首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induction of CN-insensitive respiration with low concentrationsof respiratory inhibitors was studied. If roots were treatedwith 10–3 M CN for 96 hr, the plants died, whilethose treated with 10–4 M CN showed healthy growth. O2 uptake in untreated rice and wheat roots showed a negativeresponse to 10–2 M CN to a considerable extent.On the other hand, pretreatment with 10–4 M CNfor more than 6 hr did not greatly affect respiratory rate,but made respiration insensitive to 10–2 M CN.A similar induction of CN-insensitivity was also broughtabout with 10–4 and 10–3 M H2S and 10–4 MNaN3. (Received July 6, 1971; )  相似文献   

2.
Metabolic changes accompanied by the induction of CN-insensitiverespiration in plant roots were investigated. Glucose-U-14Cwas administrated to untreated and 10–4M CN pretreatedrice roots in the presence or absence of 10–2M CN.14C incorporation into malate increased and that into citratedecreased remarkably with the 10–4M CNpretreatment.10–2M CN generally suppressed the incorporationof 14C into organic acids. However, the 14C incorporation intoaspartic and glutamic acids was not reduced, and that into alanineincreased greatly in the presence of 10–2 M CN. (Received October 16, 1972; )  相似文献   

3.
Movement of Ions and Electrogenesis in Higher Plant Cells   总被引:2,自引:0,他引:2  
During the past 10 years considerable information has accumulatedon the electrochemical relationships of higher plant cells duringtransport of mineral ions. Using the Nernst equation as a criterion,none of eight ions (K+, Na+, Ca++, Mg++, NO3, Cl,H2PO4, and SO4) is in a passive equilibrium. Na+,Ca++, and Mg++ are subject to an exclusion mechanism, and allof the anions appear to be pumped inwardly. K+ apparently approachesan electrochemical balance under certain conditions but probablyis actively accumulated. Compartmental analyses giving estimatesof amounts in the cytoplasm and vacuole and of unidirectionalfluxes permit application of the Ussing flux-ratio equation.The criterion in oat coleoptile cells suggests that at the plasmalemmaNa+ is pumped out while K+ and Cl are pumped in. K+ andCl appear to be coupled in active transport across thetonoplast into the vacuole. Good evidence has been found thatthe cell's electropotential arises from an electrogenic pump:CN (cyanide) and DNP (dinitrophenol) reversibly blockthe potential and ionic transport; cell potentials are higherthan can be accounted for by diffusion; the responses of respirationand potential to the concentration of CN are nearly parallel;and CN inhibited tissue approaches a fit to the Goldmanconstant field equation. Future objectives should be identificationof the ion, or ions, subject to the electrogenic pump and discoveryof the immediate energy source.  相似文献   

4.
The bloom-forming marine dinoflagellate Gyrodinium cf. aureolumwas grown in batch cultures over a range of irradiances (35–380µmolm–2 s–1 and growth, photosynthesis and respirationrates determined. Saturation of growth occurred at irradiancesof 100µmol m–2 s–1 Below this light level,decreases in growth rates and cell size, and a relative increasein carbon specific respiration rates, were observed. On theother hand, photosynthesis-irradiance relationships determinedfrom dissolved oxygen incubations showed that on a cellularand carbon basis, cultures grown at low irradiances had higherrates of light-limited and light-saturated photosynthesis, mainlyas a result of large increases in cell chlorophyll content.This adaptation strategy enables low-light-grown organisms toexploit available high irradiance through a relatively highphotosynthetic capacity. In cells grown at higher light levels(>100µmol m–2 s–1), excess photosynthatemay be diverted to storage rather than used for growth.  相似文献   

