首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascaris lumbricoides var. suum is a parasitic nematode of pigs. Its embryos undergo chromatin diminution between the third and fifth cleavages, resulting in the loss of about 30% of the DNA from all somatic precursor cells while the germ line DNA stays intact. Most of the eliminated DNA has been shown to be satellite sequences. Theodor Boveri [(1910) In "Festschrift fur R. Hertwig, III," Vol. 3, pp. 131-214, Fischer] proposed that functions essential only to the germ line might be lost from the soma. We have examined this proposal by cloning a gene encoding the major sperm protein (MSP) using a cloned MSP gene from Caenorhabditis elegans as a probe. The MSP appears to be expressed only in the testis of Ascaris, as it is in Caenorhabditis. Actin and alpha tubulin were also cloned to serve as somatically expressed gene controls. By probing Southern blots of somatic and germ line DNA with these cloned genes, it was found that none of them was lost or rearranged during chromatin diminution. Thus at least one germ line-specific gene is neither lost nor rearranged during chromatin diminution. We also found that the two nematode species differ widely in their numbers of both MSP and actin genes. Caenorhabditis has greater than 30 MSP genes, but Ascaris has no more than three; whereas Ascaris has many more actin genes than Caenorhabditis.  相似文献   

2.
We studied the functional significance of marked differences in the DNA content of somatic cells and germ line nuclei by static Feulgen-DNA cytophotometry for several species of microcrustaceans that exhibit chromatin diminution during very early stages of embryogenesis. Mature females and males showed many gonadal nuclei with elevated amounts of DNA that persist until dispersal of this "extra" DNA throughout the cytoplasm as fragments and coalescing droplets of chromatin during anaphase of the diminution division.  相似文献   

3.
The segregation of progenitor somatic cells from those of the primordial germ cells that sequester and retain elevated levels of DNA during subsequent developmental events, poses an interesting, alternative pathway of chromosome behavior during the reproductive cycle of certain species of cyclopoid copepods and several other organisms. Separation of maternal and paternal chromosome sets during very early cleavages (gonomery) is often a feature following marked elevations of DNA levels in germ cells for some of these species. Here, we report on the accumulation of large amounts of DNA in germ line nuclei of both female and male juveniles and adults of a freshwater copepod, Mesocyclops edax (Forbes, 1890). We also report the robust uptake of 3H-thymidine by germ cells prior to gametogenesis in this species. By using cytophotometric analysis of the DNA levels in both germ line cells and somatic cells from the same specimens we demonstrate that germ cell nuclei accumulate high levels of DNA prior to the onset of gametogenesis. These elevated amounts coincide with the levels of heterochromatic DNA discarded during chromatin diminution. A new model is proposed of major cytological events accompanying the process of chromatin diminution in M. edax.  相似文献   

4.
Guy Drouin 《Génome》2006,49(6):657-665
Chromatin diminution, i.e., the loss of selected chromosomal regions during the differentiation of early embryonic cells into somatic cells, has been described in taxa as varied as ciliates, copepods, insects, nematodes, and hagfish. The nature of the eliminated DNA has been extensively studied in ciliate, nematode, and hagfish species. However, the small size of copepods, which makes it difficult to obtain enough DNA from early embryonic cells for cloning and sequencing, has limited such studies. Here, to identify the sequences eliminated from the somatic cells of a copepod species that undergoes chromatin diminution, we randomly amplified DNA fragments from germ line and somatic line cells of Mesocyclops edax, a freshwater cyclopoid copepod. Of 47 randomly amplified germ line clones, 45 (96%) contained short, tandemly repeated sequences composed of either 2 bp CA-repeats, 8 bp CAAATAGA-repeats, or 9 bp CAAATTAAA-repeats. In contrast, of 83 randomly amplified somatic line clones, only 47 (57%) contained such short, tandemly repeated sequences. As previously observed in some nematode species, our results therefore show that there is partial elimination of chromosomal regions containing (CAAATAGA and CAAATTAAA) repeated sequences during the chromatin diminution observed in the somatic cells of M. edax. We speculate that chromatin diminution might have evolved repeatedly by recruitment of RNAi-related mechanisms to eliminate nonfunctional tandemly repeated DNA sequences from the somatic genome of some species.  相似文献   

5.
We have determined the prototype sequence of the DNA which is eliminated in the course of chromatin diminution in Ascaris suum. This DNA which is virtually absent from somatic cells but retained in the germ line consists predominantly of highly repetitive sequences which are variants of an AT rich 123 base pair repeat unit. Both major and minor variants have been sequenced. The overall structure of this germ line limited DNA corresponds to the segmental organization characteristic of satellite DNAs. Possible correlations between the mechanism of chromatin diminution and some properties of the satellite sequence are discussed.  相似文献   

