首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurotrophin-induced neuroprotection against apoptosis was investigated using immature cultured cerebellar granule cells (CGC) from newborn rat pups. Apoptotic cell death induced by treatment with cytosine arabinoside (AraC) was confirmed by DNA fragmentation and quantified by cell survival assays. AraC was most effective in inducing apoptosis when added to CGC on the day of culture preparation, while less or no effect was observed when added at 24 or 48h after plating, respectively. Pretreatment of CGC cultures for 24h with brain-derived neurotrophic factor (BDNF) or neurotrophin-4 (NT-4), but not neurotrophin-3 (NT-3), robustly protected against AraC neurotoxicity. K252a, an inhibitor of the tropomyosin-related kinase (Trk) tyrosine kinase receptor family which showed no toxicity by itself, blocked BDNF protection of AraC-induced apoptosis in a concentration-dependent manner. Neither protein kinase C activation nor inhibition mimicked or affected BDNF protection against AraC neurotoxicity. BDNF, but not NT-3, treatment of immature CGC caused a marked, but transient activation of Akt through phosphatidylinositol (PI) 3-kinase. The neuroprotective effects of BDNF were suppressed by pretreatment with LY 294002 (a PI 3-kinase inhibitor). BDNF neuroprotection was also preceded by activation of mitogen activated protein kinase (MAPK) and suppressed by two MAPK/ERK (MEK)-selective inhibitors, PD 98059 and U-0126. Moreover, inhibitors of PI 3-kinase and MEK potentiated AraC-induced neurotoxicity. These results show that neurotrophins protect against AraC-induced apoptosis, at least in part, through TrkB-mediated activation of the PI 3-kinase/Akt and MEK signaling pathways.  相似文献   

2.
Mammalian group IIA secretory phospholipase A2 (sPLA2-IIA) generates prostaglandin D2 (PGD2) and triggers apoptosis in cortical neurons. However, mechanisms of PGD2 generation and apoptosis have not yet been established. Therefore, we examined how second messengers are involved in the sPLA2-IIA-induced neuronal apoptosis in primary cultures of rat cortical neurons. sPLA2-IIA potentiated a marked influx of Ca2+ into neurons before apoptosis. A calcium chelator and a blocker of the L-type voltage-sensitive Ca2+ channel (L-VSCC) prevented neurons from sPLA2-IIA-induced neuronal cell death in a concentration-dependent manner. Furthermore, the L-VSCC blocker ameliorated sPLA2-IIA-induced morphologic alterations and apoptotic features such as condensed chromatin and fragmented DNA. Other blockers of VSCCs such as N type and P/Q types did not affect the neurotoxicity of sPLA2-IIA. Blockers of L-VSCC significantly suppressed sPLA2-IIA-enhanced Ca2+ influx into neurons. Moreover, reactive oxygen species (ROS) were generated prior to apoptosis. Radical scavengers reduced not only ROS generation, but also the sPLA2-IIA-induced Ca2+ influx and apoptosis. In conclusion, we demonstrated that sPLA2-IIA potentiates the influx of Ca2+ into neurons via L-VSCC. Furthermore, the present study suggested that eicosanoids and ROS generated during arachidonic acid oxidative metabolism are involved in sPLA2-IIA-induced apoptosis in cooperation with Ca2+.  相似文献   

3.
Bcl-X(L) mice display a similar neurodevelopmental phenotype as rb, DNA ligase IV, and XRCC4 mutant embryos, suggesting that endogenous Bcl-X(L) expression may protect immature neurons from death caused by DNA damage and/or cell cycle dysregulation. To test this hypothesis, we generated bcl-x/p53 double mutants and examined neuronal cell death in vivo and in vitro. Bcl-X(L)-deficient primary telencephalic neuron cultures were highly susceptible to the apoptotic effects of cytosine arabinoside (AraC), a known genotoxic agent. In contrast, neurons lacking p53, or both Bcl-X(L) and p53, were markedly, and equivalently, resistant to AraC-induced caspase-3 activation and death in vitro indicating that Bcl-X(L) lies downstream of p53 in DNA damage-induced neuronal death. Despite the ability of p53 deficiency to protect Bcl-X(L)-deficient neurons from DNA damage-induced apoptosis in vitro, p53 deficiency had no effect on the increased caspase-3 activation and neuronal cell death observed in the developing Bcl-X(L)-deficient nervous system. These findings suggest that Bcl-X(L) expression in the developing nervous system critically regulates neuronal responsiveness to an apoptotic stimulus other than inadequate DNA repair or cell cycle abnormalities.  相似文献   

