首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-saturation experiments allow the identification of the contact residues of large protein complexes (MW>50 K) more rigorously than conventional NMR approaches which involve chemical shift perturbations and hydrogen-deuterium exchange experiments [Takahashi et al. (2000) Nat. Struct. Biol., 7, 220–223]. In the amide proton-based cross-saturation experiment, the combined use of high deuteration levels for non-exchangeable protons of the ligand protein and a solvent with a low concentration of 1H2O greatly enhanced the selectivity of the intermolecular cross-saturation phenomenon. Unfortunately, experimental limitations caused losses in sensitivity. Furthermore, since main chain amide protons are not generally exposed to solvent, the efficiency of the saturation transfer directed to the main chain amide protons is not very high. Here we propose an alternative cross-saturation experiment which utilizes the methyl protons of the side chains of the ligand protein. Owing to the fast internal rotation along the methyl axis, we theoretically and experimentally demonstrated the enhanced efficiency of this approach. The methyl-utilizing cross-saturation experiment has clear advantages in sensitivity and saturation transfer efficiency over the amide proton-based approach. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

2.
In aqueous solution, exchanging peptide NH protons experience two environments, that of the peptide itself with a relatively slow diffusion coefficient and that of the water solvent with a faster diffusion coefficient. Although in slow exchange on the NMR chemical shift timescale, the magnetic field gradient dependence of the NH peak intensities in an experiment used to measure diffusion coefficients reflects the relative time periods spent in the two environments and this allows the determination of the relative solvent accessibility of exchangeable protons in peptides or proteins. To test this approach, the magnetic field gradient dependent intensities of the chemically shifted amide and amine NH protons of the peptide antibiotic viomycin have been measured using the high resolution longitudinal-eddy-current-delay (LED) NMR method incorporating solvent water peak elimination by non-excitation. The NH resonances of viomycin have been assigned previously and their relative exchange rates determined. Here, the gradient dependence of each NH proton intensity is reported, and these, after a bi- exponential least squares fitting, yield the fractional lifetimes of the protons spent in the peptide and water environments during the diffusion period of the experiment.  相似文献   

3.
A A Ribeiro  R Saltman  M Goodman 《Biopolymers》1985,24(12):2495-2510
A detailed conformational analysis of homo-oligo-L -glutamates was carried out in aqueous solution using 1H-nmr spectroscopy. Three series of side-chain protected (α-OMe) glutamate oligopeptides, attached to polyoxyethylene (POE) to enhance their solubility, were synthesized. The effect of the N-terminal blocking groups—Boc, Ac, and pGlu—on the conformations of these peptides in water is discussed. Unequivocal assignments were obtained for all amide NH resonances through use of selectively α-deuterated oligo-glutamates. Analysis of vicinal coupling constants, temperature dependence of NH chemical shifts, transfer of saturation experiments, and titration studies with a denaturing solvent (DMSO) were used to investigate the peptide structure. These data suggest that the Glu1 and Glu2 NH protons of each heptamer are solvent exposed, while the NH protons of interior glutamate residues chain are solvent sequestered. The nmr data are consistent with the onset of helical structure at the heptamer of each series in aqueous solution. The POE-peptides with pGlu at the N-terminus showed considerably reduced stability of structure than those with the Boc or acetyl blocking groups. Peptide conformations and their stability in water are compared to those in other solvents.  相似文献   

4.
In large molecular structures, the magnetization of all hydrogen atoms in the solute is strongly coupled to the water magnetization through chemical exchange between solvent water and labile protons of macromolecular components, and through dipole–dipole interactions and the associated “spin diffusion” due to slow molecular tumbling. In NMR experiments with such systems, the extent of the water polarization is thus of utmost importance. This paper presents a formalism that describes the propagation of the water polarization during the course of different NMR experiments, and then compares the results of model calculations for optimized water polarization with experimental data. It thus demonstrates that NMR spectra of large molecular structures can be improved with the use of paramagnetic spin relaxation agents which selectively enhance the relaxation of water protons, so that a substantial gain in signal-to-noise can be achieved. The presently proposed use of a relaxation agent can also replace the water flip-back pulses when working with structures larger than about 30 kDa. This may be a valid alternative in situations where flip-back pulses are difficult to introduce into the overall experimental scheme, or where they would interfere with other requirements of the NMR experiment.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s10858-005-3070-8  相似文献   

