首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Commercial zein was base-hydrolyzed and purified extracts were subjected to gas chromatography-selected ion monitoring-mass spectrometry analysis. Indoleacetic acid (IAA) was shown to be released from this storage protein of corn (Zea mays). Isotope dilution using [13C6]IAA as an internal standard revealed a conservative ratio of 1 mole IAA to 175 moles zein. Immunoelectron micrographs of isolated protein bodies also showed IAA or an IAA-like molecule associated with zein and deposited within these organelles.  相似文献   

2.
Auxin regulates a variety of physiological processes via its downstream factors included Aux/IAAs. In this study, one of these Aux/IAAs, IAA8 is shown to play its role in Arabidopsis development with transgenic plants expressing GFP-mIAA8 under the control of IAA8 promoter, in which IAA8 protein was mutated by changing Pro170 to Leu170 in its conserved domain II. These transgenic dwarfed plants had more lateral branches, short primary inflorescence stems, decreased shoot apical dominance, curled leaves and abnormal flower organs (short petal and stamen, and bent stigmas). Further experiments revealed that IAA8::GFP-mIAA8 plants functioned as gain-of-function mutation to increase GFP-mIAA8 amount probably by stabilizing IAA8 protein against proteasome-mediated protein degradation with IAA8::GFP-IAA8 plants as control. The searching for its downstream factors indicated its interaction with both ARF6 and ARF8, suggesting that IAA8 may involve in flower organ development. This was further evidenced by analyzing the expression of jasmonic acid (JA) biosynthetic genes and JA levels because ARF6 and ARF8 are required for normal JA production. These results indicated that in IAA8::GFP-mIAA8 plants, JA biosynthetic genes including DAD1 (AT2G44810), AOS (AT5G42650) and ORP3 (AT2G06050) were dramatically down-regulated and JA level in the flowers was reduced to 70 % of that in wild-type. Furthermore, exogenous JA application can partially rescue short petal and stamen observed IAA8::GFP-mIAA8 plants. Thus, IAA8 plays its role in floral organ development by changes in JA levels probably via its interaction with ARF6/8 proteins.  相似文献   

3.
MicroRNAs function in a range of developmental processes. Here, we demonstrate that miR847 targets the mRNA of the auxin/indole acetic acid (Aux/IAA) repressor-encoding gene IAA28 for cleavage. The rapidly increased accumulation of miR847 in Arabidopsis thaliana coincided with reduced IAA28 mRNA levels upon auxin treatment. This induction of miR847 by auxin was abolished in auxin receptor tir1-1 and auxin-resistant axr1-3 mutants. Further analysis demonstrates that miR847 functions as a positive regulator of auxin-mediated lateral organ development by cleaving IAA28 mRNA. Importantly, the ectopic expression of miR847 increases the expression of cell cycle genes as well as the neoplastic activity of leaf cells, prolonging later-stage rosette leaf growth and producing leaves with serrated margins. Moreover, both miR847 and IAA28 mRNAs are specifically expressed in marginal meristems of rosette leaves and lateral root initiation sites. Our data indicate that auxin-dependent induction of miR847 positively regulates meristematic competence by clearing IAA28 mRNA to upregulate auxin signaling, thereby determining the duration of cell proliferation and lateral organ growth in Arabidopsis. IAA28 mRNA encodes an Aux/IAA repressor protein, which is degraded through the proteasome in response to auxin. Altered signal sensitization to IAA28 mRNA levels, together with targeted IAA28 degradation, ensures a robust signal derepression.  相似文献   

4.
Indole-3-butyric acid (IBA) is an endogenous storage auxin important for maintaining appropriate indole-3-acetic acid (IAA) levels, thereby influencingprimary root elongation and lateral root development. IBA is metabolized into free IAA in peroxisomes in a multistep process similar to fatty acid β-oxidation. We identified LONG CHAIN ACYL-COA SYNTHETASE 4 (LACS4) in a screen for enhanced IBA resistance in primary root elongation in Arabidopsis thaliana. LACSs activate substrates by catalyzing the addition of CoA, the necessary first step for fatty acids to participate in β-oxidation or other metabolic pathways. Here, we describe the novel role of LACS4 in hormone metabolism and postulate that LACS4 catalyzes the addition of CoA onto IBA, the first step in its β-oxidation. lacs4 is resistant to the effects of IBA in primary root elongation and dark-grown hypocotyl elongation, and has reduced lateral root density. lacs6 also is resistant to IBA, although both lacs4 and lacs6 remain sensitive to IAA in primary root elongation, demonstrating that auxin responses are intact. LACS4 has in vitro enzymatic activity on IBA, but not IAA or IAA conjugates, and disruption of LACS4 activity reduces the amount of IBA-derived IAA in planta. We conclude that, in addition to activity on fatty acids, LACS4 and LACS6 also catalyze the addition of CoA onto IBA, the first step in IBA metabolism and a necessary step in generating IBA-derived IAA.