4.
Vasko MR  Guo C  Thompson EL  Kelley MR 《DNA Repair》2011,10(9):942-952
Although exposure to ionizing radiation (IR) can produce significant neurotoxicity, the mechanisms mediating this toxicity remain to be determined. Previous studies using neurons isolated from the central nervous system show that IR produces reactive oxygen species and oxidative DNA damage in those cells. Because the base excision DNA repair pathway repairs single-base modifications caused by ROS, we asked whether manipulating this pathway by altering APE1 expression would affect radiation-induced neurotoxicity. In cultures of adult hippocampal and sensory neurons, IR produces DNA damage as measured by phosphorylation of histone H2A.X and results in dose-dependent cell death. In isolated sensory neurons, we demonstrate for the first time that radiation decreases the capsaicin-evoked release of the neuropeptide CGRP. Reducing APE1 expression in cultured cells augments IR-induced neurotoxicity, whereas overexpressing APE1 is neuroprotective. Using lentiviral constructs with a neuronal specific promoter that selectively expresses APE1s different functions in neurons, we show that selective expression of the DNA repair competent (redox inactive) APE1 constructs in sensory neurons resurrects cell survival and neuronal function, whereas use of DNA-repair deficient (redox active) constructs is not protective. Use of an APE1 redox-specific inhibitor, APX3330, also facilitates neuronal protection against IR-induced toxicity. These results demonstrate for the first time that the repair function of APE1 is required to protect both hippocampal and DRG neuronal cultures--specifically neuronal cells--from IR-induced damage, while the redox activity of APE1 does not appear to be involved.  相似文献   

5.
Treatment with cytosine beta-D-arabinoside (AraC; 300 microM) induced a time-dependent accumulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein in nuclei purified from cultured cerebellar granule cells, with a concomitant degradation of lamin B1, a nuclear membrane protein and a substrate of CPP32/caspase-3. Moreover, Asp-Glu-Val-Asp-fluoromethyl ketone (DEVD-fmk), a CPP32-selective antagonist, dose-dependently suppressed AraC-induced apoptosis of these neurons. Nuclear accumulation of GAPDH protein was associated with a progressive decrease in the activity of uracil-DNA glycosylase (UDG), one of the nuclear functions of GAPDH. The nuclear dehydrogenase activity of GAPDH was initially increased after treatment and then decreased parallel to UDG activity. Six GAPDH isoforms were detected in the nuclei of AraC-treated cells. The more alkaline isoforms, 1-3, constituted the bulk of the nuclear GAPDH, and the remaining isoforms, 4-6, were the minor species. Levels of all six isoforms were increased after treatment with AraC for 16 h; a 4-h treatment increased levels of only isoforms 4 and 5. Thus, it appears that various GAPDH isoforms are differentially regulated and may have distinct apoptotic roles. Pretreatment with GAPDH antisense oligonucleotide blocked the nuclear translocation of GAPDH isoforms, and the latter process occurred concurrently with a decrease in cytosolic GAPDH isoforms. Sodium nitroprusside-induced NAD labeling of nuclear GAPDH showed a 60% loss of GAPDH labeling after AraC treatment, suggesting that the active site of GAPDH may be covalently modified, denatured, or improperly folded. The unfolded protein response elicited by denatured GAPDH may contribute to AraC-induced neuronal death.  相似文献   

