首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Attenuated varicella-zoster virus was propagated in human fetal embryonic lung cells grown on microcarriers to produce live attenuated varicella vaccine. We have investigated the characteristics of cell growth and virus production in microcarrier culture system at various culture conditions. The cell-associated and cell-free virus yields in microcarrier were comparable to those in the stationary tissue cultures.  相似文献   

2.
For the large-scale operation of microcarrier culture to be successful, a technically feasible method for sequential inoculation is essential. Using human foreskin fibroblasts, FS-4, we have achieved this by detaching cells viably from microcarriers employing a selection pH trypsinization technique. Cells thus detached are able to reattach to microcarriers and grow normally after subsequent reinoculation into new cultures. However, after reinoculation cells attach to new microcarriers at a higher rate than to used microcarriers on which cells have previously grown. The effect of this differential cell attachment was analyzed and overcome by employing a low inoculum concentration. FS-4 cells could thus be serially propagated on microcarriers and subsequently used for beta-interferon production. This technique has also been applied to the cultivation of a monkey kidney cell line, Vero. We have also shown that Vero cells directly inoculated from a seed microcarrier culture could be used for virus production.  相似文献   

3.
Perfusion culture with microcarriers was conducted to produce cell-associated and cell-free Varicella-Zoster virus (VZV) with human embryonic lung cells. After the cells were infected with VZV infected cells, glucose in the medium decreased rapidly, suggesting that VZV propagation was related closely to the use of glucose. While the yield of cell-associated VZV in microcarriers was 9,350 PFU/cm2, almost two-thirds of that in T-80 flask and cell factory, the yield of cell-free VZV in microcarriers was only about 10% of that in T-80 flask and cell factory.  相似文献   

4.
For the cultivation of mammalian cells on microcarriers a minimum inoculum concentration is required to initiate cell attachment and subsequent cell growth. A critical cell number model has been proposed to elucidate the mechanism of the inoculum requirement. In this model it was hypothesized that after inoculation a critical number of cells per microcarrier is required for normal growth to occur; failure to acquire enough cells will impede cell growth. This critical cell number model was expressed mathematically and used to simulate cell distribution and growth on microcarriers under different cultivation conditions. By comparing the simulated growth kinetics with the experimental results, the actual critical cell number per microcarrier was identified. The critical number could be reduced by employing an improved medium for the cultivation.  相似文献   

5.
A new cell culture microcarrier that can be covalently bonded by cell attachment proteins and can be thin-sectioned for electron microscopy was synthesized. It was easily made by sulfonating cross-linked polystyrene beads for a negative surface charge followed by covalent attachment of polyethylenimine for a positive charge. Cell attachment proteins, e.g. collagen, was covalently bonded directly to the microcarrier using a carbodiimide or after activating the microcarrier surface with glutaraldehyde. HeLa-S3 cells attached, spread and grew to confluence more efficiently on the positive microcarriers and those coated with collagen than on the negative ones. Endothelial cells grew best on those with a negative surface charge. The nature of the microcarrier surface was not the only aspect involved in cell adhesion but also the type of serum proteins adsorbed. Qualitatively different proteins coated the microcarriers depending upon whether the carrier was negative, positive or coated with collagen. Comparison of various types of available microcarriers indicated that the modified cross-linked polystyrene beads used here were best for transmission and scanning electron microscopy. Endothelial cells grown on the microcarriers had the same ultrastructure as cells grown in monolayers in culture dishes. Of a variety of microcarriers tested the modified cross-linked polystyrene beads were the only ones that could be used for both ultrastructural and biochemical techniques.  相似文献   