An enhancer mutant revealed an acyl-CoA synthetase that catalyzes CoA addition to indole-3-butryic acid, required for the β-oxidation steps necessary to generate indole-3-butryic acid-derived IAA.  相似文献   

5.
6.
Glutelin is a major seed storage protein, accounting for 60?C80?% of the total endosperm protein content in rice. To test whether we could augment the expression of an introduced recombinant protein in rice by suppressing the glutelin gene, we generated transgenic glutelin RNAi (glu RNAi) rice seeds. RNA gel blot analyses confirmed that the endogenous glutelin gene was severely suppressed in these transgenic rice lines. RT-PCR analysis further revealed that all the members of glutelin multigene family were downregulated. Transgenic glu RNAi rice seeds expressing a recombinant red fluorescent protein (RFP) showed stronger fluorescence than seeds transformed with the RFP gene only. Western blot analysis further revealed that the relative accumulation of RFP in glu RNAi seeds was twofold higher than that in the RFP-only transgenic seeds. These results suggest that RNAi targeting of an endogenous storage protein could be of great utility in obtaining higher transgene expression in genetically engineered rice and other plant lines.  相似文献   

7.
Endogenous indoleacetic acid (IAA) levels were examined in 7-day-old, dark-grown tomato seedlings (Lycopersicon esculentum Mill. cv VFN8), and in two single-gene mutants, Epinastic and diageotropica. Gas chromatography-mass spectrometry was employed to quantify IAA using 13C6-[benzene ring]indoleacetic acid as internal standard. IAA concentrations ranged from 89 to 134 nanograms per gram dry weight and were not significantly different for the three genotypes. Ethylene over-production by dark-grown Epi seedlings is not likely to result from increased IAA. Assuming similar recovery percentages for each genotype, indole-3-ethanol, a purported storage form of IAA, was identified by GC-MS and found to be more prevalent in the parent tomato, VFN8, with only trace amounts observed in Epi. No IEt was detected by high performance liquid chromatography/fluorescence in dgt (detection limit >100 picograms).  相似文献   

8.
9.
10.

Background

Indole-3-acetic acid (IAA) extraction and purification are of great importance in auxin research, which is a hot topic in the plant growth and development field. Solid-phase extraction (SPE) is frequently used for IAA extraction and purification. However, no IAA-specific SPE columns are commercially available at the moment. Therefore, the development of IAA-specific recognition materials and IAA extraction and purification methods will help researchers meet the need for more precise analytical methods for research on phytohormones.

Results

Since the AUXIN RESISTANT/INDOLE-3-ACETIC ACID INDUCIBLE (Aux/IAA) proteins show higher specific binding capability with auxin, recombinant IAA1, IAA7 and IAA28 proteins were used as sorbents to develop an IAA extraction and purification method. A GST tag was used to solidify the recombinant protein in a column. Aux/IAA proteins solidified in a column have successfully trapped trace IAA in aqueous solutions. The IAA7 protein showed higher IAA binding capability than the other proteins tested. In addition, expression of the IAA7 protein in Drosophila Schneider 2 (S2) cells produced better levels of binding than IAA7 expressed in E. coli.

Conclusion

This work validated the potential of Aux/IAA proteins to extract and purify IAA from crude plant extracts once we refined the techniques for these processes.
  相似文献   

