首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The large conductance voltage- and Ca2+-activated K+ channel (MaxiK, BKCa, BK) is composed of four pore-forming α-subunits and can be associated with regulatory β-subunits. One of the functional roles of MaxiK is to regulate vascular tone. We recently found that the MaxiK channel from coronary smooth muscle is trans-inhibited by activation of the vasoconstricting thromboxane A2 prostanoid receptor (TP), a mechanism supported by MaxiK α-subunit (MaxiKα)-TP physical interaction. Here, we examined the role of the MaxiK β1-subunit in TP-MaxiK association. We found that the β1-subunit can by itself interact with TP and that this association can occur independently of MaxiKα. Subcellular localization analysis revealed that β1 and TP are closely associated at the cell periphery. The molecular mechanism of β1-TP interaction involves predominantly the β1 extracellular loop. As reported previously, TP activation by the thromboxane A2 analog U46619 caused inhibition of MaxiKα macroscopic conductance or fractional open probability (FPo) as a function of voltage. However, the positive shift of the FPo versus voltage curve by U46619 relative to the control was less prominent when β1 was coexpressed with TP and MaxiKα proteins (20 ± 6 mV, n = 7) than in cells expressing TP and MaxiKα alone (51 ± 7 mV, n = 7). Finally, β1 gene ablation reduced the EC50 of the U46619 agonist in mediating aortic contraction from 18 ± 1 nm (n = 12) to 9 ± 1 nm (n = 12). The results indicate that the β1-subunit can form a tripartite complex with TP and MaxiKα, has the ability to associate with each protein independently, and diminishes U46619-induced MaxiK channel trans-inhibition as well as vasoconstriction.  相似文献   

2.
Given that coactivation of adenosine A(2A) (A(2A)R) and dopamine D(2) (D(2)R) receptors results in the coaggregation, cointernalization, and codesensitization of the A(2A)R and D(2)R and the role of scaffolding protein β-arrestin2 in the desensitization, internalization, and signaling of G-protein-coupled receptors, in this study we explored the ability of the A(2A)R agonist CGS21680 in A(2A)R-D(2)R-coexpressing cells to modulate the D(2)R agonist-induced recruitment of β-arrestin2 to the D(2)R by means of proximity-based bioluminescence resonance energy transfer (BRET(2)) and co-trafficking analysis. We found evidence that CGS21680 can increase the maximal BRET(2) signal between β-arrestin2(RLuc) and D(2L)R(GFP2) upon D(2)R activation, by increasing the potency of the D(2)R agonist to exert this action. In addition, this change was associated with an increased formation of cytoplasmic clusters containing β-arrestin2(GFP2) and D(2L)R(YFP) as seen from the co-trafficking analysis. Furthermore, the A(2A)R agonist advanced the time for the increase in Akt phosphorylation obtained with the D(2)R agonist. Finally, using a novel bioinformatics approach to predict the protein-protein interface, we have also found that amino acid pro-triplets TNY, LLS, RAF, and VSR may be crucial for the -induced β-arrestin2 recruitment by A(2A)R-D(2)R heteromers. Taken together, the results indicate that the antagonistic A(2A)R-D(2)R allosteric receptor-receptor interaction in A(2A)R-D(2)R heteromers favors β-arrestin2 recruitment to the D(2L)R protomer with subsequent cointernalization associated with a reduced time onset of Akt phosphorylation followed by a rapid dephosphorylation. Thus, β-arrestin2 action becomes more rapid and short-lasting and, in this way, mimics G-protein-mediated signaling.  相似文献   