5.
Published data on the biomass and specific respiration ratesof mesozooplankton in the oceans across all latitudes were combinedto assess their community respiration on a global basis. Mesozooplanktonbiomass was higher in boreal/anti-boreal and polar waters, intermediatein equatorial waters and lowest in the subtropical gyres. Specificrespiration rates were the highest in equatorial waters anddecreased rapidly poleward. Global community respiration ofmesozooplankton in the upper 200 m of the oceans integratedover all latitudes was 10.4 ± 3.7 (SE) Gt C year–1(n = 838). Below the epipelagic zone, mesozooplankton respirationliving in the mesopelagic (200–1000 m) and bathypelagic(below 1000 m) zones was estimated as 2.2 ± 0.4 (n =57) and 0.40 ± 0.2 (n = 12) Gt C year–1, respectively.Thus, global depth-integrated mesozooplankton respiration was13.0 ± 4.2 Gt C year–1 (17–32% of globalprimary production), which is 3–8-fold higher than thevalues assigned to mesozooplankton respiration in recent estimatesof total respiration in the ocean. Thus, it appears that mesozooplanktonrepresent a major, but neglected component of the carbon cyclein the ocean.  相似文献   

6.
The calanoid copepod, Eudiaplomus graciloides, was reared fromegg to adult on uni-algal diets (0.1. 0.5 and 2.5 mg dry wt1–1) using the green alga, Chlamydomonas reinhardtii,as food, or on a mixed diet consisting of Lake Esrom water filteredthrough a plankton net with pore size 45 µm and supplementedwith C. reinhardtii (2.5 mg dry wt 1–1). On the mixeddiet at 21.0°C growth in body dry wt (W, µg dry wt)was exponential, and the growth constants were 0.21 day–1in the early to mid juvenile stage (N1 - C4) and 0.11 day–1in the late juvenile to early adult stage (C4-A). At 14.5°Cthe corresponding growth rate constants were 0.10 and 0.08 day–1.Similar growth rates were found at uni-algal concentrationsof 0.5 and 2.5 mg dry wt I–1, and it was argued that thethreshold concentration for growth in Eudiaptomus was closeto 0.1 mg dry wt I–1. The clearance (C, ml h–1)of copepodites was measured on the uni-algal diets. The constantsof the regression (C = aWb) were: a = 0.125, b = 0.858 (2000C. reinhardtii ml–1), a = 0.068, b = 0.849 (10 000), a= 0.028, b = 0.875 (50 000). Ingestion rates were calculatedfrom the clearances and the average algal concentrations. Atthe three food levels the average daily rations were 30, 67and 125% of body dry wt. The respiration rate (R, nl O2 h–1)was measured in individuals reared on the mixed diet. The constantsof the regression (R = aWb) were: a = 4.82, b = 1.07 (nauplii,14.5°C), a = 4.17, b = 0.904 (copepodites and adults, 14.5°C),a = 6.87, b = 0.757 (copepodites and adults, 21.0°C). Nosignificant difference in the respiration rate of copepoditesreared on uni-algal diets and the mixed diet could be demonstrated.Energy budgets were calculated. The assimilation efficiencyand the gross growth efficiency of copepodites decreased markedlywith increasing food concentration, the net growth efficiencyvaried from an average of 0.44 at the lowest algal concentrationto 0.60 on the mixed diet. The results are discussed in relationto previous findings with both freshwater and marine copepods.  相似文献   

7.
Microplanktonic respiration rates were estimated in waters offthe coast of northern Chile (Antofagasta, 23°S) during ElNiño and pre-El Niño conditions. Three cruiseswere conducted during pre-El Niño summer (January/February1997), El Niño winter (July 1997) and El Niñosummer (January 1998). Oxygen consumption was estimated by theWinkler method using a semi-automatic photometric end-pointdetector. The ranges of microplanktonic respiration rates foundwere 0.11–21.15, 0.03–6.25 and 0.06–9.01 µmolO2 l–1 day–1 during pre-El Niño summer, ElNiño winter and El Niño summer, respectively.Significant differences were found between winter and summerrespiration rates (non-integrated and integrated). The meanintegrated respiration (mixed layer) for pre-El Niñosummer, El Niño winter and El Niño summer was95 ± 51 (SD) mmol O2 m–2 day–1, 50 ±23 (SD) mmol O2 m–2 day–1 and 63 ± 32 (SD)mmol O2 m–2 day–1, respectively. The strong seasonalsignal detected in microplanktonic integrated respiration inthe area seems to be characteristic of the pre-El Niño/ElNiño 1997–98 period. The integrated respirationrates found off Antofagasta are similar to reported values forthe upwelling area off Peru despite methodological differences.A positive significant correlation was found between respirationand water temperature (r = 0.76, P  相似文献   

