首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The function of the recently described viscometric affinity sensor (VAS), which measures glucose due to its strong effect on the viscosity of a sensitive liquid containing Concanavalin A (ConA) and dextran, was analysed for osmotic and colloid-osmotic effects on the glucose reading. The suction of low- and high-molecular weight osmotica on the membrane of the microdialysis fibre was measured using a membrane osmometer built from the microdialysis probe of the VAS. The reduction of the sensor read-out in blood plasma can be completely explained by a change in small osmotic volume fluxes through the dialysis membrane, which affect the ConA concentration and the viscosity after the flow of the sensitive liquid through the dialysis probe. The measuring error could be prevented by the presence of the polyethylene glycol 6000 at an isotonic concentration in the glucose standard solutions used for sensor calibration.  相似文献   

2.
Qiu B  Guo L  Guo C  Guo Z  Lin Z  Chen G 《Biosensors & bioelectronics》2011,26(5):2270-2274
A new DNA sensor using a nickel(II) phenanthroline complex ([Ni(phen)(2)PHPIP]·2ClO(4)) as the electrochemical probe was developed. The sensor is very sensitive and selective for calf thymus DNA (ctDNA) detection in aqueous medium. The Ni-phenanthroline probe was synthesized by a two-step preparation using p-hydroxy-phenylimidazo-1,10-phenanthroline (PHPIP) as the ligand and characterized with IR, UV and MS. Some interesting electrochemical properties of the Ni-complex and the interactions of the complex with ctDNA were reported. The calculated dynamics parameters of the electrode process indicate that there are obvious interactions between the probe and the ctDNA in aqueous solution. Under constant potential conditions, the redox current peak of the probe (Ni-complex) decreases obviously as the probe interacts/binds with ctDNAs. This unexpected electrochemical behavior may suggest that a new adduct through the binding of Ni-phenanthroline complex with ctDNA is formed electrochemically. By estimation, the binding ratio of the probe and ctDNA was found to be 1:1 with a binding constant β=4.29×10(5) mol L(-1) in aqueous solution at room temperature.  相似文献   

3.
Highly sensitive label-free detection of kanamycin is achieved with an aptamer sensor based on a conducting polymer/gold self-assembled nanocomposite. The sensor probe is fabricated by covalently immobilizing an in vitro selected DNA aptamer for kanamycin onto gold nanoparticle (AuNP)-comprised conducting polymer, poly-[2, 5-di-(2-thienyl)-1H-pyrrole-1-(p-benzoic acid)] (poly-DPB). The self-assembling of DPB on AuNP is investigated by TEM and UV-vis spectroscopy and the modification of the aptamer sensor is characterized using XPS and electrochemical impedance spectroscopy. The probe is applied to detect kanamycin by using voltammetric techniques. The sensor shows a pair of redox peaks around 0.26/ 0.08 V (vs. Ag/AgCl) for kanamycin captured by the aptamer-immobilized probe. The parameters that can affect the response, such as aptamer concentration, incubation time, temperature, and pH are optimized. The calibration plot shows a linear range from 0.05 μM to 9.0 μM kanamycin with a detection limit of 9.4±0.4 nM. The proposed aptamer sensor is examined with a real sample.  相似文献   

4.
DNA amplification using Polymerase Chain Reaction (PCR) in a small volume is used in Lab-on-a-chip systems involving DNA manipulation. For few microliters of volume of liquid, it becomes difficult to measure and monitor the thermal profile accurately and reproducibly, which is an essential requirement for successful amplification. Conventional temperature sensors are either not biocompatible or too large and hence positioned away from the liquid leading to calibration errors. In this work we present a fluorescence based detection technique that is completely biocompatible and measures directly the liquid temperature. PCR is demonstrated in a 3 μL silicon-glass microfabricated device using non-contact induction heating whose temperature is controlled using fluorescence feedback from SYBR green I dye molecules intercalated within sensor DNA. The performance is compared with temperature feedback using a thermocouple sensor. Melting curve followed by gel electrophoresis is used to confirm product specificity after the PCR cycles.  相似文献   