3.
A recently identified novel Gαolf variant, XLGαolf, is shown to functionally couple to the human adenosine A2A receptor (A2AR). In Sf9 cells expressing A2AR, β1, and γ2, co-expression of XLGαolf increased NECA-induced [35S]GTPγS binding from approximately 130% to 300% of basal levels. Pharmacological characteristics of A2AR ligands on these cells were evaluated by using [3H]ZM241385- and [35S]GTPγS- binding assays. The rank order of the equilibrium binding constants (Kd or Ki) of adenosine receptor ligands were [3H]ZM241385 ≈ CGS15943 < MRS1220 < < CV1808 ≈ NECA < CGS21680 ≈ adenosine < IBMECA < HEMADO ≈ CPA ≈ CCPA. The rank order of EC50 values for agonists were CV1808 ≈ NECA < adenosine ≈ CGS26180 < IBMECA < HEMADO ≈ CPA ≈ CCPA. This pharmacology is consistent with the literature for A2AR and suggests that Sf9 cells co-expressing A2AR, β1, γ2, and XLGαolf could serve as a heterologous expression system for A2AR drug screening.  相似文献   

4.
Phospholipase A of the bacterial outer membrane (OMPLA) is a β-barrel membrane protein which is activated under various stress conditions. The current study examines interaction of inhibitors of eucaryotic phospholipases A2—palmitoyl trifluoromethyl ketone (PACOCF3) and aristolochic acid (AA)—with OMPLA and considers a possible involvement of the enzyme in the Ca2+-dependent permeabilization of the outer membrane of Escherichia coli. Using the method of molecular docking, it has been predicted that PACOCF3 and AA bind to OMPLA at the same site and with the same affinity as the OMPLA inhibitors, hexadecanesulfonylfluoride and bromophenacyl bromide, and the substrate of the enzyme palmitoyl oleoyl phosphatidylethanolamine. It has also been shown that PACOCF3, AA, and bromophenacyl bromide inhibit the Ca2+-induced temperature-dependent changes in the permeability of the bacterial membrane for the fluorescent probe propidium iodide and suppressed the transformation of E. coli cells with plasmid DNA induced by Ca2+ and heat shock. The cell viability was not affected by the eucaryotic phospholipases A2 inhibitors. The study discusses a possible involvement of OMPLA in the mechanisms of bacterial transmembrane transport based on the permeabilization of the bacterial outer membrane.  相似文献   

5.
The expression of human G protein-coupled receptors (GPCRs) in Saccharomyces cerevisiae containing chimeric yeast/mammalian Gα subunits provides a useful tool for the study of GPCR activation. In this study, we used a one-GPCR-one-G protein yeast screening method in combination with molecular modeling and mutagenesis studies to decipher the interaction between GPCRs and the C-terminus of different α-subunits of G proteins. We chose the human adenosine A2B receptor (hA2BR) as a paradigm, a typical class A GPCR that shows promiscuous behavior in G protein coupling in this yeast system. The wild-type hA2BR and five mutant receptors were expressed in 8 yeast strains with different humanized G proteins, covering the four major classes: Gαi, Gαs, Gαq, and Gα12. Our experiments showed that a tyrosine residue (Y) at the C-terminus of the Gα subunit plays an important role in controlling the activation of GPCRs. Receptor residues R1033.50 and I1073.54 are vital too in G protein-coupling and the activation of the hA2BR, whereas L213IL3 is more important in G protein inactivation. Substitution of S2356.36 to alanine provided the most divergent G protein-coupling profile. Finally, L2366.37 substitution decreased receptor activation in all G protein pathways, although to a different extent. In conclusion, our findings shed light on the selectivity of receptor/G protein coupling, which may help in further understanding GPCR signaling.  相似文献   

6.
The rapid rise of antimicrobial resistance is one of the greatest challenges currently facing medical science. The most common cause of resistance to β-lactam antibiotics is the expression of β-lactamase enzymes, such as KPC-2. As such the development of novel inhibitors of KPC-2 and related enzymes is of the upmost importance. We report the design and synthesis of novel boronic acid transition state analogs containing a 1,4-substituted 1,2,3-triazole linker based on the known inhibitor 3-nitrophenyl boronic acid and demonstrate that they are promising scaffolds for the development inhibitors of KPC-2 with the ability to recover sensitivity to the antibiotic cefotaxime.  相似文献   