8.
Effects of variations in light intensity on diel patterns ofgrowth, respiration and organic release of Skeletonema costatum(Grev.) Cleve in a cyclostat were evaluated. Light intensitywas either constant during the tight period at levels from 1500to 15 µEm–2 s–1 or fluctuated throughout thelight period from 500 to 10 µEm–2 s–1 at ratesof either 1 or 12 cycles day–1. Periodicity in cell divisionwas observed only at light intensities of 130 Em–2 s–1and was decreased under diurnally varying tight. Under all lightconditions carbon and pigment growth were maximal during thelight period but well coupled throughout the 24 h period. Carbonassimilation during the dark period varied from 19 to 34% oftotal daily production and was a linear function of growth rate.Respiratory activity during the light period increased relativeto total daily respiration as growth rate increased. The increasein night-time carbon assimilation with growth rate interactedwith night-time respiration through the refixation of respiredcarbon, thus, influencing the pattern of respiratory loss ofcarbon. Rates of organic release (Ec) were maximal during thelight period and did variations consistently increased withtight intensity. Fluctuating light increased Ec relative toconstant light. Net growth efficiency was maximal at 130 µEm–2s–1 when cell division periodicity was greatest. Underother light conditions relatively higher rates of cell divisionoccorred at night and cell division periodicity was reducedas well as net growth efficiency. Cellular chemical fractionationindicated that under high or variable light conditions fixedcarbon was stored during the tight period for subsequent synthesisof protein and pigments, and division at night. Such an uncouplingof photosynthesis and other growth parameters resulted in greatermetabolic costs to the cell. 1Present address: Marine Biology, Lamont Doherty GeologicalObservatory, Palisades, NY 10964, USA  相似文献   

9.
Community respiration (R) was determined in Bransfield Straitfrom oxygen changes in water samples incubated in borosilicatebottles maintained at in situ temperature. The respiratory electrontransport system (ETS) activity of seawater communities wasalso measured from the same samples. Both data sets were relatedby the regression equation: log R (mg O2 m–3 day–1)=0.462+0.730xlogETS activity mg O2 m–3 day–1) (r=0.80, n=23). Fromthis equation and 37 ETS activity depth profiles, we calculatedthe integrated (0–100 m) community respiration as beingin the range 1.2–4.5 g O2 m–2 day–1 (mean=2.2).These values do not differ significantly from other publishedresults for the Arctic and Antarctic Oceans. Assuming a respiratoryquotient of unity, the areal respiration ranges between 0.45and 1.69 g C m–2 day–1 (mean=0.8). This would representan important sink for the primary production reported for BransStrait. The spatial distribution of community respiration showedhigher values associated with the warmer and phytoplankton-richwaters outflowing from Gerlache Strait into Bransfield Strait,and with the front that separates Bellingshausen Sea watersfrom Weddell Sea waters. We suggest that this pattern of distributionmay be related to the transport of organic matter by the BransfieldCurrent along the front.  相似文献   