6.
The size of genomes in eukaryotic organisms is one of the greatest mysteries of biology. As known from the middle of the XX century, the level of organization of a particular organism, does not depend on its genome size, i. e. on DNA amount in the nucleus. We believe that an actual function of non-coding DNA stands behind the phenomenon of chromatin diminution, known already for 100 years. Diminution of chromatin normally takes place in cells involved in body building and never occurs in developmental precursors of germ cells. Apparently, the former are cells, in which non-coding DNA is functionally significant. We cloned a fraction of DNA eliminated during chromatin diminution of Cyclops kolensis (Cyclopoida, Crustascea) and sequenced 90 clones totally making 32 kb. Taken together, the provided evidence has demonstrated a high organization ordering of DNA sequences restricted to the germ line. Chromatin diminution never takes place in human cells and in cells of the majority of animals. These cells may isolate non-coding DNA in other ways, making it unreactable for most enzymes and thus functionally cut off. Thus, a certain part of genome with a particular size and structure may serve for genetic isolation of species as shellfish or junk DNA are vital components rather than pieces of garbage.  相似文献   

7.
The process of chromatin diminution in Parascaris and Ascaris is a developmentally controlled genome rearrangement, which results in quantitative and qualitative differences in DNA content between germ line and somatic cells. Chromatin diminution involves chromosomal breakage, new telomere formation and DNA degradation. The programmed elimination of chromatin in presomatic cells might serve as an alternative way of gene regulation. We put forward a new hypothesis of how an ancient partial genome duplication and chromatin diminution may have served to maintain the genetic balance in somatic cells and simultaneously endowed the germ line cells with a selective advantage.  相似文献   

8.
Summary In Parascaris developmental commitment to the germ line and somatic lineages is indicated by the orientation of the mitotic spindle in blastomeres, the topology of cells in the embryo, and chromatin diminution in presomatic blastomeres. Using three different experimental techniques: transient pressure treatment, application of cytochalasin B, and isolation of blastomeres, we have succeeded in uncoupling several developmental processes during cleavage of P. univalens. The following results were obtained: (1) Following mitotic nondisjunction we observed identical behavior of all chromatids in each blastomere. Thus chromosome differentiation by differential replication does not occur. (2) Chromosome fragments obtained by pressure treatment of egg cells underwent chromatin diminution. Thus this process does not require an intact germ-line chromosome. However, chromosomes immobilized on a monopolar spindle did not undergo chromatin diminution. Thus diminution appears to require segregation of chromatids. (3) Blastomeres that completely lacked chromosomes as a result of mitotic nondisjunction underwent normal early cleavage divisions. (4) Pressure treatment or prolonged treatment with cytochalasin B caused egg cells or germ line blastomeres to lose their germ line quality, as deduced from the coincident occurrence of symmetrical (presomatic-like) cleavage and chromatin diminution. (5) Isolated blastomeres from 2-cell embryos, i.e. 1/2 blastomeres, usually cleaved according to their prospective fates in the whole embryo. However, in some partial embryos derived from such blastomeres, chromatin diminution was delayed for either one or two cleavage mitoses. An activation model as an alternative to a prelocalization model is presented, which can account for early blastomere topogenesis and chromatin diminution.  相似文献   

9.
Abstract. Most species of freshwater cyclopoid copepods follow a conventional course of DNA replication during gametogenesis, but certain species regularly undergo chromatin diminution during early embryogenesis, a process that is accompanied by the exclusion of large amounts of heterochromatic DNA from progenitor somatic cells and selective retention of this DNA by primordial germ cells after their segregation from the soma. We have used scanning microdensitometry and image analysis cytometry of individual Feulgen-stained nuclei to determine the DNA levels of individual somatic cell nuclei, oocytes, spermatocytes, and sperm for seven species, including Acanthocyclops brevispinosus, Acanthocyclops vernalis, Ectocyclops phaleratus, Eucyclops agilis, Eucyclops ensifer, Macrocyclops albidus , and Thermocyclops decipiens . The oocyte nuclei of these species have twice the DNA content of their diploid somatic cell nuclei. In specimens of Cyclops strenuus, Mesocyclops edax, Mesocyclops longisetus, Mesocyclops longisetus curvatus , and Metacyclops mendocinus , marked increases in DNA levels were noted in both female and male germ cells before meiosis. The appearance of enlarged nuclei with densely stained chromocenters is a distinguishing feature of oocytes and spermatocytes of cyclopoid species that exhibit excessive accumulations of DNA during gametogenesis and subsequently undergo chromatin diminution. The net increase in DNA content of the prediminution nuclei is 6–10 times the DNA level of their somatic cell nuclei and is largely attributable to increases in the amount of DNA associated with their heterochromatic chromocenters. The identification of a morphologically distinctive type of germ cell and its dramatic accumulation of large amounts of DNA before meiosis are discussed in terms of the selective elimination of heterochromatin during early cleavage stages in these cyclopoid species.  相似文献   