7.
In γ-aminobutyric acid type A (GABAA) receptors, the structural elements that couple ligand binding to channel opening remain poorly defined. Here, site-directed mutagenesis was used to determine if Loop 9 on the non-GABA binding site interface of the β2-subunit may be involved in GABAA receptor activation. Specifically, residues Gly170-Gln185 of the β2-subunit were mutated to alanine, co-expressed with wild-type α1- and γ2S-subunits in human embryonic kidney (HEK) 293 cells and assayed for their activation by GABA, the intravenous anesthetic propofol and the endogenous neurosteroid pregnanolone using whole cell macroscopic recordings. Three mutants, G170A, V175A, and G177A, produced 2.5-, 6.7-, and 5.6-fold increases in GABA EC50 whereas one mutant, Q185A, produced a 5.2-fold decrease in GABA EC50. None of the mutations affected the ability of propofol or pregnanolone to potentiate a submaximal GABA response, but the Q185A mutant exhibited 8.3- and 3.5-fold increases in the percent direct activation by propofol and pregnanolone, respectively. Mutant Q185A receptors also had an increased leak current that was sensitive to picrotoxin, indicating an increased gating efficiency. Further Q185E, Q185L, and Q185W substitutions revealed a strong correlation between the hydropathy of the amino acid at this position and the GABA EC50. Taken together, these results indicate that β2 Loop 9 is involved in receptor activation by GABA, propofol, and pregnanolone and that β2(Q185) participates in hydrophilic interactions that are important for stabilizing the closed state of the GABAA receptor.  相似文献   

8.
It is known that the NMDA-R NR1 subunit is needed for the receptor activity and that under hypoxia the evolution toward apoptosis or neuronal survival depends on the balance NR2A/NR2B subunits. This paper analyzes the effect of acute hypoxia on the above mentioned subunits mRNAs during development. The mean percentage of NR1+ neurons displayed the higher plasticity during development while the NR2A+ neurons the higher stability. Acute hypoxia increased the mean percentage of NR1+ and NR2B+ neurons at ED12 but only that of NR1+ neurons at ED18. Acute hypoxia increased the levels of expression of NR1 and NR2B mRNAs at ED12 without changes in the NR2A mRNA. During early stages there is a higher sensitivity to change the subunits mRNA levels under a hypoxic treatment. At ED12 acute hypoxia increased the probability of co-expression of the NR1–NR2A and NR1–NR2B subunits combinations, the level of NR1 and NR2B and the ratio NR2B/NR2A. These conditions facilitate the evolution towards apoptosis.  相似文献   

9.
A dimeric form of N-methoxycarbonyl-2-amino-1,8-naphthyridine (MCND) connected at the C2 position with a three-atom linker was examined for the binding to mismatches in double stranded RNA. Despite the fully complementary hydrogen bonding groups to guanine, MCND did not bind to guanine–guanine mismatch but did to adenine–adenine mismatch. The base pairs flanking the mismatch had weak effect on the binding, with showing the strongest binding to the A–A mismatch in the CAG/CAG sequence. The A–A mismatch in the GAC/GAC sequence was a poor substrate for the MCND binding. A monomeric derivative of MCND and another derivative lacking a methylcarbamate group showed negligilble binding to the A–A mismatch and the sequence selectivity. These results are important clues for the better molecular design of RNA binding small molecules.  相似文献   