6.
Glutamate is the major excitatory neurotransmitter in the central nervous system and is involved in oxidative stress during neurodegeneration. In the present study, casuarinin prevented glutamate-induced HT22 murine hippocampal neuronal cell death by inhibiting intracellular reactive oxygen species (ROS) production. Moreover, casuarinin reduced chromatin condensation and annexin-V-positive cell production induced by glutamate. We also confirmed the underlying protective mechanism of casuarinin against glutamate-induced neurotoxicity. Glutamate markedly increased the phosphorylation of extracellular signal regulated kinase (ERK)-1/2 and p38, which are crucial in oxidative stress-mediated neuronal cell death. Conversely, treatment with casuarinin diminished the phosphorylation of ERK1/2 and P38. In conclusion, the results of this study suggest that casuarinin, obtained from natural products, acts as potent neuroprotective agent by suppressing glutamate-mediated apoptosis through the inhibition of ROS production and activation of the mitogen activated protein kinase (MAPK) pathway. Thus, casuarinin can be a potential therapeutic agent in the treatment of neurodegenerative diseases.  相似文献   

7.
Sustained alteration in [Ca(2+)]i triggers neuronal death. We examined morphological and signaling events of Ca(2+)-deficiency-induced neuronal death. Cortical cell cultures exposed to 20 microM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM), an intracellular calcium chelator, underwent neuronal apoptosis within 12 h that was evident by shriveled cell bodies, aggregated and condensed nuclear chromatin, and disrupted nuclear membrane. Thereafter, surviving neurons revealed typical necrosis, accompanied by swelling of cell body and mitochondria, over 24 h. Both apoptosis and necrosis were prevented by inclusion of 1 microg/mL cycloheximide, a protein synthesis inhibitor. Treatment with BAPTA-AM induced translocation of Bax into mitochondria within 4 h and release of cytochrome c from mitochondria over 4-12 h. An active fragment of caspase-3, a downstream mediator of cytochrome c, was observed within 8 h and cleaved PHF-1-positive tau. Administration of zVAD-fmk, a broad inhibitor of caspases, or DEVD-amc, a selective inhibitor of caspase-3, selectively prevented the apoptosis component of BAPTA-AM neurotoxicity. In contrast, BAPTA-AM-induced necrosis was propagated through sequential production of superoxide, mitochondrial and cytoplasmic reactive oxygen species. Combined treatment with caspase inhibitors and antioxidants blocked BAPTA-AM neurotoxicity. The present study suggests that neurons deficient in [Ca(2+)]i undergo caspase-3-mediated apoptosis and reactive oxygen species (ROS)-mediated necrosis.  相似文献   

8.
Abstract: Staurosporine (0.03–0.5 µ M ) induced a dose-dependent, apoptotic degeneration in cultured rat hippocampal neurons that was sensitive to 24-h pretreatments with the protein synthesis inhibitor cycloheximide (1 µ M ) or the cell cycle inhibitor mimosine (100 µ M ). To investigate the role of Ca2+ and reactive oxygen species in staurosporine-induced neuronal apoptosis, we overexpressed calbindin D28K, a Ca2+ binding protein, and Cu/Zn superoxide dismutase, an antioxidative enzyme, in the hippocampal neurons using adenovirus-mediated gene transfer. Infection of the cultures with the recombinant adenoviruses (100 multiplicity of infection) resulted in a stable expression of the respective proteins assessed 48 h later. Overexpression of both calbindin D28K and Cu/Zn superoxide dismutase significantly reduced staurosporine neurotoxicity compared with control cultures infected with a β-galactosidase overexpressing adenovirus. Staurosporine-induced neuronal apoptosis was also significantly reduced when the culture medium was supplemented with 10 or 30 m M K+, suggesting that Ca2+ influx via voltage-sensitive Ca2+ channels reduces this apoptotic cell death. In contrast, neither the glutamate receptor agonist NMDA (1–10 µ M ) nor the NMDA receptor antagonist dizocilpine (MK-801; 1 µ M ) was able to reduce staurosporine neurotoxicity. Cultures treated with the antioxidants U-74500A (1–10 µ M ) and N -acetylcysteine (100 µ M ) also demonstrated reduced staurosporine neurotoxicity. These results suggest a fundamental role for both Ca2+ and reactive oxygen species in staurosporine-induced neuronal apoptosis.  相似文献   