5.
The magnetic spin-lattice relaxation rates of solvent water nuclei are known to increase upon addition of diamagnetic solute protein. This enhancement of the relaxation rate is a function of magnetic field, and the orientational relaxation time of the protein molecules can be deduced from analysis of the field-dependent relaxation rates. Although the nature of the interactions that convey information about the dynamics of protein motion to the solvent molecules is not established, it is known that there is a contribution to the relaxation rates of solvent protons that plays no role in the relaxation of solvent deuterons and 17O nuclei. We show here that the additional interaction arises from a cross-relaxation process between solvent and solute protons. We introduce a heuristic three-parameter model in which protein protons and solvent protons are considered as two separate thermodynamic systems that interact across the protein-solvent interface. The three parameters are the intrinsic relaxation rates of each system and a cross-relaxation term. The sign of the latter term must always be positive, for all values of magnetic field, in order for magnetization energy to flow from the hotter to the cooler system. We find that the magnetic field-dependence of the cross-relaxation contribution is much like that of the remaining solvent proton relaxation, i.e., about the same as the deuteron relaxation field dependence. This finding is not compatible with the predictions of expressions for the cross-relaxation that have been used by other authors, but not applied to data over a wide range of magnetic field strength. The model predicts that the relaxation behavior of both the protein protons and the solvent protons is the sum of two exponentials, the relative contributions of which would vary with protein concentration and solvent isotopic composition in a fashion suggestive of the presence of two classes of protein protons, when there is in reality only one. This finding has immediate implications for the interpretation of published proton relaxation rates in complex systems such as tissues; these data should be reexamined with cross-relaxation taken into account.  相似文献   

6.
Summary Gradient-enhanced versions of the homonuclear TOCSY experiment are described, with solvent suppression and sensitivity superior to that of a conventional TOCSY experiment. The pulse sequences are constructed by appending a WATERGATE module to a z-filtered TOCSY experiment. Pulsed-field gradients and appropriately phased selective rf pulses are used to maintain precise control of the water magnetization vector. Problems associated with radiation damping and spin-locking of the water magnetization are thus alleviated. The water magnetization is returned to equilibrium prior to each acquisition, which improves water suppression and minimizes signal losses due to saturation transfer.  相似文献   

7.
Peptide NH resonances in the 250 MHZ 1H nuclear magnetic resonance (NMR) spectrum of oxytocin in H2O were assigned to specific amino acid residues by the "underwater decoupling" technique (i.e., decoupling from corresponding CalphaH resonances, which are buried beneath the intense water peak). These experiments confirm previous assignments of A. I. Brewster an V. J. Hruby ((1973), Proc. Natl. Acad. Sci. U.S.A. 70, 3806) and A. F. Bradbury et al. ((1974), FEBS Lett. 42, 179). Three methods of assigning NH resonances of peptides--solvent titration, underwater decoupling, and isotopic labeling--are compared. As the solvet composition is gradually changed from dimethyl sulfoxide to H2O, oxytocin undergoes a conformational change at 70-90 mol % of H2O. Exposure to solvent of specific hydrogens of oxytocin in H2O was studied by monitoring intensity changes of solute resonances when the solvent peak was saturated. Positive nuclear Overhauser effects (NOE's) of 14 +/- 5 were observed for the Tyr ortho CH and meta CH resonances, respectively. Comparative studies with deamino-oxytocin indicate that these effects result predominantly from intermolecular dipoledipole interaction between aromatic side chain CH protons and protons of the solvent. The NOE's therefore indicate intimate contact between water and the aromatic CH hydrogens of the Tyr side chain. The extent of saturation transferred by proton exchange between water and NH group varies with Ph in a manner which appears to reflect the acid-base catalysis of the protolysis reaction. There is no indication that any NH protons are substantially shiedled from the solvent.  相似文献   