5.
DNA amplification using Polymerase Chain Reaction (PCR) in a small volume is used in Lab-on-a-chip systems involving DNA manipulation. For few microliters of volume of liquid, it becomes difficult to measure and monitor the thermal profile accurately and reproducibly, which is an essential requirement for successful amplification. Conventional temperature sensors are either not biocompatible or too large and hence positioned away from the liquid leading to calibration errors. In this work we present a fluorescence based detection technique that is completely biocompatible and measures directly the liquid temperature. PCR is demonstrated in a 3 muL silicon-glass microfabricated device using non-contact induction heating whose temperature is controlled using fluorescence feedback from SYBR green I dye molecules intercalated within sensor DNA. The performance is compared with temperature feedback using a thermocouple sensor. Melting curve followed by gel electrophoresis is used to confirm product specificity after the PCR cycles.  相似文献   

6.
The sensors applied recently for determination of cholinesterase activity are mostly enzymatic amperometric sensors, in spite of their disadvantages: short life-time at ambient temperature, instability of the response, interferences, as well as passivation of the electrode surface. In the present paper a new approach for determination of cholinesterase activity was proposed, overcoming the main drawbacks of the analysis performed with amperometric enzymatic sensors. Instead of the immobilization of enzymes on a conducting electrode surface, whole cells of Arthrobacter globiformis, containing choline oxidase were fixed on a Clark type oxygen probe. Current proportional to bacteria respiration is registered as a sensor response. The application of whole cells of bacteria as a sensing element permits to achieve high stability of the response and long life-time of the sensor at ambient temperature, due to the conservation of the enzyme in its natural micro-environment inside the immobilized cells. The proposed sensor keeps its functionality more than 7 weeks stored in deionized water at ambient temperature. For the first 2 weeks the amplitude of the response decreases with only 10% and at the end of the studied 7 weeks period the response was 50% of the initial. The other advantages of the proposed sensor are: the dissolved oxygen is used as a mediator which concentration can be reliably and interferences free measured by the aim of a Clark type oxygen probe applied as a transducer; reproducible bacterial membranes can be elaborated by filtration of resuspended bacterial culture after preliminary determination of its activity; application of membranes containing lyophilized bacteria capable to be conserved infinitely long time and activated just before their application; negligible cost compared with the sensors based on immobilized enzymes. The steady-state response of the proposed bacterial sensor to choline obtained in 200 s is linear in the investigated concentration range up to 2 x 10(-4) moldm(-3), with detection limit of 8 x 10(-8) moldm(-3) and sensitivity of 4 x 10(-1) microAcm(3)mol(-1), at pH 6, temperature of 25 degrees C and stirring rate of 300 rpm. Choline is formed as a result of the catalytic hydrolysis (depending on the cholinesterase activity) of the substrate acetylcholine. Linear calibration graph for cholinesterase activity determination was obtained in the range up to 11 mUcm(-3), with a slope of 1.97 x 10(-2) microAcm(3)mU(-1), at pH 6, temperature of 25 degrees C and stirring rate of 300 rpm. The tests with reconstituted lyophilized serum with known activity used as a control sample confirm the accuracy of the proposed method. The relative error of the determination was only 2.82%.  相似文献   

7.
A highly sensitive and selective sensor for daunomycin was developed using phosphatidylserine (PS) and aptamer as bioreceptors. The PS and aptamer were co-immobilized onto gold nanoparticles modified/functionalized [2,2':5',2″-terthiophene-3'-(p-benzoic acid)] (polyTTBA) conducting polymer. Direct electrochemistry of daunomycin was used to fabricate a label free sensor that monitors current at -0.61 V. The formation of each layer was confirmed with XPS, SEM, and QCM. Response of the sensor was compared with and without PS in terms of sensitivity and selectivity. Interaction between the sensor probe and daunomycin was determined with DPV. The experimental parameters affecting sensor performance were optimized in terms of concentration of immobilized aptamer, PS:aptamer ratio, temperature, pH, and reaction times. The dynamic range for daunomycin analysis ranged between 0.1 and 60.0 nM with a detection limit of 52.3 ± 2.1 pM. Sensor was also examined for interference effect of other drugs. The present sensor exhibited long term stability and successfully detected daunomycin in a real human urine spiked with daunomycin.  相似文献   