10.
We investigated the seasonal occurrence, wet : dry : carbon: nitrogen weight ratios, population biomass, gastric pouchcontents, and rates of feeding, growth and respiration of thescyphomedusa Aurelia aurita in the central part of the InlandSea of Japan. Aurelia aurita medusae began to appear in January/Februaryas ephyrae, reached annual maximum body size in July/August,and disappeared, presumably due to death, by November. Initialslow growth in early spring was followed by a period of exponentialgrowth (mean growth rate: 0.069 d–1) between April andJuly. In the Ondo Strait, which is characterized by strong tidalmixing, the A. aurita population (mean carbon biomass: 66.0mg C m–3) overwhelmingly dominated the zooplankton-communitybiomass (mean biomass of micro- and mesozooplankton: 23.7 mgC m–3) between May and early August The gastric contentanalysis revealed that A. aurita ate almost all micro- and mesozooplankters,of which small copepods were most important. On the basis ofdigestion time for small copepods (60 min) and their abundancein the gastric pouch of field-collected A. aurita, we determinedthe weight specific feeding rates and clearance rates. The formerincreases linearly with increasing copepod abundance, but thelatter was relatively constant irrespective of the food supply.We also measured the respiration rates of A. aurita and expressedthem as functions of body weight and temperature. These physio-ecologicalparameters enabled us to construct the carbon budget of theA. aurita population typical of early summer in the Ondo Strait.Predicted population-feeding rate (6.07 mg C m–3 d–1)was higher than the population-food requirement for both metabolismand growth (4.55 mg C m–3 d–1), indicating thatfood supply was sufficient to sustain the observed growth rate.This feeding rate was equivalent to 26% of micro- and mesozooplanktonbiomass, a significant impact on zooplankton.  相似文献   

11.
Temperature and Antarctic plankton community respiration   总被引:1,自引:0,他引:1  
Antarctic plankton community respiration rates were determinedfrom in vitro changes in dissolved oxygen. Oxygen consumptionrates, measured at in situ temperatures between 0 and 6°C,were found to lie in the range 0.3–3.7 µmol O2 l–1per 24 h. Water samples were collected between East FalklandIsland and South Georgia, South Atlantic Ocean, and incubatedshipboard in the dark at up to 36 temperatures between –2and 14–C. A respiration rate at each temperature was thendetermined and used to calculate the temperature coefficient(Q10) of Antarctic planktonic community respiration from theArrhenius equation. Fourteen Q0 values lay in the range 1–3,with four further values >5. This range of temperature coefficientvalues for community respiration is comparable to the publishedrange of values for plankton photosynthesis. Frequency distributionsof temperature coefficients for the two processes show similarmodal Q105 of 2–3. Thus, this study does not lend supportto the hypothesis of a differential response of photosynthesisand community respiration to low temperature.  相似文献   

12.
Chloramphenicol (CAP), an inhibitor of the mitochondrial proteinsynthesis inhibits callus induction and subsequent growth ofpotato tuber tissue discs. Tissue respiration increase did notoccur in the presence of CAP. Both with and without CAP theinitially CN-sensitive tissue becomes totally CN-resistantin 1–2 weeks. CAP blocks the development of mitcohondrial cytochrome oxidase.A gradual decrease in the activities of cytochrome oxidase andof cytochrome pathway-mediated mitochondrial respiration isfound in CAP-tissue. The mitochondrial alternative pathway whichis absent in mitochondria from freshly sliced tissue developsduring incubation both in the absence and presence of CAP. Thealternative pathway is only operative in uninhibited state IIIrespiration in mitochondria from CAP-tissue. Cycloheximide, an inhibitor of the cytoplasmic protein synthesisinhibits the developments of the alternative pathway and ofthe cytochrome pathway. Alcohol dehydrogenase activity increasestenfold in the tissue during two weeks of incubation on mediawith and without CAP. Alcohol production in the tissue did nottake place in the controls nor in the CAP-treated tissue. (Received April 18, 1981; Accepted July 17, 1981)  相似文献   