10.
The structural and functional interaction between D2 dopamine receptor (DR) and A2A adenosine receptor (AR) has suggested these two receptors as a pharmacological target in pathologies associated with dopamine dysfunction, such as Parkinson's disease. In transfected cell lines it has been demonstrated the activation of D2DR induces a significant negative regulation of A2AAR-mediated responses, whereas few data are at now available about the regulation of A2AAR by D2DR agonists at receptor recognition site. In this work we confirmed that in A2AAR/D2DR co-transfected cells, these receptors exist as homo- and hetero-dimers. The classical D2DR agonists were able to negatively modulate both A2AAR affinity and functionality. These effects occurred even if any significant changes in A2AAR/D2DR energy transfer interaction could be detected in BRET experiments.Since the development of new molecules able to target A2A/D2 dimers may represent an attractive tool for innovative pharmacological therapy, we also identified a new small molecule, 3-(3,4-dimethylphenyl)-1-(2-piperidin-1-yl)ethyl)piperidine (compound 1), full agonist of D2DR and modulator of A2A-D2 receptor dimer. This compound was able to negatively modulate A2AAR binding properties and functional responsiveness in a manner comparable to classical D2R agonists. In contrast to classical agonists, compound 1 led to conformational changes in the quaternary structure in D2DR homomers and heteromers and induced A2AAR/D2DR co-internalization. These results suggest that compound 1 exerts a high control of the function of heteromers and could represent a starting point for the development of new drugs targeting A2AAR/D2 DR heteromers.  相似文献   

11.
BCL-2 family members are pivotal regulators of the apoptotic process. Mitochondria are a major site-of-action for these proteins. Several prominent alterations occur to mitochondria during apoptosis that seem to be part of the “mitochondrial apoptotic program.” The BCL-2 family members are believed to be the major regulators of this program, however their exact mechanism of action still remains a mystery. BID, a pro-apoptotic BCL-2 family member plays an essential role in initiating this program. Recently, we have revealed that in apoptotic cells the activated/truncated form of BID, tBID, interacts with a novel, uncharacterized protein named mitochondrial carrier homolog 2 (Mtch2). Mtch2 is a conserved protein that is similar to members of the mitochondrial carrier protein (MCP) family. This review summarizes the current knowledge regarding BCL-2 family members and the mitochondrial apoptotic program and examines the possible involvement of Mtch2 in this program.  相似文献   

12.
The present paper is the Supplement 2 to the Flora of Xizang, based upon a collection in 1980 by Mr. W. L. Chen et al. from Mêdog, the south-eastern part of Xizang. In the paper 11 new species are desribed and 10 new-record species are reported. All the type specimens are kept in the Herbarium of the Institure of Botany, Academia Sinica (PE).  相似文献   

13.
14.
Poly(5-fluoro-2′-deoxyuridylic acid) was synthesized and its properties were compared with those of poly(dT) and poly(dU). It readily complexed with poly(dA). The 1:1 complex melted at about 20°C lower than poly(dA) · poly(dT). A triple-stranded helix, poly(dA)·2 poly(dF5U) was formed only in high salt (2.0 M NaCl).  相似文献   

15.
The B10.STA62 strain carries the H-2 w27 haplotype derived from a wild mouse captured in the vicinity of Ann Arbor, Michigan. Products of two class II loci composing this haplotype, A and A , are serologically, biochemically (by tryptic peptide mapping), and functionally indistinguishable from products controlled by the A b and A /b genes of the B10.A(5R) strain. In contrast, the polypeptide chain controlled by the third class II locus, E , is different from that controlled by the E /b gene. This E /w27 chain lacks an antigenic determinant present on the Eb molecule and carries determinants lacking on the Eb molecule, the E /b and E /w27 peptide maps differ in at least six peptides, and cytotoxic T cells specific for the E b chains do not react with B10.STA62 target cells. This great difference between the E /b and E /w27 chains suggests that the corresponding genes have not been derived from one another by a direct mutational conversion; instead, H-2 w27 appears to be a recombinant haplotype derived by crossing-over between the A A duplex and the E locus. This is the first recombinant discovered separating these class II loci.  相似文献   

16.
Multiple neurodegenerative disorders are linked to aberrant phosphorylation of microtubule-associated proteins (MAPs). Protein phosphatase 2A (PP2A) is the major MAP phosphatase; however, little is known about its regulation at microtubules. α4 binds the PP2A catalytic subunit (PP2Ac) and the microtubule-associated E3 ubiquitin ligase MID1, and through unknown mechanisms can both reduce and enhance PP2Ac stability. We show MID1-dependent monoubiquitination of α4 triggers calpain-mediated cleavage and switches α4's activity from protective to destructive, resulting in increased Tau phosphorylation. This regulatory mechanism appears important in MAP-dependent pathologies as levels of cleaved α4 are decreased in Opitz syndrome and increased in Alzheimer disease, disorders characterized by MAP hypophosphorylation and hyperphosphorylation, respectively. These findings indicate that regulated inter-domain cleavage controls the dual functions of α4, and dysregulation of α4 cleavage may contribute to Opitz syndrome and Alzheimer disease.  相似文献   