8.
Hydration and fluidity of lipid bilayers in different phase states were studied using fluorescent probes selectively located at the interface. The probe of hydration was a recently developed 3-hydroxyflavone derivative, which is highly sensitive to the environment, whereas the probe of fluidity was the diphenylhexatriene derivative, 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene. By variation of the cholesterol content and temperature in large unilamellar vesicles composed of sphingomyelin or dipalmitoylphosphatidlycholine, we generated different phases: gel, liquid ordered (raft), liquid crystalline, and liquid disordered (considered as liquid crystalline phase with cholesterol). For these four phases, the hydration increases in the following order: liquid ordered < gel approximately liquid disordered < liquid crystalline. The membrane fluidity shows a somewhat different trend, namely liquid ordered approximately gel < liquid disordered < liquid crystalline. Thus, gel and liquid ordered phases exhibit similar fluidity, whereas the last phase is significantly less hydrated. We expect that cholesterol due to its specific H-bonding interactions with lipids and its ability to fill the voids in lipid bilayers expels efficiently water molecules from the highly ordered gel phase to form the liquid ordered phase. In this study, the liquid ordered (raft) and gel phases are for the first time clearly distinguished by their strong difference in hydration.  相似文献   

9.
As we have already shown in a previous publication [Kamahori, M., Ihige, Y., Shimoda, M., 2007. Anal. Sci. 23, 75-79], an extended-gate field-effect transistor (FET) sensor with a gold electrode, on which both DNA probes and 6-hydroxyl-1-hexanethiol (6-HHT) molecules are immobilized, can detect DNA hybridization and extension reactions by applying a superimposed high-frequency voltage to a reference electrode. However, kinetic parameters such as the dissociation constant (K(d)(s)) and the apparent DNA-probe concentration (C(probe)(s)) on a surface were not clarified. In addition, the role of applying the superimposed high-frequency voltage was not considered in detail. In this study, the values of K(d)(s) and C(probe)(s) were estimated using a method involving single-base extension reaction combined with bioluminescence detection. The value of K(d)(s) on the surface was 0.38 microM, which was about six times that in a liquid phase. The value of C(probe)(s), which expressed the upper detection limit for the solid phase reaction, was 0.079 microM at a DNA-probe density of 2.6 x 10(12)molecules/cm(2). We found that applying the superimposed high-frequency voltage accelerated the DNA molecules to reach the gold surface. Also, the distance between the DNA-probes immobilized on the gold surface was controlled to be over 6 nm by applying a method of competitive reaction with DNA probes and 6-HHT molecules. This space was sufficient to enable the immobilized DNA-probes to lie down on the 6-HHT monolayer in the space between them. Thus, the FET sensor could detect DNA hybridization and extension reactions by applying a superimposed high-frequency voltage to the DNA-probes density-controlling gold surface.  相似文献   

10.
The relationship of size of test arena, number of holes in a grain probe trap body and capture of the sawtoothed grain beetle, Oryzaephilus surinamensis (L.), was determined in simulated field tests conducted in an outdoor screen enclosure exposed to natural temperature fluctuations. Polyvinylchloride (PVC) probe bodies were attached to electronic sensor heads, and insect captures were recorded electronically using an electronic grain probe insect counter (EGPIC) system. In comparisons among PVC probe trap bodies with 60, 132, 252, and 492 holes, tested at 18 insects per kilogram in 4.5, 17, and 40 kg of soft wheat in cylindrical arenas (10.2, 20.3, and 30.5 cm in diameter, respectively), number of holes in the probe trap body had no effect on insect capture, but percentage of insects recovered was indirectly related to size of the test arena. Periodicity of insect capture was determined using the time-stamp data that were recorded by the EGPIC system. Circadian rhythm was observed in the periodicity of the capture that corresponded to foraging activity peaks documented for sawtoothed grain beetles, with activity peaks occurring early in the scotophase. There were shifts in times of peak activity among the different test arena sizes that corresponded to differences in temperature in the grain mass. Increases in both temperature and contact between insects and grain probe in the smallest arenas resulted in higher capture of sawtoothed grain beetles. This research documents additional important factors when evaluating capture of sawtoothed grain beetles in grain probe traps.  相似文献   

