Ocimum basilicumL. cells was changed in two ways. The concentration of fructosein the medium feed was diminished or the dilution rate was increasedin fructose-limiting conditions. When fructose in the feed wasdecreased, whilst maintaining constant dilution rate (0.87 µmax),the specific rate of chlorophyll production increased—thebiomass became greener. Actual photosynthesis rate (dry biomass–1)measured in the steady state conditions also increased. When fructose supply rate was increased by increasing the dilutionrate, the specific rate of chlorophyll production and actualphotosynthesis rate (dry biomass–1) increased until acritical dilution rate (0.64 µmax) was reached, thereafterdecreasing. The potential photosynthesis rate was measured on samples ofcells supplied with additional photons. This was inversely relatedto dilution rate. It seemed possible that the concentration of residual fructoseoutside the cells was related to specific growth rate but probablynot according to the Monod model. The specific production ofchlorophyll may be regulated by the intracellular concentrationof a catabolite of fructose, possibly glucose. Results suggestthat the specific production rate of chlorophyll was inhibitedwhen glucose concentration in the cells was above a thresholdof about 1.2% dry biomass. The degree of inhibition was a functionof glucose concentration above this threshold. Key words: Continuous culture, Photosynthesis, Greening, Ocimum basilicum  相似文献   

12.
Hua Z  Yan G  Du G  Chen J 《Biotechnology journal》2007,2(3):326-333
Catalase (CAT) is an enzyme capable of catalyzing the conversion of H(2)O(2) to O(2) and H(2)O. It has recently acquired interest due to its attractive potential application in the textile industries. In a previous study, a bacterium with slight halophilic and alkaliphilic characteristics, Bacillus sp. F26, was isolated and found to produce high-level alkaline CAT. In the present study, the effects of culture conditions on the CAT production were investigated. The results showed that the highest activity of CAT (13.9 U/mg protein) was obtained when glucose (15 g/L) was used as carbon source. The utilization of the mixture of corn steep liquid and beef extract stimulated both bacterial growth and CAT synthesis. The highest biomass (4.5 g/L) and activity of CAT (16.5 U/mg protein) were found synchronously when 10 g/L corn steep liquid and 10 g/L beef extract were used as nitrogen source. The addition of H(2)O(2) as an oxidative stress was used to enhance CAT production in the flasks. It was found that the activity of CAT was increased by 51.3-22.8 U/mg protein compared with the control when 2 mmol/L H(2)O(2) was added at later exponential phases (16 h), although the cell growth was significantly inhibited. Based on the above, an exponential H(2)O(2) feed strategy was developed, in which the feed rate of H(2)O(2) was controlled according to specific cell growth rate (mu). In this way, the maximum CAT production (29.9 U/mL) was obtained, which was 92.8 and 20.7% higher than that in batch and constant rate fed-batch fermentation, respectively.  相似文献   

13.
The objective of this study was to characterize the dynamic adaptation of the oxidative capacity of Saccharomyces cerevisiae to an increase in the glucose supply rate and its implications for the control of a continuous culture designed to produce biomass without allowing glucose to be diverted into the reductive metabolism. Continuous cultures subjected to a sudden shift-up in the dilution rate showed that the glucose uptake rate increased immediately to the new feeding rate but that the oxygen consumption could not follow fast enough to ensure a completely oxidative metabolism. Thus, part of the glucose assimilated was degraded by the reductive metabolism, resulting in a temporary decrease of biomass concentration, even if the final dilution rate was below Dcrit. The dynamic increase of the specific oxygen consumption rate, qO2, was characterized by an initial immediate jump followed by a first-order increase to the maximum value. It could be modeled using three parameters denoted qjumpO2, qmaxO2, and a time constant tau. The values for the first two of the parameters varied considerably from one shift to another, even when they were performed under identical conditions. On the basis of this model, a time-dependent feed flow rate function was derived that should permit an increase in the dilution rate from one value to another without provoking the appearance of reductive metabolism. The idea was to increase the glucose supply in parallel with the dynamic increase of the oxidative capacity of the culture, so that all of the assimilated glucose could always be oxidized. Nevertheless, corresponding feed-profile experiments showed that deviations in the reductive metabolism could not be completely suppressed due to variability in the model parameters. Therefore, a proportional feedback controller using heat evolution rate measurements was implemented. Calorimetry provides an excellent and rapid estimate of the metabolic activity. Satisfactory control was achieved and led to constant biomass yields. Ethanol accumulated only up to 0.49 g L-1 as compared to an accumulation of 1.82 g L-1 without on-line control in the shift-up experiment to the same final dilution rate.  相似文献   