9.
Nitric oxide induces oxidative stress and apoptosis in neuronal cells   总被引:9,自引:0,他引:9  
Within the central nervous system and under normal conditions, nitric oxide (NO) is an important physiological signaling molecule. When produced in large excess, NO also displays neurotoxicity. In our previous report, we have demonstrated that the exposure of neuronal cells to NO donors induced apoptotic cell death, while pretreatment with free radical scavengers L-ascorbic acid 2-[3, 4-dihydro-2,5,7,8-tetramethyl-2-(4,8, 12-trimethyltridecyl)-2H-1-benzopyran-6-yl-hydrogen phosphate] potassium salt (EPC-K1) or superoxide dismutase attenuated apoptosis effectively, suggesting that reactive oxygen species (ROS) may be involved in the cascade of events leading to apoptosis. In the present investigation, we directly studied the kinetic generation of ROS in NO-treated neuronal cells by flow cytometry using 2', 7'-dichloro-fluorescein diacetate and dihydrorhodamine 123 as redox-sensitive fluorescence probes. The results indicated that exposure of cerebellar granule cells to the NO donor S-nitroso-N-acetylpenicillamine (SNAP) induced oxidative stress, which was characterized by the accumulation of cytosolic and mitochondrial ROS, the increase in the extracellular hydrogen peroxide level, and the formation of lipid peroxidation products. SNAP treatment also induced apoptotic cell death as confirmed by the formation of cytosolic mono- and oligonucleosomes. Pretreating cells with the novel antioxidant EPC-K1 effectively prevented oxidative stress induced by SNAP, and attenuated cells from apoptosis.  相似文献   

10.
Acrylamide (ACR) is a known industrial toxic chemical that produce neurotoxicity characterized by progressive neuronal degeneration. This study was designed to investigate the protective effect of fish oil on ACR-induced neuronal damage in Wistar rats. ACR enhances the production of reactive oxygen species and potentially affects brain. ACR administered rats showed increased levels of lipid peroxidative product, protein carbonyl content, hydroxyl radical and hydroperoxide which were significantly modulated by the supplementation of fish oil. The activities of enzymic antioxidants and levels of reduced glutathione were markedly lowered in ACR-induced rats; fish oil treatment augmented these antioxidant levels in cortex. Free radicals generated during ACR administration reduced the activities of membrane adenosine triphosphatases and acetylcholine esterase. Fish oil enhanced the activities of these enzymes near normal level. Histological observation represented the protective role of fish oil in ACR-induced neuronal damage. Fish oil reduced the ACR-induced apoptosis through the modulation in expressions of B-cell lymphoma 2 (Bcl2)-associated X protein and Bcl2-associated death promoter. Further, fish oil increases the expression of heat shock protein 27 (Hsp27) in ACR-induced rats. This study provides evidence for the neuroprotective effect of fish oil on ACR-induced neurotoxicity by reducing oxidative stress and apoptosis with modulation in the expression of Hsp27.  相似文献   

11.
Chronic exposure to the pesticide rotenone induces a selective degeneration of nigrostriatal dopaminergic neurons and reproduces the features of Parkinson's disease in experimental animals. This action is thought to be relevant to its inhibition of the mitochondrial complex I, but the precise mechanism of this suppression in selective neuronal death is still elusive. Here we investigate the mechanism of dopaminergic neuronal death mediated by rotenone in primary rat mesencephalic neurons. Low concentrations of rotenone (5-10 nM) induce the selective death of dopaminergic neurons without significant toxic effects on other mesencephalic cells. This cell death was coincident with apoptotic events including capsase-3 activation, DNA fragmentation, and mitochondrial membrane depolarization. Pretreatment with coenzyme Q10, the electron transporter in the mitochondrial respiratory chain, remarkably reduced apoptosis as well as the mitochondrial depolarization induced by rotenone, but other free radical scavengers such as N-acetylcysteine, glutathione, and vitamin C did not. Furthermore, the selective neurotoxicity of rotenone was mimicked by the mitochondrial protonophore carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), a cyanide analog that effectively collapses a mitochondrial membrane potential. These data suggest that mitochondrial depolarization may play a crucial role in rotenone-induced selective apoptosis in rat primary dopaminergic neurons.  相似文献   