11.
Moore TC  Shaner CA 《Plant physiology》1967,42(12):1787-1796
A 2-step, 1-dimensional thin-layer chromatographic procedure for isolating indoleacetic acid (IAA) was developed and utilized in investigations of the biosynthesis of IAA from tryptophan-14C in cell-free extracts of pea (Pisum sativum L.) shoot tips. Identification of a 14C-product as IAA was by (a) co-chromatography of authentic IAA and 14C-product on thin-layer chromatography, and (b) gas-liquid and thin-layer chromatography of authentic and presumptive IAA methyl esters. Dialysis of enzyme extracts and addition of α-ketoglutaric acid and pyridoxal phosphate to reaction mixtures resulted in approximately 2- to 3-fold increases in net yields of IAA over yields in non-dialyzed reaction mixtures which did not contain additives essential to a transaminase reaction of tryptophan. Addition of thiamine pyrophosphate to reaction mixtures further enhanced net biosynthesis of IAA. It is concluded that the formation of indolepyruvic acid and its subsequent decarboxylation probably are sequential reactions in the major pathway of IAA biosynthesis from tryptophan in cell-free extracts of Pisum shoot tips. Comparison of maximum net IAA biosynthesis in extracts of shoot tips of etiolated and light-grown dwarf and tall pea seedlings revealed an order, on a unit protein N basis, of: light-grown tall > light-grown dwarf > etiolated tall etiolated dwarf. It is concluded that the different rates of stem elongation among etiolated and light-grown dwarf and tall pea seedlings are correlated, in general, with differences in net IAA biosynthesis and sensitivity of the tissues to IAA.  相似文献   

12.
The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-β-d-glucose from uridine-5′-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.  相似文献   

13.
We have isolated from plant surfaces several bacteria with the ability to catabolize indole-3-acetic acid (IAA). One of them, isolate 1290, was able to utilize IAA as a sole source of carbon, nitrogen, and energy. The strain was identified by its 16S rRNA sequence as Pseudomonas putida. Activity of the enzyme catechol 1,2-dioxygenase was induced during growth on IAA, suggesting that catechol is an intermediate of the IAA catabolic pathway. This was in agreement with the observation that the oxygen uptake by IAA-grown P. putida 1290 cells was elevated in response to the addition of catechol. The inability of a catR mutant of P. putida 1290 to grow at the expense of IAA also suggests a central role for catechol as an intermediate in IAA metabolism. Besides being able to destroy IAA, strain 1290 was also capable of producing IAA in media supplemented with tryptophan. In root elongation assays, P. putida strain 1290 completely abolished the inhibitory effect of exogenous IAA on the elongation of radish roots. In fact, coinoculation of roots with P. putida 1290 and 1 mM concentration of IAA had a positive effect on root development. In coinoculation experiments on radish roots, strain 1290 was only partially able to alleviate the inhibitory effect of bacteria that in culture overproduce IAA. Our findings imply a biological role for strain 1290 as a sink or recycler of IAA in its association with plants and plant-associated bacteria.  相似文献   

14.
Suspension cultures of carrot (Daucus carrota L.) which had an absolute requirement for exogenously supplied auxin were grown in medium containing indoleacetic acid (IAA) as the sole auxin source. Putative cell surface proteins were extracted from the intact cells. Resupply of IAA to cultures partially depleted of auxin resulted in rapidly increased activities of three enzyme activities subsequently extracted. Two of the enzyme activities which increased, peroxidase and pectinesterase, have been implicated in the literature as important to cell wall development, structure, and growth. The other enzyme activity which was increased, IAA oxidase, may be involved in the degradation of IAA In vivo. Polypeptides in the extracts were found to increase equally as rapidly as the enzymes in response to IAA as determined with sodium dodecyl sulfate-polyacrylamide electrophoretic gels stained with silver. It is not known whether the changes in enzyme and polypeptide levels in the protein extracts were due to auxin effects on protein synthesis, transport, or extractability.  相似文献   

15.
The soft, starchy endosperm of the maize (Zea mays L)floury2 mutant is associated with a reduction in zein mRNA and protein synthesis, unique protein body morphology, and enhanced levels of a 70 kDa protein, that has been shown to be the maize homolog of a chaperonin found in the endoplasmic reticulum. We found an unusual α-zein protein of 24 kDa to be consistently associated with the zein fraction from floury2 mutants. Three additional α-zein proteins with molecular weights ranging from ca. 25 to 27 kDa are detected in the storage protein fraction of a high percentage of floury2 kernels and a low percentage of normal kernels in a genetically segregating population. The four proteins can be distinguished from one another by immunostaining on Western blots. Synthesis of the 24 kDa protein is regulated by Opaque2, since the 24 kDa protein is lacking in the storage protein fraction of opaque2/floury2 double mutants. The synthesis of an abnormal a-zein protein in floury2 could explain many features of the mutant, such as the abnormal protein body morphology, induction of the 70 kDa chaperonin, and hypostasis to opaque2 (o2). Although we cannot prove that the accumulation of this protein is responsible for the floury2 phenotype, we were able to detect a restriction fragment length polymorphism (RFLP) linked to the floury2 locus with a 22 kDa α-zein probe. We hypothesize that the unique characteristics of the floury2 mutant could be a response to the accumulation of a defective a-zein protein which impairs secretory protein synthesis.  相似文献   