8.
The presence and location of bound internal water molecules in the solution structure of interleukin 1 beta have been investigated by means of three-dimensional 1H rotating-frame Overhauser 1H-15N multiple quantum coherence spectroscopy (ROESY-HMQC). In this experiment through-space rotating-frame Overhauser (ROE) interactions between NH protons and bound water separated by less than or equal to 3.5 A are clearly distinguished from chemical exchange effects, as the cross-peaks for these two processes are of opposite sign. The identification of ROEs between NH protons and water is rendered simple by spreading out the spectrum into a third dimension according to the 15N chemical shift of the directly bonded nitrogen atoms. By this means, the problems that prevent, in all but a very few limited cases, the interpretation, identification, and assignment of ROE peaks between NH protons and water in a 2D 1H-1H ROESY spectrum of a large protein such as interleukin 1 beta, namely, extensive NH chemical shift degeneracy and ROE peaks obscured by much stronger chemical exchange peaks, are completely circumvented. We demonstrate the existence of 15 NH protons that are close to bound water molecules. From an examination of the crystal structure of interleukin 1 beta [Finzel, B. C., Clancy, L. L., Holland, D. R., Muchmore, S. W., Watenpaugh, K. D., & Einspahr, H. M. (1989) J. Mol. Biol. 209, 779-791], the results can be attributed to 11 water molecules that are involved in interactions bridging hydrogen-bonding interactions with backbone amide and carbonyl groups which stabilize the 3-fold pseudosymmetric topology of interleukin 1 beta and thus constitute an integral part of the protein structure in solution.  相似文献   

9.
Previously we demonstrated a sensitivity enhancement of the original TROSY experiment by a factor of by the use of the sensitivity enhanced TROSY (en-TROSY) scheme. Here, we develop a gradient and sensitivity enhanced TROSY experiment (gs-TROSY), which is designed to select magnetization transfer pathways that suppress spectral artifacts and reduce the number of required phase cycles while having minimal loss of sensitivity. Both of these experimental methods (en-TROSY and gs- TROSY) have been combined with a water flip-back scheme which provides a further increase in sensitivity for labile NH groups by avoiding water saturation. We also apply these TROSY schemes to 3D NOESY-TROSY and 3D TOCSY-TROSY experiments.  相似文献   

10.
The influence of glycerol on hydrogen isotope exchange in lysozyme   总被引:1,自引:0,他引:1  
R B Gregory 《Biopolymers》1988,27(11):1699-1709
Hydrogen isotope exchange rates for lysozyme in glycerol cosolvent mixtures [D. G. Knox and A. Rosenberg (1980) Biopolymers 19 , 1049–1068] have been analyzed as functions of solvent viscosity and glycerol activity in an attempt to determine which solvent properties influence protein internal dynamics. The effect of glycerol on the fast- and slow-exchanging protons is different. Slow-exchanging protons [H(t) < 20] are slowed by ever-increasing amounts as H(t) decreases. However, comparison with data for the effect of glycerol on the thermal unfolding of lysozyme [K. Gekko (1982) J. Biochem. 19 , 1197–1204] indicates that the large decrease in exchange rates for the slow protons is not consistent with a local unfolding mechanism of exchange. These effects are also too large to be easily rationalized in terms of solvent viscosity. Instead, we suggest that the large effect of glycerol on exchange of the slow protons is due to a “compression” of the protein, as a result of thermodynamically unfavorable interactions of glycerol with the protein surface. This reduces the protein void volume, which in turn decreases the probability of conformational transitions required for exchange of the slowest protons. Present data do not allow a distinction to be made between thermodynamic (glycerol activity) and dynamic (solvent viscosity) influences on exchange rates for the fast-exchanging protons, although the effect of glycerol on these protons is also probably too large to be consistent with a local unfolding mechanism. In this case, glycerol decreases the rate of catalyst diffusion within the protein matrix, either by decreasing the probabilities or amplitudes of “gating” reactions that allow passage of the catalyst from the solvent to the exchange site, or by increasing the relaxation times for these conformational rearrangements.  相似文献   