13.
Freshly isolated tobacco mesophyll protoplasts had contentsof K$, Cl and Na$ slightly higher (on a cell basis) thanthe original leaf tissue, and had a high K$/Na$ ratio similarto that of the leaf tissue. Influxes of these ions into theprotoplasts were of similar magnitudes to the correspondingfluxes in leaf tissue when compared on the basis of the respectiveplasmalemma surface areas. In both systems the K$ influx wasstrongly inhibited by CN and by DNP. These results suggestthat the ion relations of the freshly isolated mesophyll protoplastswere similar to those of the original leaf tissue and that isolatedmesophyll protoplasts should be a useful system for the studyof ion transport processes in leaf cells.  相似文献   

14.
Red beech (Nothofagus fusca (Hook. F.) Oerst.; Fagaceae) andradiata pine (Pinus radiata D. Don; Pinaceae) were grown for16 months in large open-top chambers at ambient (37 Pa) andelevated (66 Pa) atmospheric partial pressure of CO2, and incontrol plots (no chamber). Summer-time measurements showedthat photosynthetic capacity was similar at elevated CO2 (lightand CO2-saturated value of 17.2 µmol m–2 s–1for beech, 13.5 µmol m–2 s–1 for pine), plantsgrown at ambient CO2 (beech 21.0 µmol–2 s–1,pine 14.9 µmol m–2s–1) or control plants grownwithout chambers (beech 23.2 µmol m–2 s–1,pine 12.9 µmol m–2 s–1). However, the higherCO2 partial pressure had a direct effect on photosynthetic rate,such that under their respective growth conditions, photosynthesisfor the elevated CO2 treatment (measured at 70 Pa CO2 partialpressure: beech 14.1 µmol m–2 s–1 pine 10.3)was greater than in ambient (measured at 35 Pa CO2: beech 9.7µmol m–2 s–1, pine 7.0 µmol m–2s–1) or control plants (beech 10.8 µmol m–2s–1, pine 7.2 µmol m–2 s–1). Measurementsof chlorophyll fluorescence revealed no evidence of photodamagein any treatment for either species. The quantity of the photoprotectivexanthophyll cycle pigments and their degree of de-epoxidationat midday did not differ among treatments for either species.The photochemical efficiency of photosystem II (yield) was lowerin control plants than in chamber-grown plants, and was higherin chamber plants at ambient than at elevated CO2. These resultssuggest that at lower (ambient) CO2 partial pressure, beechplants may have dissipated excess energy by a mechanism thatdoes not involve the xanthophyll cycle pigments. Key words: Carotenoids, chlorophyll fluorescence, photosynthesis, photoinhibition, photoprotection, xanthophyll cycle  相似文献   

15.
Feeding and metabolism of the siphonophore Sphaeronectes gracilis   总被引:1,自引:0,他引:1  
The in situ predation rate of the siphonophore Sphaeronectesgracilis was estimated from gut content analysis of hand-collectedsiphonophores and from laboratory data on digestion rates ofprey organisms. At daytime prey densities of 0.25 copepods 1–1,S. gracilis was estimated to consume 8.1 – 15.4 prey day–1siphonophore–1. From data on abundances of siphonophoresand copepods, S. gracilis was estimated to consume 2–4%of the copepods daily. In laboratory experiments, ingestionrates averaged 13.8 prey day–1 siphonophore–1 atprey densities of 5 copepods 1–1 and 36.9 at 20 copeods1–1. This was equivalent to a specific ingestion rate(for both carbon and nitrogen) of –17% day–1 and45% day–1, respectively, while specific ingestion in situwas only 2% day–1. Ammonium excretion averaged 0.095 µg-atsiphonophore–1 day–1 at 5 prey 1–1, and 0.162at 20 prey 1–1. The specific respiration (carbon) andspecific excretion (nitrogen as ammonium) were calculated tobe 3% day–1 at the lower experimental food level, and5% day–1 at the higher food level. 1Contribution from the Catalina Marine Science Center No. 66. 2Present address: Dept. of Biology, University of Victoria,Victoria, B.C., Canada V8W 2Y2.  相似文献   