12.
Heme oxygenase-2 knockout neurons are less vulnerable to hemoglobin toxicity   总被引:10,自引:0,他引:10  
When cortical neurons are exposed to hemoglobin, they undergo oxidative stress that ultimately results in iron-dependent cell death. Heme oxygenase (HO)-2 is constitutively expressed in neurons and catalyzes heme breakdown. Its role in the cellular response to hemoglobin is unclear. We tested the hypothesis that HO-2 attenuates hemoglobin neurotoxicity by comparing reactive oxygen species (ROS) formation and cell death in wild-type and HO-2 knockout cortical cultures. Consistent with prior observations, hemoglobin increased ROS generation, detected by fluorescence intensity after dihydrorhodamine 123 or dichlorofluorescin-diacetate loading, in wild-type neurons. This fluorescence was significantly attenuated in cultures prepared from HO-2 knockout mice, and cell death as determined by propidium iodide staining was decreased. In other experiments, hemoglobin exposure was continued for 19 h; cell death as quantified by LDH release was decreased in knockout cultures, and was further diminished by treatment with the HO inhibitor tin protoporphyrin IX. In contrast, HO-2 knockout neurons were more vulnerable than wild-type neurons to inorganic iron. HO-1, ferritin, and superoxide dismutase expression in HO-2 -/- cultures did not differ significantly from that observed in HO-2 +/+ cultures; cellular glutathione levels were slightly higher in knockout cultures. These results suggest that heme breakdown by heme oxygenase accelerates the oxidative neurotoxicity of hemoglobin, and may contribute to neuronal injury after CNS hemorrhage.  相似文献   

13.
Abstract: 3-Hydroxykynurenine (3-HK) is a potential endogenous neurotoxin whose increased levels have been described in several neurodegenerative disorders. Here, we characterized in vitro neurotoxicity of 3-HK. Of the tested kynurenine pathway metabolites, only 3-HK, and to a lesser extent 3-hydroxyanthranilic acid, were toxic to primary cultured striatal neurons. 3-HK toxicity was inhibited by various antioxidants, indicating that the generation of reactive oxygen species is essential to the toxicity. 3-HK-induced neuronal cell death showed several features of apoptosis, as determined by the blockade by macromolecule synthesis inhibitors, and by the observation of cell body shrinkage with nuclear chromatin condensation and fragmentation. In addition, 3-HK toxicity was dependent on its cellular uptake via transporters for large neutral amino acids, because uptake inhibition blocked the toxicity. Cortical and striatal neurons were much more vulnerable to 3-HK toxicity than cerebellar neurons, which may be attributable to the differences in transporter activities of these neurons. These results indicate that 3-HK, depending on transporter-mediated cellular uptake and on intracellular generation of oxidative stress, induces neuronal cell death with brain region selectivity and with apoptotic features, which may be relevant to pathology of neurodegenerative disorders.  相似文献   

14.
Amyloid-beta peptide (Aβ) is known to induce the redox imbalance, mitochondrial dysfunction and caspase activation, resulting in neuronal cell death. Treatment with antioxidants provided a new therapeutic strategy for Alzheimer’s disease (AD) patients. Here we investigate the effects of purple sweet potato anthocyanins (PSPA), the known strong free radical scavengers, on Aβ toxicity in PC12 cells. The results showed that pretreatment of PC12 cells with PSPA reduced Aβ-induced toxicity, intracellular reactive oxygen species (ROS) generation and lipid peroxidation dose-dependently. In parallel, cell apoptosis triggered by Aβ characterized with the DNA fragmentation and caspase-3 activity were also inhibited by PSPA. The concentration of intracellular Ca2+ and membrane potential loss associated with cell apoptosis were attenuated by PSPA. These results suggested that PSPA could protect the PC-12 cell from Aβ-induced injury through the inhibition of oxidative damage, intracellular calcium influx, mitochondria dysfunction and ultimately inhibition of cell apoptosis. The present study indicates that PSPA may be a promising approach for the treatment of AD and other oxidative-stress-related neurodegenerative diseases.  相似文献   