6.
Two strains of reovirus were propagated in Vero cells grown in stationary or microcarriers cultures. Vero cells grown as monolayers on T-flasks or in spinner cultures of Cytodex-1 or Cultispher-G microcarriers could be infected with reovirus serotype 1, strain Lang (T1L), and serotype 3, strain Dearing (T3D). A regime of intermittent low speed stirring at reduced culture volume was critical to ensure viral infection of cells in microcarrier cultures. The virus titre increased by 3 to 4 orders of magnitude over a culture period of 150 h. Titres of the T3D reovirus strain were higher (43%) compared to those of the T1L strain in all cultures. Titres were significantly higher in T-flask and Cytodex-1 microcarrier cultures compared to Cultispher-G cultures with respect to either reovirus type. The viral productivity in the microcarrier cultures was dependent upon the multiplicity of infection (MOI) and the cell/bead ratio at the point of infection. A combination of high MOI (5 pfu/cell) and high cell/bead loading (>400 for Cytodex-1 and >1,000 for Cultispher-G) resulted in a low virus productivity per cell. However, at low MOI (0.5 pfu/cell) the virus productivity per cell was significantly higher at high cell/bead loading in cultures of either microcarrier type. The maximum virus titre (8.5 x 10(9) pfu/mL) was obtained in Cytodex-1 cultures with a low MOI (0.5 pfu/cell) and a cell/bead loading of 1,000. The virus productivity per cell in these cultures was 4,000 pfu/cell. The lower viral yield in the Cultispher-G microcarrier cultures is attributed to a decreased accessibility of the entrapped cells to viral infection. The high viral productivity from the Vero cells in Cytodex-1 cultures suggests that this is a suitable system for the development of a vaccine production system for the Reoviridae viruses.  相似文献   

7.
Moran E 《Cytotechnology》1999,29(2):135-149
Veterinary viral vaccines generally comprise either attenuated or chemically inactivated viruses which have been propagated on mammalian cell substrates or specific pathogen free (SPF) eggs. New generation vaccines include chemically inactivated virally-infected whole cell vaccines. The NM57 cell line is a bovine nasal turbinate persistently infected (non-lytic infection) with a strain of the respiratory syncytial virus (RSV). The potential of microcarrier technology for the cultivation in bioreactors of this anchorage dependent cell line for RSV vaccine production has been investigated. Both Cytodex 3 and Cultispher S microcarriers proved most suitable from a selection of microcarriers as growth substrates for this NM57 cell line. Maximum cell densities of 4.12×105 cells ml-1and 5.52×105 cells ml-1 respectively were obtained using Cytodex 3 (3 g l-1) and and Cultispher S (1 g l-1) in 5 l bioreactor cultures. The fact that cell growth was less sensitive to agitation rate when cultured on Cultispher S microcarriers, and that cells were efficiently harvested from this microcarrier by an enzymatic method, suggested Cultispher S is suitable for further evaluation at larger bioreactor scales (>5 l) than that described here. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
微载体高密度培养Vero细胞的研究   总被引:10,自引:0,他引:10  
微载体是动物细胞高密度培养的有效手段。首先在硅化的方瓶中对Cytodex 1、Cy-todex 3、Biosilon、Bellco Glass Microcarrier、CT-1、CT-3、MC-1、CT-28种国产和进口微载体进行了比较和筛选。确定以Biosilon作为Vero细胞高密度培养的首选微载体。用500mlWheaton搅拌瓶探索影响Vero细胞高密度培养的条件,表明50~60mg/ml的微载体浓度、1~2×106/ml的细胞接种密度、适当的通气(95%O_2+5%CO2)对该细胞的高密度培养具有重要意义。在200ml培养体积的Wheaton搅拌瓶中,微载体浓度为50~60mg/ml,细胞接种密度为9.24×105/ml,搅拌速度为65~85r/min,经25d培养,Vero细胞密度可达2.34×107/ml,表明50~60mg/ml的微载体浓度对培养细胞没有毒性。接着在1.5L CelliGen生物反应器中进行培养,细胞接种密度为4.98×105/ml,培养体积为1.2L,日灌流量从0.20L逐渐加大到3.65L,经22d连接灌流培养,最终细胞密度可达2.05×107/ml。  相似文献   

9.
Dengue (DEN) viruses consisting of four distinct serotypes cause diseases such as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome in humans. Most of the dengue viruses can be effectively propagated in some mosquito and mammalian cell lines. In this study, we applied microcarrier cell culture technology to study two relevant aspects involving dengue virus, one on biotechnology of cell growth and virus production, and the other on virus biology concerning genetic variation of a virus population. We investigated the growth of C6/36 mosquito cells and Vero cells grown on Cytodex 1 microcarriers. High-titer DEN virus production can be achieved in C6/36 and Vero cells infected at low cell inoculation density, in the lag-phase cell stage, and at low multiplicity of infection (MOI). The maximum titers produced for DEN-1, DEN-3, and DEN-4 viruses were approximately 10- to 10,000-fold lower than for DEN-2 virus produced in C6/36 and Vero cells grown on microcarriers. The DEN-2 virus produced in C6/36 cells displayed far more extensive plaque heterogeneity than in Vero cells. Microcarrier C6/36 mosquito cell culture appeared to be the most effective system for four-serotype DEN virus production. Interestingly, some selected variants of DEN virus may outgrow in Vero cells when using a T-flask culture. These results may provide useful information for DEN vaccine development.  相似文献   