11.
A temperature sensor based on hollow fiber (HF) filled with graphene-Ag composite nanowire and liquid is presented. The coupling properties and sensing performance are numerically analyzed by finite element method using wavelength and amplitude interrogations. Results show that the sensor exhibiting strong birefringence with x-polarized peak provides much higher sensitivities and better signal-to-noise ratio (SNR) than y-polarized, which is more suitable for temperature detection. The graphene-Ag composite nanowire can not only solve the oxidation problem but also avoid the metal coating. Moreover, it provides better performance than other similar works like Au-Ag nanowire-filled, Au nanowire-filled, and Ag nanowire-filled sensors. Contrary to the blue shift of traditional SPR temperature sensors, the resonance peak shifts to the longer wavelength in our device when temperature increases and the high sensitivity 9.44 nm/ °C is obtained. The influences of nanowire diameter, grapheme-layer thickness on the designed sensor, are also investigated. This work can provide a reference for developing a high sensitivity, real-time, remote sensing, and distributed temperature SPR sensor.  相似文献   

12.
This work develops a simple, sensitive and signal-on electrochemical sensor for methyltransferase (MTase) activity analysis. The sensor is composed of a methylene blue-modi?ed "signaling DNA probe" and a "capture DNA probe" tethered methylation-responsive hairpin DNA (hairpin-capture DNA probe). The thiol- modified hairpin-capture DNA probe at 5' end was firstly self-assembled on gold electrode via Au-S bonding. Methylation-induced scission of hairpin-capture DNA probe would displace the hairpin section and remain the "capture DNA probe" section on the gold electrode. Subsequently, the remained "capture DNA probe" on the gold electrode can hybridize with the methylene blue-modi?ed "signaling DNA probe", mediating methylene blue onto the gold electrode surface to generate redox current. It was eT on state. The developed facile signal-on electrochemical sensing system showed a linear response to concentration of Dam MTase range from 0.1 to 1.0 U/mL. The detection limit of Dam MTase activity was determined to be 0.07 U/mL and the total detection time is 7h. The sensor also has the ability to provide information about the dynamics of methylation process. Furthermore, we demonstrated that this sensor could be utilized to screen inhibitors or drugs for Dam MTase.  相似文献   

13.
A novel optical disposable probe for screening fluoroquinolones in fish farming waters is presented, having Norfloxacin (NFX) as target compound. The colorimetric reaction takes place in the solid/liquid interface consisting of a plasticized PVC layer carrying the colorimetric reagent and the sample solution. NFX solutions dropped on top of this solid-sensory surface provided a colour change from light yellow to dark orange. Several metals were tested as colorimetric reagents and Fe(III) was selected. The main parameters affecting the obtained colour were assessed and optimised in both liquid and solid phases. The corresponding studies were conducted by visible spectrophotometry and digital image acquisition. The three coordinates of the HSL model system of the collected image (Hue, Saturation and Lightness) were obtained by simple image management (enabled in any computer). The analytical response of the optimised solid-state optical probe against concentration was tested for several mathematical transformations of the colour coordinates. Linear behaviour was observed for logarithm NFX concentration against Hue+Lightness. Under this condition, the sensor exhibited a limit of detection below 50 μM (corresponding to about 16 mg/mL). Visual inspection also enabled semi-quantitative information. The selectivity was ensured against drugs from other chemical groups than fluoroquinolones. Finally, similar procedure was used to prepare an array of sensors for NFX, consisting on different metal species. Cu(II), Mn(II) and aluminon were selected for this purpose. The sensor array was used to detect NFX in aquaculture water, without any prior sample manipulation.  相似文献   