16.
Single clonal plants of white clover (Trifolium repens L) grownfrom explants in a Perlite rooting medium, and dependent fornitrogen on N2 fixation in root nodules, were grown for severalweeks in controlled environments which provided two regimesof CO2, and temperature 23/18 °C day/night temperaturesat 680 µmol mol–1 CO2, (C680), and 20/15 °Cday/night temperatures at 340 µmol mol–1 CO2 (C340)After 3–4 weeks of growth, when the plants were acclimatedto the environmental regimes, leaf and whole-plant photosynthesisand respiration were measured using conventional infra-red gasanalysis techniques Elevated CO2 and temperature increased ratesof photosynthesis of young, fully expanded leaves at the growthirradiance by 17–29%, despite decreased stomatal conductancesand transpiration rates Water use efficiency (mol CO2 mol H2O–1)was also significantly increased Plants acclimated to elevatedCO2, and temperature exhibited rates of leaf photosynthesisvery similar to those of C340 leaves ‘instantaneously’exposed to the C680 regime However, leaves developed in theC680 regime photosynthesised less rapidly than C340 leaves whenboth were exposed to a normal CO2, and temperature environmentIn measurements where irradiance was varied, the enhancementof photosynthesis in elevated CO2 at 23 °C increased graduallyfrom approx 10 % at 100 µmol m–1 s–1 to >27 % at 1170 µmol m–2 s–1 In parallel, wateruse efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 In parallel,water use efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 to approx100 % at the highest irradiance Elevated CO2, and temperatureincreased whole-plant photosynthesis by > 40 %, when expressedin terms of shoot surface area or shoot weight No effects ofelevated CO2 and temperature on rate of tissue respiration,either during growth or measurement, were established for singleleaves or for whole plants Dependence on N2, fixation in rootnodules appeared to have no detrimental effect on photosyntheticperformance in elevated CO2, and temperature Trifolium repens, white clover, photosynthesis, respiration, elevated CO2, elevated temperature, water use efficiency, N2 fixation  相似文献   

17.
We have examined the long-term effects of NO3 concentrationson NO3 (15NO3) fluxes and cellular pool sizesin roots of intact 30-d-old wheat (Triticum aestivum cv. Courtot)grown hydroponically. Compartmental analysis was performed understeady-state conditions at five different levels of NO3concentration (from 0.1 up to 5 mol m–3 taking into accountmetabolism and secretion into the xylem (Devienne et al., 1994).Nitrate and reduced nitrogen levels in the tissues were largelyindependent of external NO3 concentration although below1.5 mol m–3 NO3; concentration limited plant growth.In the chamber, marked diurnal variations in net uptake occurredand, in the light, higher NO3 concentrations yieldedhigher NO3 uptake rates. After transfer of the plantsto the laboratory, the increase in net uptake linked to elevationof NO3; concentrations was even larger (from 0.1 to 8.8µmolh–1 g–1 FW) as a result of a marked increase (x10–11) in the unidirectional influx at the plasmalemmawhile NO3 efflux was less enhanced (x 4–5). Underthese conditions, influx into the vacuole was also higher (x2–4) while efflux from the vacuole was little affected(x 1–3). NO3 concentrations within the cell compartmentswere estimated under the clas sical assumptions. The vacuolarconcentration was a little modified by NO3 availabilitywhereas that in the cytosol increased from about 10 mol m–3to about 20 mol m–3 indicating that (1) the absolute valuefor the cytosol was high and (2) it displayed only a small increasedespite very large changes in NO3 fluxes. NO3distribution within the cells did not seem to involve an activeaccumulation of NO3 in the vacuole. Key words: Wheat, ion transport, nitrate, 15N, compartmentation  相似文献   