10.
The rates of cell attachment of the anchorage-dependent mammalian cell line Vero to the gelatin-based macroporous microcarrier Cultispher-G were determined under various conditions. An optimal rate of attachment (0.98 x 10(-2) min(-1)) occurred by an intermittent stirring regimen of 3 min stirring at 40 rpm per 33 min. This stirring regimen appeared to maximize cell-to-bead attachment and minimized cell aggregation which occurred at a broadly comparable rate.A further increase in the rate of cell-to-bead attachment occurred by preincubation of the microcarriers in serum-supplemented medium prior to cell inoculation in a serum-free medium. However, serum supplementation (>5%) was required for maximal cell growth. The pH of the medium had little effect on cell attachment over a broad range (pH 7.1-8.0). An initial cell/bead inoculum of 30 ensured an even distribution of cells on the available microcarriers with a low proportion of unoccupied beads.The rate of cell attachment to Cultispher-G was an order of magnitude lower than the determined value for the charged dextran microcarrier Cytodex-1, which was measured as 9.05 x 10(-2) min(-1). The optimal conditions for cell attachment were significantly different for the two bead types. Cell attachment to the electrostatic surface of the Cytodex-1 microcarriers was highly dependent on pH and serum supplementation. Cell aggregation during attachment to the Cytodex-1 microcarriers was minimal because of the higher rate of cell-microcarrier attachment.The porous nature of the Cultispher-G microcarriers allowed a maximum cell/bead loading of >1400, which was at least 3 times higher than equivalent loading of the cells on Cytodex-1. The Cultispher-G matrix also allowed the use of higher agitation rates (up to 100 rpm) in spinner flasks without affecting the cell growth rate or maximum cell density. (c) 1996 John Wiley & Sons, Inc.  相似文献   

11.
目的应用生物反应器培养Vero细胞制备EV71病毒。方法以3 L生物反应器采用4 g/L、8 g/L Cytodex-1微载体培养比较Vero细胞比生长率,并以4 g/L微载体培养EV71病毒。结果 4 g/L微载体培养Vero细胞3~4 d微载体细胞密度达2.3×106/mL,按0.001的感染复数(MOI)接种EV71病毒,病毒收获液的滴度最高达7.90 lgPFU/mL,较静置培养平均高出0.92 lgPFU/mL。结论初步建立了3 L生物反应器微载体培养Vero细胞制备EV71病毒的工艺,为进一步放大生产规模奠定了基础。  相似文献   

12.
The present study describes a novel microcarrier substrate consisting of a swellable, copolymer of styrene and divinylbenzene, derivatized with trimethylamine. The co-polymer trimethylamine microcarriers support the growth of a number of different cell lines – Madin Darby Bovine Kidney, Madin-Darby Canine Kidney, Vero and Cos-7 – under serum-free conditions, and human diploid fibroblasts in serum-containing medium. Cells attach to the co- polymer trimethylamine microcarriers as rapidly as they attach to other charged-surface microcarriers (faster than they attach to collagen-coated polystyrene microcarriers) and spread rapidly after attachment. All of the cells examined grow to high density on the co- polymer trimethylamine microcarriers. Furthermore, cells are readily released from the surface after exposure to a solution of trypsin/EDTA. In this respect, the co-polymer trimethylamine microcarriers are different from other charged-surface microcarriers. Madin-Darby Bovine Kidney cells grown on this substrate support production of vaccine strain infectious bovine rhinotracheitis virus as readily as on other charged-surface or collagen-coated microcarriers. Thus, the co-polymer trimethylamine microcarriers combine the positive characteristics of the currently available charged-surface and adhesion-peptide coated microcarriers in a single product. The viral vaccine production industry is undergoing considerable change as manufacturers move toward complete, animal product-free culture systems. This novel substrate should find application in the industry, especially in processes which depend on viable cell recovery. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Microcarriers are synthetic particles used in bioreactor-based cell manufacturing of anchorage-dependent cells to promote proliferation at efficient physical volumes, mainly by increasing the surface area-to-volume ratio. Mesenchymal stromal cells (MSCs) are adherent cells that are used for numerous clinical trials of autologous and allogeneic cell therapy, thus requiring avenues for large-scale cell production at efficiently low volumes and cost. Here, a dissolvable gelatin-based microcarrier is developed for MSC expansion. This novel microcarrier shows comparable cell attachment efficiency and proliferation rate when compared to several commercial microcarriers, but with higher harvesting yield due to the direct dissolution of microcarrier particles and thus reduced cell loss at the cell harvesting step. Furthermore, gene expression and in vitro differentiation suggest that MSCs cultured on gelatin microcarriers maintain trilineage differentiation with similar adipogenic differentiation efficiency and higher chondrogenic and osteogenic differentiation efficiency when compared to MSCs cultured on 2D planar polystyrene tissue culture flask; on the contrary, MSCs cultured on conventional microcarriers appear to be bipotent along osteochondral lineages whereby adipogenic differentiation potential is impeded. These results suggest that these gelatin microcarriers are suitable for MSC culture and expansion, and can also potentially be extended for other types of anchorage-dependent cells.  相似文献   