10.
Akif'ev AP  Grishanin AK 《Genetika》2005,41(4):466-479
The absence of progress in understanding the problem of redundant eukaryotic DNA is stated. This is caused primarily by the attempts to solve this problem either in terms of the traditional approaches (the general phenotypic parameters such as developmental rate, body size, etc. depend on the genome size) or by introducing such vague terms as egoistic, parasitic, or junk DNA. Studying chromatin diminution (CD) in copepods yielded two important conclusions. First, part of the genome of a certain size (94% in Cyclops kolensis first described by the authors) is not needed for somatic functions as it is eliminated during the early (third to seventh) cleavage divisions from the presumptive somatic cells. Second, this DNA is not redundant, let alone selfish or junk, relative to the germline cells. In this sense, it can be regarded as invariant (monomorphic) trait that characterizes the species. Analysis of cloned and sequenced DNA regions eliminated from the somatic cell genome by CD (i.e., confined to the germline), which was first carried out for C. kolensis, showed that the molecular structure of this DNA has at least two features of regular organization: a mosaic structure of repetitive sequences and high (sometimes up to 100%) homology between different repeats and subrepeats. We have suggested that the germline-restricted DNA forms a unique molecular portrait of the species genome, thus acting as a significant factor of genetic isolation. Yet, the phenomenon of CD proper as it occurs in Cyclopoida without disintegration of the chromosome structure) may be regarded as a model of reductional genome evolution, which has repeatedly occurred in the history of eukaryotes.  相似文献   

11.
Sigrid Beermann 《Chromosoma》1977,60(4):297-344
The chromosomes of Cyclops divulsus, C. furcifer, and C. strenuus, like those of several other Copepods, undergo a striking diminution of chromatin early in embryogenesis. The process is restricted to the presumptive soma cells and occurs at the 5th cleavage in C. divulsus, at the 6th and 7th in C. furcifer, and at the 4th in C. strenuus. The eliminated chromatin derives from the excision of heterochromatic chromosome segments (H-segments). Their chromosomal location is different in the three investigated species: Whereas in C. divulsus and C. furcifer the H-segments form large blocks — exclusively terminal in the former and terminal as well as kinetochoric in the latter — the germ line heterochromatin in C. strenuus is scattered all along the chromosomes. Extensive polymorphism exists with respect to the length of the terminal H-segments in C. furcifer, and with respect to the overall content of heterochromatin in the chromosomes of C. strenuus. In a local race of C. strenuus an extreme form of dimorphism has been found which is sex limited: females as a rule are heterozygous for an entire set of large (heterochromatin-rich), and a second set of small chromosomes in their germ line. Males are homozygous for the large set. In the first three cleavage divisions the H-polymorphism is solely expressed through differences of chromosome length. Following diminution the differences between homologous have disappeared. Feulgen cytophotometry demonstrates that in the three species the 1C DNA value for the germ line, as measured in sperm, is about twice that measured in somatic mitoses (germ line/soma C-values in picograms of DNA: C. strenuus 2.2/0.9, C. furcifer 2.9/1.44, C. divulsus 3.1/1.8). — The data imply that chromatin diminution is based on a mechanism which allows specific DNA segments, regardless of their location and size, to be cut out from the chromosomes without affecting the structural continuity of the remaining DNA. This mechanism may be analogous to that of prokaryotic DNA excision.  相似文献   

12.
Chromatin diminution in Parascaris univalens and Ascaris suum undoubtedly represents an interesting case of developmentally programmed DNA rearrangement in higher eukaryotes. It is a complex mechanism involving chromosomal breakage, new telomere addition and DNA degradation, and occurs in all presomatic cells. The process is rather specific with respect to its developmental timing and the chromosomal regions that are eliminated. The functional significance of chromatin diminution still remains an enigma. The fact, however, that single-copy, protein-coding genes are contained in the eliminated DNA demonstrates that in P. univalens and A. suum, there is a qualitative difference between germ-line and somatic genomes, and suggests that chromatin diminution may be used as a "throw-away" approach to gene regulation. We present a hypothesis as to how, during evolution, a partial genome duplication might have been linked to the process of chromatin diminution, in order to provide a selective advantage to parasitic DNA-eliminating nematodes.  相似文献   