11.
S Linse  O Teleman  T Drakenberg 《Biochemistry》1990,29(25):5925-5934
One- and two-dimensional 1H NMR have been used to study the backbone dynamics in Ca2(+)-free (apo) and Ca2(+)-loaded (Ca2) calbindin D9k at pH 7.5 and 25 degrees C. Hydrogen exchange rates of all 71 backbone amide protons (NH's) have been measured for the Ca2 form by both a direct exchange-out experiment and another experiment that measures the transfer of saturation from water protons to amide protons. A large number of NH's are found to be highly protected against exchange with solvent protons. The results for the Ca2 form are related to solvent accessibility and hydrogen bonding obtained in molecular dynamics simulations of calcium-loaded calbindin. The correlation with these parameters is strong within the N-terminal half of calbindin, which is found to be more stable than the C-terminal half. The amide proton exchange in the apo form is much faster than in the Ca2 form and was studied in a series of experiments in which the exchange was quenched after different times by Ca2+ addition. This experiment is applicable to all amide hydrogens that exchange slowly in the Ca2 form. For these NH's the effects of Ca2+ removal span from a 10(2)-fold decrease to a 10(5)-fold increase of the exchange rate, and the average is a 220-fold increase. The effects on individual NH exchange rates show that the four alpha-helices are almost intact after calcium removal and that the changes in dynamics involve not only the Ca2(+)-binding region. Hydrogen bonds involving backbone NH's in the Ca2+ loops appear to be broken or weakened when calbindin releases Ca2+, whereas the beta-sheet between the Ca2+ loops is found to be present in both the Ca2 and apo forms. Large Ca2(+)-induced effects on NH exchange rates were measured for a few residues at alpha-helix ends far from the two Ca2(+)-binding sites. This may be the result of a change in interhelix angles (or the rate of interhelix angle fluctuations) on calcium binding.  相似文献   

12.
M Ikura  L E Kay  A Bax 《Biochemistry》1990,29(19):4659-4667
A novel approach is described for obtaining sequential assignment of the backbone 1H, 13C, and 15N resonances of larger proteins. The approach is demonstrated for the protein calmodulin (16.7 kDa), uniformly (approximately 95%) labeled with 15N and 13C. Sequential assignment of the backbone residues by standard methods was not possible because of the very narrow chemical shift distribution range of both NH and C alpha H protons in this largely alpha-helical protein. We demonstrate that the combined use of four new types of heteronuclear 3D NMR spectra together with the previously described HOHAHA-HMQC 3D experiment [Marion, D., et al. (1989) Biochemistry 28, 6150-6156] can provide unambiguous sequential assignment of protein backbone resonances. Sequential connectivity is derived from one-bond J couplings and the procedure is therefore independent of the backbone conformation. All the new 3D NMR experiments use 1H detection and rely on multiple-step magnetization transfers via well-resolved one-bond J couplings, offering high sensitivity and requiring a total of only 9 days for the recording of all five 3D spectra. Because the combination of 3D spectra offers at least two and often three independent pathways for determining sequential connectivity, the new assignment procedure is easily automated. Complete assignments are reported for the proton, carbon, and nitrogen backbone resonances of calmodulin, complexed with calcium.  相似文献   

13.
Identification of an allosterically sensitive unfolding unit in hemoglobin   总被引:2,自引:0,他引:2  
Hydrogen-exchange studies locate a set of seven allosterically sensitive amide NH protons side by side around two turns of the F-FG helical segment in the hemoglobin beta chain. Some of these protons are on the aqueous protein surface and some deeply inside, yet they all exchange with solvent protons at similar rates. Further, they move in unison to a new common rate when hemoglobin changes its allosteric form. These observations and analogous results for other proteins appear to be inconsistent with penetration-dependent models which relate H-exchange rate to solvent accessibility in the native state. Rather, these results point to sizeable fluctuational distortions that make small sets of protons more or less equally accessible in some transient H-exchange transition state, as visualized in the local unfolding model. The set of allosterically sensitive protons studied here exchanges 30-fold faster in liganded hemoglobin than in the deoxy form. In terms of the unfolding model, this means that the F-FG structure is relatively destabilized in oxyhemoglobin, so that the allosterically linked change in structural free energy at F-FG favors the deoxy state. The 30-fold change in H-exchange rate suggests a contribution to the allosteric free energy by this segment of 2 kcal (1 cal = 4.184 J). These experiments utilized a labeling technique, described earlier, that selectively places tritium on sites whose H-exchange rates are sensitive to the protein functional state, and used a method introduced by Rosa & Richards (1979,1981) to locate this label in the protein. The latter method, which rapidly separates protein fragments under conditions that can preserve exchangeable label, was here brought to a more quantitative level. Taken together, these techniques provide a "functional labeling" method capable of selectively labeling and identifying protein segments that participate in functional interactions.  相似文献   