14.
T Ogino  T Otsuka    M Takahashi 《Journal of virology》1977,21(3):1232-1235
Deoxypyrimidine kinase (deoxythymidine [TdR] kinase and deoxycytidine kinase) activity was induced in human embryonic lung cells after infection with varicella-zoster virus (VZ virus). Increased enzyme activity was also produced by using cell-associated virus as inoculum instead of cell-free virus. Anti-VZ virus serum inhibited both the appearance of cytopathic effect and the induction of enzyme activity. The induced TdR kinase activity was more thermostable than that induced by herpes simplex virus type 1. Also, the TdR kinase activity of VZ virus-infected cells was inhibited by dTTP less than in mock-infected cells and more than in herpes simplex virus type 1-infected cells.  相似文献   

15.
Small patches of polyethylene terephthalate (PET) nonwoven microfibrous matrices have excellent properties and can be used as carriers for culturing cells in agitated bioreactors. The microfibrous carriers are highly porous and can provide large surface areas and three‐dimensional space for high‐density cell growth. In this work, the microfibrous carriers and several commercial microcarriers were used to study cell attachment kinetics, growth, and monoclonal antibody production with Chinese hamster ovary cells. Compared with commercial solid and macroporous microcarriers, the microfibrous carriers showed better or similar performances. In addition, the microfibrous carriers provided a wider operable range for agitation rate than commercial microcarriers, effectively protecting cells from shear stress and carrier collisions. In addition, the microfibrous carriers are available at a much lower cost than commercial microcarriers, providing an attractive alternative to microcarrier‐based large‐scale cell cultures. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

16.
The main disadvantages of foetal calf serum as the world-wide common serum supplement for cell growth are its content of various proteins of variable concentrations between batches as well as its high cost. The use of serum-free and protein-free media is gradually becoming one of the goals of cell culture especially for standardizing culture conditions or for simple purification of cell products like monoclonal antibodies. The mouse hybridoma cells 14/2/1 were cultivated either in protein-free UltraDOMA medium or in serum-containing RPMI medium with and without microcarriers to generate high quantities of monoclonal antibodies against neuroblastoma tumour cells. Cell growth rate, IgG production, viability, glucose and lactate concentrations, attachment rate and doubling time have been used as investigation criteria. Modifications of culture procedures (static or stirred), inoculum density, and microcarrier concentration caused an improvement of monoclonal antibody production. The kinetics of antibody synthesis was best in spinner culture with 2 ml of microcarriers in protein-free medium. These results of short-term microcarrier culture in stirred spinner flasks indicate that IgG yields in protein-free medium 2.5-fold higher to those in serum-supplemented medium can be achieved.  相似文献   