14.
The naphthalene-based fluorescent probes Patman and Laurdan detect bilayer polarity at the level of the phospholipid glycerol backbone. This polarity increases with temperature in the liquid–crystalline phase of phosphatidylcholines and was observed even 90 °C above the melting temperature. This study explores mechanisms associated with this phenomenon. Measurements of probe anisotropy and experiments conducted at 1 M NaCl or KCl (to reduce water permittivity) revealed that this effect represents interactions of water molecules with the probes without proportional increases in probe mobility. Furthermore, comparison of emission spectra to Monte Carlo simulations indicated that the increased polarity represents elevation in probe access to water molecules rather than increased mobility of relevant bilayer waters. Equilibration of these probes with the membrane involves at least two steps which were distinguished by the membrane microenvironment reported by the probe. The difference in those microenvironments also changed with temperature in the liquid–crystalline phase in that the equilibrium state was less polar than the initial environment detected by Patman at temperatures near the melting point, more polar at higher temperatures, and again less polar as temperature was raised further. Laurdan also displayed this level of complexity during equilibration, although the relationship to temperature differed quantitatively from that experienced by Patman. This kinetic approach provides a novel way to study in molecular detail basic principles of what happens to the membrane environment around an individual amphipathic molecule as it penetrates the bilayer. Moreover, it provides evidence of unexpected and interesting membrane behaviors far from the phase transition.  相似文献   

15.
A catheter-type optical oxygen sensor based on phosphorescence lifetime was developed for medical and animal experimental use. Since the sensor probe should have biocompatibility and high oxygen permeability in vivo, we focused attention on acceptable polymer materials for contact lenses as the substrates of probes. Pd-porphyrin was doped in silicone-based polymer, and was fixed at the edge of an optical fiber inserted in a catheter tube. The shape of the probe was 600 μm in diameter and 100 μm in thickness, and the probe had high oxygen permeability of Dk value 455. In accuracy evaluation, there found an excellent correlation between the pO2 values measured through phosphorescence lifetime using the oxygen sensors and those measured as the calibrating data using oxygen electrodes. The response time required to achieve 90% from reversible default value to be from 150 to 0 mmHg, and from 0 to 150 mmHg was 15.43 and 7.52 s, respectively. In addition, other properties such as temperature and pH dependency, response, and durability of our optical oxygen sensor were investigated. In animal experiments, the catheter-type oxygen sensor was inserted via the femoral artery of a rat, and arterial oxygen pressure was monitored under asphyxiation. The sensor was valid in the range of oxygen concentration sufficient for biometry, and expected to be integrated with an indwelling needle.  相似文献   

16.
A DNA piezoelectric sensor has been developed for the detection of genetically modified organisms (GMOs). Single stranded DNA (ssDNA) probes were immobilised on the sensor surface of a quartz crystal microbalance (QCM) device and the hybridisation between the immobilised probe and the target complementary sequence in solution was monitored. The probe sequences were internal to the sequence of the 35S promoter (P) and Nos terminator (T), which are inserted sequences in the genome of GMOs regulating the transgene expression. Two different probe immobilisation procedures were applied: (a) a thiol-dextran procedure and (b) a thiol-derivatised probe and blocking thiol procedure. The system has been optimised using synthetic oligonucleotides, which were then applied to samples of plasmidic and genomic DNA isolated from the pBI121 plasmid, certified reference materials (CRM), and real samples amplified by the polymerase chain reaction (PCR). The analytical parameters of the sensor have been investigated (sensitivity, reproducibility, lifetime etc.). The results obtained showed that both immobilisation procedures enabled sensitive and specific detection of GMOs, providing a useful tool for screening analysis in food samples.  相似文献   

17.
The interaction of (+)-catechin with a lipid bilayer was examined by the spin probe method. The spin probe, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), was dissolved in an aqueous dipalmitoylphosphatidylcholine (DPPC) dispersion containing (+)-catechin. The temperature dependence of the TEMPO parameter was measured. The increase of this parameter due to pretransition was eliminated by the addition of (+)-catechin, suggesting that it was adsorbed to the lipid membrane surface in the gel state, which hindered the change of the membrane from a flat to wavy structure. In the temperature region of the main transition, the TEMPO parameter increased rapidly, then gradually with increasing temperature, which could be explained by the eutectic phase diagram. The rotational correlation time of a spin probe 16-doxylstearic acid and the order parameter of 5-doxylstearic acid in the aqueous dispersion system of egg yolk phosphatidylcholine revealed that the motion of the alkyl chain in the liquid crystal state was hindered in the center of the membrane as well as near the surface by the adsorption of (+)-catechin.  相似文献   