16.
Harpin proteins stimulate hypersensitive response (HR) in plants. However, the mechanism by which HR is regulated is not clear. The role of the auxin, indole-3-acetic acid (IAA), in the control of harpin-stimulated HR was investigated. IAA was used to inhibit HR that was stimulated by purified fusion harpinXoo protein in tobacco. Semi-quantitative PCR and qRT-PCR were employed to detect the expression of HR related genes. IAA at 100 μM reversed harpin-induced HR which was inhibited by 500 μM 2,3,5-triiodobenzoic acid (TIBA). Semi-quantitative PCR and qRT-PCR showed the combined application of 100 μM IAA and harpin protein from Xanthomonas oryzae enhanced the expression of HR marker gene, hsr203J, but weakened the expression of the disease-defense gene, chia5. TIBA also decreased the expression of hsr203J but increased the expression of chia5. Thus, the auxin can reverse harpinXoo-induced HR.  相似文献   

17.
Plants have developed numerous mechanisms to store hormones in inactive but readily available states, enabling rapid responses to environmental changes. The phytohormone auxin has a number of storage precursors, including indole-3-butyric acid (IBA), which is apparently shortened to active indole-3-acetic acid (IAA) in peroxisomes by a process similar to fatty acid β-oxidation. Whereas metabolism of auxin precursors is beginning to be understood, the biological significance of the various precursors is virtually unknown. We identified an Arabidopsis thaliana mutant that specifically restores IBA, but not IAA, responsiveness to auxin signaling mutants. This mutant is defective in PLEIOTROPIC DRUG RESISTANCE8 (PDR8)/PENETRATION3/ABCG36, a plasma membrane–localized ATP binding cassette transporter that has established roles in pathogen responses and cadmium transport. We found that pdr8 mutants display defects in efflux of the auxin precursor IBA and developmental defects in root hair and cotyledon expansion that reveal previously unknown roles for IBA-derived IAA in plant growth and development. Our results are consistent with the possibility that limiting accumulation of the IAA precursor IBA via PDR8-promoted efflux contributes to auxin homeostasis.  相似文献   

18.
Ueda M  Bandurski RS 《Plant physiology》1969,44(8):1175-1181
An estimate has been made of the quantities of alkali-labile esters of indoleacetic acid (IAA) in kernels of sweet corn (Zea mays). The amount is between 70 to 90 mg of IAA per kilogram of dry kernels. About one-half of the IAA is present as high molecular weight esters and the remaining one-half as esters of myo-inositol. Free IAA, which may have existed in the kernels, or may have resulted from ester hydrolysis during isolation or storage, amounts to between 1 to 10% of the esterified IAA. Five newly observed low molecular weight indoleacetyl compounds are described and their chromatographic behavior reported. The total IAA content of corn kernels and intact seedlings decreases during germination, declining to about 10% of the original content during 96 hr of germination. Difficulties in obtaining quantitative results and the possible physiological significance of these results is discussed.  相似文献   

19.
20.
Suttle JC 《Plant physiology》1991,96(3):875-880
Basipetal transport of [14C]IAA in hypocotyl segments isolated from various regions of etiolated Helianthus annuus L. cv NK 265 seedlings declines with increasing physiological age. This decline was the result of a reduction in both transport capacity and apparent velocity. Net IAA uptake was greater and the abilities of auxin transport inhibitors to stimulate net IAA uptake were reduced in older tissues. Net IAA accumulation by microsomal vesicles exhibited a similar behavior with respect to age. Specific binding of [3H]N-1-naphthylphthalamic acid (NPA) to microsomes prepared from young and older hypocotyl regions was saturable and consistent with a single class of binding sites. The apparent affinity constants for NPA binding in microsomes prepared from young versus older tissues were 6.4 and 10.8 nanomolar, respectively, and the binding site densities for young versus old tissues were 7.44 and 3.29 picomoles/milligram protein, respectively. Specific binding of [3H]NPA in microsomes prepared from both tissues displayed similar sensitivities toward unlabeled flurenol and exhibited only slight differences in sensitivity toward 2,3,5-triiodobenzoic acid. These results demonstrate that the progressive loss of basipetal IAA transport capacity in etiolated Helianthus hypocotyls with advancing age is associated with substantial alterations in the phytotropin-sensitive, IAA efflux system and they suggest that these changes are, at least partially, responsible for the observed reduction of polar IAA transport with advancing tissue age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号