14.
Use of a water flip-back pulse in the homonuclear NOESY experiment   总被引:1,自引:0,他引:1  
Summary A simple modification to the WATERGATE water suppression scheme [Piotto, M., Saudek, V. and Sklená, V. (1992) J. Biomol. NMR, 2, 661–665] is proposed. Radiation damping is used as an active element during the mixing time of a NOESY experiment, in order to obtain a reproducable state of the water magnetization at the end of the mixing time. Through the use of a water flip-back pulse and a gradient-tailored excitation scheme, we obtain both an excellent water suppression and a water magnetization close to equilibrium at the beginning of the acquisition time. We show experimentally that this modification results in a 20% gain in intensity for all signals when using a relaxation delay of 1.5 s, and also that avoiding a semisaturated state for the water magnetization allows the amide protons as well as other proton resonances to relax to equilibrium with their proper relaxation time.  相似文献   

15.
The presence of bound water in the solution structure of the IgG binding domain of streptococcal protein G has been investigated by nuclear magnetic resonance using three-dimensional 1H rotating frame Overhauser 1H-15N multiple quantum coherence spectroscopy. The backbone amide protons of three residues, Ala20, Gln32 and Tyr33, are found to be in close proximity to bound water. Examination of the three-dimensional structure of the IgG binding domain indicates that in the vicinity of these three residues there are no backbone groups that do not already participate in hydrogen bonding and there are no suitably placed side-chain groups available for hydrogen bonding with water. As the lifetime of the bound water detected in this nuclear magnetic resonance experiment is greater than about one nanosecond, it is likely that the two bound water molecules participate in a bifurcating hydrogen bonding network comprising a CO-NH hydrogen bonded pair, such that the water molecule accepts a hydrogen bond from the NH proton and donates one to the carbonyl oxygen with the result that the amide proton is involved in a three center hydrogen bond. On the basis of the structure, one water molecule participates in such an interaction with the Ala20(NH)-Met1(CO) hydrogen bonded pair at the beginning of an anti-parallel beta-sheet, and the other with the Tyr33(NH)-Val29(CO) hydrogen bonded pair in the single alpha-helix. The latter, which is external and solvent accessible, is associated with a distortion in the alpha-helix centered around Tyr33 which consists of a significant increase in the CO(i-4)-N(i) and CO(i-4)-NH(i) distances relative to those in the rest of the helix, as well as a significant departure in the phi, psi angles of Tyr33 relative to regular helical geometry. Such solvent induced distortions in alpha-helices have been previously noticed in crystal structures and were postulated as possible folding intermediates for helical structures. The present observation of this phenomenon in solution indicates, however, that these water molecules are tightly bound and represent an integral part of the protein framework.  相似文献   

16.
Amide solvent exchange rates are regarded as a valuable source of information on structure/dynamics of unfolded (disordered) proteins. Proton-based saturation transfer experiments, normally used to measure solvent exchange, are known to meet some serious difficulties. The problems mainly arise from the need to (1) manipulate water magnetization and (2) discriminate between multiple magnetization transfer pathways that occur within the proton pool. Some of these issues are specific to unfolded proteins. For example, the compensation scheme used to cancel the Overhauser effect in the popular CLEANEX experiment is not designed for use with unfolded proteins. In this report we describe an alternative experimental strategy, where amide 15N is used as a probe of solvent exchange. The experiment is performed in 50% H2O–50% D2O solvent and is based on the (HACACO)NH pulse sequence. The resulting spectral map is fully equivalent to the conventional HSQC. To fulfill its purpose, the experiment monitors the conversion of deuterated species, 15ND, into protonated species, 15NH, as effected by the solvent exchange. Conceptually, this experiment is similar to EXSY which prompted the name of 15NH/D-SOLEXSY (SOLvent EXchange SpectroscopY). Of note, our experimental scheme, which relies on nitrogen rather than proton to monitor solvent exchange, is free of the complications described above. The developed pulse sequence was used to measure solvent exchange rates in the chemically denatured state of the drkN SH3 domain. The results were found to correlate well with the CLEANEX-PM data, r = 0.97, thus providing a measure of validation for both techniques. When the experimentally measured exchange rates are converted into protection factors, most of the values fall in the range 0.5–2, consistent with random-coil behavior. However, elevated values, ca. 5, are obtained for residues R38 and A39, as well as the side-chain indole of W36. This is surprising, given that high protection factors imply hydrogen bonding or hydrophobic burial not expected to occur in a chemically denatured state of a protein. We, therefore, hypothesized that elevated protection factors are an artefact arising from the calculation of the reference (random-coil) exchange rates. To confirm this hypothesis, we prepared samples of several short peptides derived from the sequence of the drkN SH3 domain; these samples were used to directly measure the reference exchange rates. The revised protection factors obtained in this manner proved to be close to 1.0. These results also have implications for the more compact unfolded state of drkN SH3, which appears to be fully permeable to water as well, with no manifestations of hydrophobic burial.  相似文献   