18.
In an effort to understand more about the perturbing properties of adamantane-like molecules on biological membranes, the spin probe adamantyl nitroxide (2,2′-dimethyl-5-adamantyl oxazolidine-N-oxyl) was synthesized, purified and characterized. Electron paramagnetic resonance (EPR) spectra were then obtained from 1:50 and 1:200 mixtures of adamantyl nitroxide with dipalmitoyl and dipalmityl phosphatidylcholine multibilayers. Above the phase transition temperature of these lipids (41°C for dipalmitoyl phosphatidylcholine and 43°C for dipalmityl pholphatidylcholine) the spectra of adamantyl nitroxide are similar to control spectra obtained in liquid oleic acid. Below the phase transition temperatures, however, spectral differences were observed depending on: (1) the concentration of the spin probe in the lipid; (2) the linkage between the polar head group and the hydrocarbon tails of the phospholipid; (3) the temperature of the sample. Partitioning of adamantyl nitroxide between the aqueous and hydrocarbon phases of the sample is most prominent at probe-to-lipid ratios of 1:200 and at temperatures below the pre-transition temperature of the lipid (around 33°C). Computer simulations of the above results, as well as additional experiments performed at 35 GHz, show that the results arise from true partitioning and not from asymmetric probe motion.Two conclusive results of these experiments are that spectra of adamantyl nitroxide in phospholipid multibilayers are sensitive to probe concentration and to the physical characteristics of the phospholipid which they probe. The spectral differences which arise when adamantyl nitroxide is used with ether- and ester-linked phospholipids indicate that it is a sensitive probe of membrane surfaces. Employment of this molecule in membrane research should prove to be useful in obtaining additional information about membrane surface events.  相似文献   

19.
When a dissolved oxygen (DO) probe is submerged in an air-saturated cell culture medium the thickness of the liquid film that exists outside the membrane of a DO probe changes with hydrodynamic shear. The response of the DO probe thus varies with the hydrodynamic shear environment near the DO probe in cell culture reactors. The thickness of the liquid film was estimated by using a three-layer model, which describes the flow of DO molecules through the liquid layer, the membrane, and the electrolyte, to the cathode of a DO probe. According to the three-layer model, the current output of the DO probe was a strong function of thickness of the liquid film outside the membrane of the DO probe. A correlation between shear rates on the surface of the probe and the DO saturation reading was obtained by using two concentric cylinders with a rotating inner cylinder. This correlation was then used to characterize the local hydrodynamic shear environment in a cell culture reactor. (c) 1993 John Wiley & Sons, Inc.  相似文献   

20.
This study proved a possibility of a peptide probe for evaluating affinity properties of proteins. We have designed and synthesized three different peptide probes, H-Ala3-(Gly-Pro5)3-Gly-OH (peptide A), H-Ala3-(Gly-Pro5)-Gly-OH (peptide B) and H-Ala3-Gly-OH (peptide C) for testing their affinities to profilin. Each peptide probe was immobilized on a quartz crystal microbalance (QCM) sensor. The QCM sensor with the peptide A showed a 93 Hz decrease of resonant frequency which indicated profilin bound to the QCM sensor in a single layer. In a successive reaction with actin, the QCM analysis resulted in a 123 Hz decrease of resonant frequency which showed actin bound to the QCM sensor. A fluorescence microscope image of the sensor surface exhibited clear fluorescence after binding a rhodamine labeled actin on the sensor surface. These results supported stepwise reactions of profilin binding to the peptide A and actin binding to profilin. In the three peptide probes, the peptide A showed the highest affinity to profilin, i.e., sequence dependent affinity was confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号