18.
The total number of planktonic bacteria in the upper mixed layerof the Bering Sea during the late spring-early summer periodranged between 1 and {small tilde}4 x 106 ml–1 (biomass10–40mg C m–3). In the northern Pacific, along 47–526N,the corresponding characteristics of the bacterioplankton densityin the upper mixed water layer were: total number 1–2x 106 cells ml–1 and biomass 15–46mg C m–3Below the thermocline at 50–100 m, the density of bacterioplanktonrapidly decreased. At 300 m depth, it stabilized at 0.1–0.2x 106 cells ml–1. The integrated biomass of bacterioplanktonin the open Bering Sea ranged between 1.2 and 3.6 g C m–2(wet biomass 6–18 g m–2) Its production per dayvaried from 2 to 23 mg C m–3 days–1 in the upper0–100 m. The numerical abundance of planktonic ciliatesin this layer was estimated to be from 3 to l0 x 103 cells l–1,and in the northern Pacific from 0.4 to 4.5 x 103 l–2.Their populations were dominated by naked forms of Strombidium,Strombilidium and Tontonia. In some shelf areas, up to 40% ofthe total ciliate population was represented by the symbioticciliate Mesodinium rubrum. The data on the integrated biomassof basic groups of planktonic microheterotrophs are also presented,and their importance in the trophic relationships in pelagiccommunities of subarctic seas is discussed.  相似文献   

19.
Ammonium and methylammonium ions greatly increase the rate ofCl transport in Chara corallian. This effect is dependenton the pH of the bathing solution. The amine-stimulated Clinflux is small at pH 5·5, increases to a maximum atpH 6·5–7·5, and decreases again as the pHis raised to 8·5. Increased Cl influx is accompaniedby an increase in cytoplasmic pH, as calculated from the distributionof DMO. When the external pH lies between 5·5 and 7·3,cytoplasmic pH in the absence of amine is 7·65–7·70,with an increase of 0·15–0·25 in the presenceof amine. As external pH is increased above 7·3, cytoplasmicpH also increases, with progessively less effect of amine. Although the relationship between Cl influx and cytoplasmicpH is not simple, the results provide evidence in accord withthe hypothesis that Cl transport in Chara involves H+—Clsymport, or the equivalent OH—Cl antiport.The possible role of cytoplasmic pH as a factor involved inthe regulation of membrane transport in Chara is discussed.  相似文献   

20.
The seminal roots of N-free-grown barley seedlings were ableto take up NO3 immediately upon initial exposure; theuptake rate in the tip was half of that in the older root zones(middle and base). A lag of 60 min was required in all rootzones before the uptake rates started to increase during inductionwith external NO3. This increase could be prevented bythe addition of pFPA; we thus assume that additional NO3transport proteins were synthesized during NO3 induction.During the time-course of NO3 induction different uptakerates were measured in morphologically different regions ofthe tip (1 mm segments) indicating a regulation of NO3induction on a narrow local scale. In NO3 grown plants, NO3 uptake as well as NO3content increased basipetally along the root axis concomitantlywith increasing vacuolization of the cells. Although NO3uptake into the tip was only half of that into the older rootzones, this NO3 uptake was very important for the entireroot. Firstly, it provided the substrate for protein biosynthesisin the meristematic region: nitrate reductase activity and totalsoluble protein were highest in the first apical mm of the tip.Secondly, 3% of the NO3 taken up by the tip was foundin the base where it induced NO3 uptake: NO3 wastranslocated almost exclusively basipetally and as little as20nmolg1 root fr. wt. translocated from the tip weresufficient for acceleration of NO3 induction in the rootbase of N-free-grown plants. This clearly shows that the inductionof NO3 uptake does not depend exclusively on the availabilityof external NO3, but can be mediated also with internallytranslocated NO3.The root tip, therefore, may be consideredthe NO3 sensing region of the root. Key words: Barley, Hordeum vulgare L, internal NO3, NO3 uptake, root zones  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号