17.
Protein structure determination using NMR is dependent on experimentally acquired distance restraints. Often, however, an insufficient number of these restraints are available for determining a protein’s correct fold, much less its detailed three-dimensional structure. In consideration of this problem, we propose a simple means to acquire supplemental structural restraints from protein surface accessibilities using solvent saturation transfer to proteins (SSTP), based on the principles of paramagnetic chemical-exchange saturation transfer. Here, we demonstrate the utility of SSTP in structure calculations of two proteins, TSG101 and ubiquitin. The observed SSTP was found to be directly proportional to solvent accessibility. Since SSTP does not involve the direct excitation of water, which compromises the analysis of protein protons entangled in the breadth of the water resonance, it has an advantage over conventional water-based magnetization transfers. Inclusion of structural restraints derived from SSTP improved both the precision and accuracy of the final protein structures in comparison to those determined by traditional approaches, when using minimal amounts of additional structural data. Furthermore, we show that SSTP can detect weak protein–protein interactions which are unobservable by chemical shift perturbations.  相似文献   

18.
Three improved 13C-spinlock experiments for side chain assignments of isotope labelled proteins in liquid state are presented. These are based on wide bandwidth spinlock techniques that have become possible with contemporary cryogenic probes. The first application, the H(CaliCaro)H-TOCSY, is an HCCH-TOCSY in which all CHn moieties of a protein are detected in a single experiment, including the aromatic ones. This enables unambiguous assignment of aromatic and aliphatic amino acids in a single, highly sensitive experiment. In the second application, the 13C-detected Call-TOCSY, magnetization transfer comprises all carbons—aliphatic, aromatic as well as the carbonyl carbons—making the complete carbon assignment possible using one spectrum only. Thirdly, the frequently used HC(CCO)NH experiment was redesigned by replacing the long C-carbonyl refocused INEPT transfer step by direct 13C–13C-TOCSY magnetization transfer from side chain carbons to the backbone carbonyls. The resulting HC(CCO)NH experiment minimizes relaxation losses because it is shorter and represents a more sensitive alternative particularly for larger proteins. The performance of the experiments is demonstrated on isotope labeled proteins up to the size of 43 kDa.  相似文献   

19.
Summary An improved version of the three-dimensional HCCH-COSY NMR experiment is described that correlates the resonances of geminal and vicinal proton pairs with the chemical shift of the13C nucleus attached to one of the protons. The experiment uses constant-time evolution of transverse13C magnetization which optimizes transfer of magnetization and thus improves the sensitivity of the experiment over the original scheme. The experiment is demonstrated for calmodulin complexed with a 26-residue peptide comprising the binding site of skeletal muscle myosin light chain kinase.  相似文献   

20.
Abstract

Proton magnetic resonance techniques were used to study the conformation of the synthetic tubulin fragment Ac-tubulin (430–441) amide in H20 and 80% CD3OH/20% D20 solutions, using water suppression techniques. Proton assignments are based on two-dimensional COSY experiments combined with one-dimensional spin decoupling.

A comparison of the NH proton shifts between the two solvents, namely ?(CD3OH/H20-H2O) shows a small solvent effect for the Lys1 to Val6 region of the molecule, whereas for Gly7 to Glu12 the solvent effect is much larger. The smaller effects in the region of Lys1 to Val6 may be due to some hydrogen bonding as these protons are shielded from the solvent These conclusions are in agreement with the circular dichroism results in 80% methano1/20% water where the a helix is present to the extent of 30%, whereas the peptide is completely unstructured in water with some aggregation.

The temperature dependence of the NH proton shifts was also carried out. In water these shifts are of the order of7-9 × 10?3 ppm/K indicating that most of the protons are not involved in hydrogen bonding. In CD30H/H20, these values range from about 4–6 × 10?3 ppm/K, which are compatible with the presence of hydrogen bonds.

Finally, binding studies were carried out between the tubulin peptide and the undecapeptide neurotransmitter substance P. The largest shifts are for the Tyr3 NH proton of the tubulin fragment, whereas for substance P it is for the Lys3, Gin5 and Leu10 NH protons, indicating a change in conformation of both peptides on interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号