17.
18.
The precise physiological effects of antidepressant drugs, and in particular their actions at non-monoamine transporter targets, are largely unknown. We have recently identified the tricyclic antidepressant drug desipramine (DMI) as a direct ligand at the α(2A) adrenergic receptor (AR) without itself driving heterotrimeric G protein/downstream effector activation [5]. In this study, we report our novel finding that DMI modulates α(2A)AR signaling in response to the endogenous agonist norepinephrine (NE). DMI acted as a signaling potentiator, selectively enhancing NE-induced α(2A)AR-mediated ERK1/2 MAPK signaling. This potentiation of ERK1/2 activation was observed as an increase in NE response sensitivity and a prolongation of the activation kinetics. DMI in a physiologically relevant ratio with NE effectively turned on ERK1/2 signaling that is lacking in response to physiological NE alone. Further, the DMI-induced ERK1/2 potentiation relied on heterotrimeric G(i/o) proteins and was arrestin-independent. This modulatory effect of DMI on NE signaling provides novel insight into the effects of this antidepressant drug on the noradrenergic system which it regulates, insight which enhances our understanding of the therapeutic mechanism for DMI.  相似文献   

19.
Oxidation of semiquinone by O2 in the Q cycle is known to be one of the sources of superoxide anion (O·2 -) in aerobic cells. In this paper, such a phenomenon was analyzed using the chemical kinetics model of electron transfer from succinate to cytochrome c, including coenzyme Q, the complex III non-heme iron protein FeSIII and cytochromes b1, bh and c1. Electron transfers from QH2 to FeSIII and cytochrome b1 were assumed to occur according to direct transfer mechanism (dynamic channelling) involving the formation of FeSred III -Q·- and Q·--cytochrome b1 complexes. For oxidation/reduction reactions involving cytochromes bh and b1, the dependence of the equilibrium and elementary rate constants on the membrane potential () was taken into consideration. The rate of O·2 - generation was found to increase dramatically with increase in above the values found in State 3. On the other hand, the rate of cytochrome c reduction decreased sharply at the same values of the membrane potential. This explains experimental data that the O·2- generation at State 4 appears to be very much faster than at State 3. A mild uncoupling in State 4 can markedly decrease the superoxide generation due to a decrease in below the above mentioned critical level. pH appears to be equally effective as in stimulation of superoxide production which depends, in fact, upon the - H + level.  相似文献   

20.
Li H  Liu C  Zhang H  Wei Q 《Biochimica et biophysica acta》2011,1814(12):1769-1774
Protein phosphatase 2A (PP2A) is one of the most important Ser/Thr phosphatases in eukaryotic cells. The enzymatic core of PP2A (PP2A(D)) consists of a scaffold subunit (A subunit) and a catalytic subunit (C subunit). When residue Cys269 in the β12-β13 loop of the PP2A C subunit was deleted (ΔC269), the activity and the intrinsic fluorescence intensity of PP2A(D) decreased. Specify the effects of some metal ions on PP2A(D) were also changed. Mn(2+) in particular was an efficient activator of ΔC269 and altered the intrinsic fluorescence spectrum of ΔC269. Remarkably, after pre-treatment of ΔC269 with Mn(2+), the effects of other metal ions showed the same trends as they had on the WT. Molecular dynamics (MD) simulations showed that deletion of Cys269 decreased the polarity of the β12-β13 loop of PP2A Cα. We conclude that deletion of residue Cys269 alters the conformation and activity of PP2A(D) and influences the interaction between PP2A and various metal ions, notably Mn(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号