15.
In the central nervous system, fibroblast growth factor 2 (FGF2) is known to have important functions in cell survival and differentiation. In addition to its roles as a neurotrophic factor, we found that FGF2 caused cell death in the early primary culture of cortical neurons. FGF2-induced neuronal cell death showed apoptotic characters, e.g., chromatin condensation and DNA fragmentation. The ultrastructural morphology of FGF2-treated neurons indicated apoptotic features such as progressive cell shrinkage, blebbing of the plasma membrane, loss of cytosolic organelles, clumping of chromatin, and fragmentation of DNA. Tyrosine kinase inhibitors significantly rescued neurons from FGF2-induced apoptosis. FGF2 potentiated a marked influx of Ca2+ into neurons before apoptosis. Both a calcium chelator and L-type voltage-sensitive Ca2+ channel (L-VSCC) blockers attenuated FGF2-induced apoptosis, whereas other blockers of VSCCs such as N-type and P/Q-types did not. Blockers of L-VSCCs significantly suppressed FGF2-enhanced Ca2+ influx into neurons. Moreover, FGF2 also generated reactive oxygen species (ROS) before apoptosis. Radical scavengers reduced not only the FGF2-generated ROS, but also the FGF2-induced Ca2+ influx and apoptosis. In conclusion, we demonstrated that FGF2 caused apoptosis via L-VSCCs in the early neuronal culture.  相似文献   

16.
Qu M  Zhou Z  Chen C  Li M  Pei L  Chu F  Yang J  Wang Y  Li L  Liu C  Zhang L  Zhang G  Yu Z  Wang D 《Neurochemistry international》2011,59(8):1095-1103
Lycopene is a potent free radicals scavenger with demonstrated protective efficacy in several experimental models of oxidative damage. Trimethyltin (TMT) is an organotin compound with neurotoxic effects on the hippocampus and other limbic structures and is used to model neurodegenerative diseases targeting these brain areas. Oxidative stress is widely accepted as a central pathogenic mechanism of TMT-mediated neurotoxicity. The present study investigated whether the plant carotene lycopene protects against TMT-induced neurotoxicity in primary cultured rat hippocampal neurons. Lycopene pretreatment improved cell viability in TMT-treated hippocampal neurons and inhibited neuronal apoptosis. Microfluorometric imaging revealed that lycopene inhibited the accumulation of mitochondria-derived reactive oxygen species (ROS) during TMT exposure. Moreover, lycopene ameliorated TMT-induced activation of the mitochondrial permeability transition pore (mPTP) and the concomitant depolarization of the mitochondrial membrane potential (ΔΨm). Consequently, cytochrome c release from the mitochondria and ensuing caspase-3 activation were markedly reduced. These findings reveal that lycopene protects against TMT-induced neurotoxicity by inhibiting the mitochondrial apoptotic pathway. The anti-apoptotic effect of lycopene on hippocampal neurons highlights the therapeutic potential of plant-derived antioxidants against neurodegenerative diseases.  相似文献   