14.
Multiparameter flow cytometric techniques developed in our laboratories have been used for the "at-line" study of fed-batch bacterial fermentations. These fermentations were done at two scales, production (20 m(3)) and bench (5 x 10(-3) m(3)). In addition, at the bench scale, experiments were undertaken where the difficulty of achieving good mixing (broth homogeneity), similar to that found at the production scale, was simulated by using a two-compartment model. Flow cytometric analysis of cells in broth samples, based on a dual-staining protocol, has revealed, for the first time, that a progressive change in cell physiological state generally occurs throughout the course of such fermentations. The technique has demonstrated that a changing microenvironment with respect to substrate concentration (glucose and dissolved oxygen tension [DOT]) has a profound effect on cell physiology and hence on viable biomass yield. The relatively poorly mixed conditions in the large-scale fermentor were found to lead to a low biomass yield, but, surprisingly, were associated with a high cell viability (with respect to cytoplasmic membrane permeability) throughout the fermentation. The small-scale fermentation that most clearly mimicked the large-scale heterogeneity (i.e., a region of high glucose concentration and low DOT analogous to a feed zone) gave similar results. On the other hand, the small-scale well-mixed fermentation gave the highest biomass yield, but again, surprisingly, the lowest cell viability. The scaled-down simulations with high DOT throughout and locally low or high glucose gave biomass and viabilities between. Reasons for these results are examined in terms of environmental stress associated with an ever-increasing glucose limitation in the well-mixed case. On the other hand, at the large scale, and to differing degrees in scale-down simulations, cells periodically encounter regions of relatively higher glucose concentration.  相似文献   

15.
酿酒酵母分批补料培养中,葡萄糖添加过量会导致乙醇大量积累,破坏细胞结构及功能,降低葡萄糖利用效率;葡萄糖添加不足会限制细胞生长。为解决这一矛盾,提出了一种基于差分进化算法的在线自适应控制策略,并利用计算机仿真方法对该策略、传统的间歇流加、分段恒速流加及PID控制策略的控制性能进行了研究和比较。结果表明,在该控制策略下,发酵液中的乙醇浓度能够被稳定地控制在1g/L的低水平,而细胞浓度却达到34.45g/L的高水平,比采用间歇流加、分段恒速流加及PID控制策略的批次分别提高了243%、18%和29%。由此可知,该自适应控制策略能够将葡萄糖流加速率控制在适宜水平,避免乙醇过量积累的同时保证细胞的快速增殖。  相似文献   

16.
Production of the glycopeptide antibiotic vancomycin by Amycolatopsis orientalis ATCC 19795 was examined in phosphate-limited chemostat cultures with biomass-recycle, employing an oscillating membrane separator, at a constant dilution rate (D= 0. 14 h-1). Experiments made under low agitation conditions (600 rpm) showed that the biomass concentration could be increased 3.9-fold with vancomycin production kinetics very similar to that of chemostat culture without biomass-recycle. The specific production rate (qvancomycin) was maximal when the biomass-recycle ratio (R) was 0.13 (D= 0.087 h-1). When the dissolved oxygen tension dropped below 20% (air saturation), the biomass and vancomycin concentrations decreased and an unidentified red metabolite was released into the culture medium. Using increased agitation (850 rpm), used to maintain the dissolved oxygen tension above 20% air saturation, maximum increases in biomass concentration (7.9-fold) and vancomcyin production 1.6-fold (0.6 mg/g dry weight/h) were obtained when R was 0.44 (D= 0.056 h -1) compared to chemostat culture without biomass-recycle. Moreover, at this latter recycle ratio the volumetric vancomycin production rate was 14.7 mg/L/h (a 7-fold increase compared to chemostat culture without biomass-recycle). These observations encourage further research on biomass-recycling as a means of optimising the production of antibiotics.  相似文献   

17.
《Process Biochemistry》2014,49(3):365-373
A three-stage control strategy independent of the organic substrate was developed for automated substrate feeding in a two-phase fed-batch culture of Cupriavidus necator DSM 545 for the production of the biopolymer polyhydroxybutyrate (PHB). The optimal feeding strategy was determined using glucose as the substrate. A combined substrate feeding strategy consisting of exponential feeding and a novel method based on alkali-addition monitoring resulted in a maximal cell concentration in the biomass growth phase. In the PHB accumulation phase, a constant substrate feeding strategy based on the estimated amount of biomass produced in the first phase and a specific PHB accumulation rate was implemented to induce PHB under limiting nitrogen at different biomass concentrations. Maximal cell and PHB concentrations of 164 and 125 g/L were obtained when nitrogen feeding was stopped at 56 g/L of residual biomass; the glucose concentration was maintained within its optimal range. The developed feeding strategy was validated using waste glycerol as the sole carbon source for PHB production, and the three-stage control strategy resulted in a PHB concentration of 65.6 g/L and PHB content of 62.7% while keeping the glycerol concentration constant. It can thus be concluded that the developed feeding strategy is sensitive, robust, inexpensive, and applicable to fed-batch culture for PHB production independent of the carbon source.  相似文献   