17.
Polystyrene microcarriers were prepared in four size ranges (53–63 m, 90–125 m, 150–180 m and 300–355 m) and examined for ability to support attachment and growth of human diploid fibroblasts. Cells attached rapidly to the microcarriers and there was a direct relationship between cell attachment and microcarrier aggregation. Phasecontrast and scanning electron microscopic studies revealed that while aggregation was extensive, most of the aggregate consisted of void volume. Cell growth studies demonstrated that human diploid fibroblasts proliferated well in microcarrier aggregates, reaching densities of 2.5–3×106 cells per 2 ml dish after 6 days from an inoculum of 0.5×106 cells per dish. When cells were added to the microcarriers at higher density (up to 5×106 cells per 2-ml culture), there was little net growth but the cells remained viable over a 7-day period. In contrast, cells died when plated under the same conditions in monolayer culture. When the microcarriers were used in suspension culture, rapid cell attachment and rapid microcarrier aggregation also occurred. In 100-ml suspension culture, a cell density of 0.7×106 cells per ml was reached after 7 days from an inoculum of 0.1×106 cells. Based on these data, we conclude that microcarrier aggregation is not detrimental to fibroblast growth. These data also indicate that small microcarriers (53–63 m) (previously thought to be too small to support the growth of diploid fibroblasts) can support fibroblast growth and this occurs primarily because microcarriers in this size range efficiently form aggregates with the cells.  相似文献   

18.
Human cytomegalovirus UL103 encodes a tegument protein that is conserved across herpesvirus subgroups. Mutant viruses lacking this gene product exhibit dramatically reduced accumulation of cell-free virus progeny and poor cell-to-cell spread. Given that viral proteins and viral DNA accumulate with normal kinetics in cells infected with mutant virus, UL103 appears to function during the late phase of replication, playing a critical role in egress of capsidless dense bodies and virions. Few dense bodies were observed in the extracellular space in mutant virus-infected cells in the presence or absence of the DNA encapsidation inhibitor 2-bromo-5,6-dichloro-1-(β-d-ribofuranosyl)benzimidazole. Upon reversal of encapsidation inhibition, UL103 had a striking impact on accumulation of cell-free virus, but not on accumulation of cell-associated virus. Thus, UL103 plays a novel and important role during maturation, regulating virus particle and dense body egress from infected cells.  相似文献   

19.
Many potential applications of primary hepatocytes cultured on microcarriers, such as an artificial liver or hepatocyte transplantation, would benefit from having a large number of hepatocytes attached to each microcarrier. In addition, the supply of primary hepatocytes is usually limited, so the efficient utilization of hepatocytes during attachment to microcarriers is necessary. Several physical parameters involved in the attachment process have been investigated, and the number of cells attached per microcarrier and the fraction of hepatocytes which attach have been quantitatively monitored. Variation of the partial pressure of gas phase oxygen in the incubation flask produced significant effects on the attachment of hepatocytes to microcarriers, with higher partial pressures of oxygen found to be necessary for attachment. In addition, variation of fluid depth and cell number, both of which influence the partial pressure of oxygen at the cell surface, affected hepatocyte attachment. The partial pressure of oxygen at the cell surface as a function of the physical parameters was analyzed using a simple one-dimensional theoretical model. Variations in the cell-to-microcarrier ratio used for incubation indicate that a compromise must be made in terms of maximizing the number of cells per microcarrier and the fraction of total hepatocytes which attach. The maximum number of hepatocytes per microcarrier obtained in this work was approximately 100. The best attachment fraction, defined as the ratio of the number of hepatocytes attached to the total number added to the incubation, was approximately 90%. (c) 1993 John Wiley & Sons, Inc.  相似文献   

20.
Dendritic cells (DCs) capture human immunodeficiency virus (HIV) through a non-fusogenic mechanism that enables viral transmission to CD4(+) T cells, contributing to in vivo viral dissemination. Although previous studies have provided important clues to cell-free viral capture by mature DCs (mDCs), dynamic and kinetic insight on this process is still missing. Here, we used three-dimensional video microscopy and single-particle tracking approaches to dynamically dissect both cell-free and cell-associated viral capture by living mDCs. We show that cell-free virus capture by mDCs operates through three sequential phases: virus binding through specific determinants expressed in the viral particle, polarized or directional movements toward concrete regions of the cell membrane and virus accumulation in a sac-like structure where trapped viral particles display a hindered diffusive behavior. Moreover, real-time imaging of cell-associated viral transfer to mDCs showed a similar dynamics to that exhibited by cell-free virus endocytosis leading to viral accumulation in compartments. However, cell-associated HIV type 1 transfer to mDCs was the most effective pathway, boosted throughout enhanced cellular contacts with infected CD4(+) T cells. Our results suggest that in lymphoid tissues, mDC viral uptake could occur either by encountering cell-free or cell-associated virus produced by infected cells generating the perfect scenario to promote HIV pathogenesis and impact disease progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号