17.
Activation of astrocytes is a common feature of neurological disorders, but the importance of this phenomenon for neuronal outcome is not fully understood. Treatment of mixed hippocampal cultures of neurones and astrocytes from day 2-4 in vitro (DIV 2-4) with 1 micro m cytosine arabinofuranoside (AraC) caused an activation of astrocytes as detected by a stellate morphology and a 10-fold increase in glial fibrillary acidic protein (GFAP) level compared with vehicle-treated cultures. After DIV 12, we determined 43% and 97% damaged neurones 18 h after the exposure to glutamate (1 mm, 1 h) in cultures treated with vehicle and AraC, respectively. Dose-response curves were different with a higher sensitivity to glutamate in cultures treated with AraC (EC50 = 0.01 mm) than with vehicle (EC50 = 0.12 mm). The susceptibility of neurones to 1 mm glutamate did not correlate with the percentage of astrocytes and was insensitive to an inhibition of glutamate uptake. In cultures treated with vehicle and AraC, glutamate-induced neurotoxicity was mediated through stimulation of the NR1-NR2B subtype of NMDA receptors, because it was blocked by the NMDA receptor antagonist MK-801 and the NR1-NR2B selective receptor antagonist ifenprodil. Protein levels of the NR2A and NR2B subunits of NMDA receptor were similar in cultures treated with vehicle or AraC. AraC-induced changes in glutamate-induced neurotoxicity were mimicked by activation of protein kinase C (PKC), whereas neuronal susceptibility to glutamate was reduced in cultures depleted of PKC and treated with AraC suggesting that the increase in glutamate toxicity by activated astrocytes involves activation of PKC.  相似文献   

18.
Brain accumulation of the amyloid-β peptide (Aβ) and oxidative stress underlie neuronal dysfunction and memory loss in Alzheimer's disease (AD). Hexokinase (HK), a key glycolytic enzyme, plays important pro-survival roles, reducing mitochondrial reactive oxygen species (ROS) generation and preventing apoptosis in neurons and other cell types. Brain isozyme HKI is mainly associated with mitochondria and HK release from mitochondria causes a significant decrease in enzyme activity and triggers oxidative damage. We here investigated the relationship between Aβ-induced oxidative stress and HK activity. We found that Aβ triggered HKI detachment from mitochondria decreasing HKI activity in cortical neurons. Aβ oligomers further impair energy metabolism by decreasing neuronal ATP levels. Aβ-induced HKI cellular redistribution was accompanied by excessive ROS generation and neuronal death. 2-deoxyglucose blocked Aβ-induced oxidative stress and neuronal death. Results suggest that Aβ-induced cellular redistribution and inactivation of neuronal HKI play important roles in oxidative stress and neurodegeneration in AD.  相似文献   

19.
The neuroprotective mechanism of p-terphenyl leucomentins from the mushroom Paxillus panuoides was studied. Leucomentins showed potent inhibition of lipid peroxidation and H2O2 neurotoxicity, but free from any role as reactive oxygen species (ROS) scavengers. Iron-mediated oxidative damage has been implicated in these processes, as a provider of ROS via iron. Leucomentins can chelate iron when DNA is present with iron and H2O2, and so inhibiting DNA single strand breakage. These results suggest that the neuroprotective action of leucomentins is dependent on their ability to chelate iron.  相似文献   

20.
Tributyltin (TBT) has been used as a heat stabilizer, agricultural pesticide and antifouling agents on ships, boats and fish-farming nets; however, the neurotoxicity of TBT has recently become a concern. TBT is suggested to stimulate the generation of reactive oxygen species (ROS) inside cells. The aim of this study was to determine the mechanism of neuronal oxidative injury induced by TBT using rat organotypic hippocampal slice cultures. The treatment of rat hippocampal slices with TBT induced ROS production, lipid peroxidation and cell death. Pretreatment with antioxidants such as superoxide dismutase, catalase or trolox, suppressed the above phenomena induced by TBT, indicating that TBT elicits oxidative stress in hippocampal slices, which causes neuronal cell death. TBT dose-dependently inhibited glutathione S-transferase (GST), but not glutathione peroxidase or glutathione reductase in the cytosol of rat hippocampus. The treatment of hippocampal slices with TBT decreased the GST activity. Pretreatment with reduced glutathione attenuated the reduction of GST activity and cell death induced by TBT, indicating that the decrease in GST activity by TBT is involved in hippocampal cell death. When hippocampal slices were treated with sulforaphane, the expression and activity of GST were increased. Notably, TBT-induced oxidative stress and cell death were significantly suppressed by pretreatment with sulforaphane. These results indicate that GST inhibition could contribute, at least in part, to the neuronal cell death induced by TBT in hippocampal slices. This study is the first report to show the link between neuronal oxidative injury and the GST inhibition elicited by TBT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号