18.
A mouse-mouse hybridoma cell line (167.4G5.3) was cultivated in a 1.5-L stirred-tank bioreactor under constant pH and dissolved oxygen concentration. The transient kinetics of cell growth, metabolism, and antibody production were followed by biochemical and flow cytometric methods. The cell-specific kinetic parameters (growth and metabolic rates) as well as cell size were constant throughout the exponential phase. Intracellular protein and RNA content followed a similar trend. Cell growth stopped when the glutamine in the medium was depleted. Glucose could not substitute for glutamine, as glucose consumption ceased after glutamine depletion. Ammonia and lactate production followed closely glutamine and glucose consumption, respectively. Alanine, glutamate, serine, and glycine were produced but other amino acids were consumed. The cells are estimated to obtain about 45% of the total energy from glycolysis, with the balance of the metabolic energy provided by oxidative phosphorylation. The antibody was produced at a constant rate in both the exponential and decline phases of growth. The intracellular antibody content of the cells remained relatively constant during the exponential phase of growth and decreased slightly afterwards.  相似文献   

19.
AIMS: The aim of this investigation was to develop an empirical model for the autotrophic biodegradation of thiocyanate using an activated sludge reactor. METHODS AND RESULTS: The methods used for this purpose included the use of a laboratory scale activated sludge reactor unit using thiocyante feed concentrations from 200 to 550 mg x l(-1). Reactor effluent concentrations of <1 mg x l(-1) thiocyanate were consistently achieved for the entire duration of the investigation at a hydraulic retention time of 8 h, solids (biomass) retention of 18 h and biomass (dry weight) concentrations ranging from 2 to 4 g x l(-1). A biomass specific degradation rate factor was used to relate thiocyanate degradation in the reactor to the prevailing biomass and thiocyanate feed concentrations. A maximum biomass specific degradation rate of 16 mg(-1) x g(-1) x h(-1) (mg thiocyanate consumed per gram biomass per hour) was achieved at a thiocyanate feed concentration of 550 mg x l(-1). The overall yield coefficient was found to be 0.086 (biomass dry weight produced per mass of thiocyanate consumed). CONCLUSION: Using the results generated by this investigation, an empirical model was developed, based on thiocyanate feed concentration and reactor biomass concentration, to calculate the required absolute hydraulic retention time at which a single-stage continuously stirred tank activated sludge reactor could be operated in order to achieve an effluent concentration of <1 mg x l(-1). The use of an empirical model rather than a mechanistic-based kinetic model was proposed due to the low prevailing thiocyanate concentrations in the reactor. SIGNIFICANCE AND IMPACT OF THE STUDY: These results represent the first empirical model, based on a comprehensive data set, that could be used for the design of thiocyanate-degrading activated sludge systems.  相似文献   

20.
Baker's-yeast-mediated asymmetric ethyl 3-oxobutanoate reduction using a fed-batch feeding strategy for both the 3-oxo ester and the electron donor, was explored as potential production system for enantiopure ethyl ( S )-3-hydroxybutanoate. The dual feed strategy was based on kinetic and stoichiometric data. One major aspect is the effect of high product concentrations on the progress of the reduction. According to initial rate experiments, product inhibition occurs at concentrations above 600 mM product causing a 10-fold decrease of the initial biomass-specific reduction rate. By using optimized feed rates and a biomass concentration of 43 g dw l &#109 1, a product concentration of 350 mM was reached within 80 h with a degree of conversion of 95%. The volumetric productivity was 0.58 g l &#109 1 h &#109 1, using 2.1 kg pressed yeast kg product &#109 1 and 0.52 kg glucose kg product &#109 1. During the fed-batch biotransformation the reduction rate continuously decreased and reduction ceased after 80 h, due to biocatalyst inactivation after prolonged use at increasing high product concentrations. The continuous decrease in reducing activity led to very high ethyl 3-oxobutanoate levels in the reactor resulting in an increase of the undesired specific ethyl ( R )-3-hydroxybutanoate production rate. Therefore, the enantiomeric excess of the product decreased, from initially 100 to ~75% at 80 h. It is concluded that the design of processes for efficient asymmetric bioreduction cannot solely be based on initial rate kinetics, but require detailed knowledge of the effects on activity and enantioselectivity upon long-term exposure to process conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号