13.
Variation in nuclear DNA content within some eukaryotic species is well documented, but causes and consequences of such variation remain unclear. Here we report genome size of an estuarine and salt-marsh calanoid copepod, Eurytemora affinis, which has recently invaded inland freshwater habitats independently and repeatedly in North America, Europe, and Asia. Adults and embryos of E. affinis from the St. Lawrence River drainage were examined for somatic cell DNA content and the presence or absence of embryonic chromatin diminution, using Feulgen-DNA cytophotometry to determine a diploid or 2C genome size of 0.6-0.7 pg DNA/cell. The majority of somatic cell nuclei, however, have twice this DNA content (1.3 pg/nucleus) in all of the adults examined and possibly represent a population of cells arrested at the G2 stage of the cell cycle or associated with some degree of endopolyploidy. Both suggestions contradict assumptions that DNA replication does not occur in adult tissues during the determinate growth characteristic of copepods. Absence of germ cell nuclei with markedly elevated DNA values, commonly found for species of cyclopoid copepods that show chromatin diminution, indicates that E. affinis lacks this trait. The small genome size and presumed absence of chromatin diminution increase the potential utility of E. affinis as a model for genomic studies on mechanisms of adaptation during freshwater invasions.  相似文献   

14.
The genome size of Cyclops in cells at early stages of cleavage (up to the fifth division) and in somatic cells was estimated by static digital Feulgen cytophotometry in order to study quantitative changes in DNA content during chromatin diminution. Described here cytophotometric method was approbated on five different digital-imaging systems in blood cells of four vertebrate species. In all cases, we observed a direct correlation between the data obtained with known from the literature on genome size and high reproducibility, which will allow these systems to be used in future work. We also optimized the conditions for DNA hydrolysis of both blood smears and for two species of Cyclops from the Moscow population as 30 min in 5 N HCl at 24°C. Here, we first revealed chromatin diminution in two endemic Baikal species of Cyclopoida: Acanthocyclops incolotaenia and Diacyclops galbinus. We estimated the extent of chromatin diminution in Diacyclops galbinus as 95.5–96.2%. Cytometric analysis of the third species, Mesocyclops leuckarti, did not reveal obvious chromatin diminution.  相似文献   

15.
The absence of progress in understanding the problem of redundant eukaryotic DNA is stated. This is caused primarily by the attempts to solve this problem either in terms of the traditional approaches (the general phenotypic parameters such as developmental rate, body size, etc. depend on the genome size) or by introducing such vague terms as egoistic, parasitic, or junk DNA. Studying chromatin diminution (CD) in copepods yielded two important conclusions. First, part of the genome of a certain size (94% in Cyclops kolensis first described by the authors) is not needed for somatic functions as it is eliminated during the early (fourth to seventh) cleavage divisions from the presumptive somatic cells. Second, this DNA is not redundant, let alone selfish or junk, relative to the germline cells. In this sense, it can be regarded as invariant (monomorphic) trait that characterizes the species. Analysis of cloned and sequenced DNA regions eliminated from the somatic cell genome by CD (i.e., confined to the germline), which was first carried out for C. kolensis, showed that the molecular structure of this DNA has at least two features of regular organization: a mosaic structure of repetitive sequences and high (sometimes up to 100%) homology between different repeats and subrepeats. We have suggested that the germline-restricted DNA forms a unique molecular portrait of the species genome, thus acting as a significant factor of genetic isolation. Yet, the phenomenon of CD proper as it occurs in Cyclopoida (without disintegration of the chromosome structure) may be regarded as a model of reductional genome evolution, which has repeatedly occurred in the history of eukaryotes.__________Translated from Genetika, Vol. 41, No. 4, 2005, pp. 466–479.Original Russian Text Copyright © 2005 by Akifyev, Grishanin.  相似文献   

16.
McMurray CT  Kortun IV 《Chromosoma》2003,111(8):505-508
Huntington's Disease (HD) is one of eight progressive neurodegenerative disorders in which the underlying mutation is a CAG expansion encoding a polyglutamine tract. The mechanism of trinucleotide expansion remains poorly understood. We have followed heritable changes in CAG length in male transgenic mice. In germ cells, expansion is limited to the post-meiotic, haploid cell and therefore cannot involve mitotic replication or recombination between a homologous chromosome and a sister chromatid. Expansion occurs by gap filling synthesis when DNA loops comprising the CAG trinucleotide repeats are sealed into the DNA strand. Our data support a model in which expansion occurs late in male germ cell development as spermatids are entering the epididymis at a time when chromatin is condensing. These data indicate that repair can be carried out in germ cells as long as the DNA is accessible. The capacity for repair of germ cells may have important implications for future gene therapy.  相似文献   

17.
Organismal aging entails a gradual decline of normal physiological functions and a major contributor to this decline is withdrawal of the cell cycle, known as senescence. Senescence can result from telomere diminution leading to a finite number of population doublings, known as replicative senescence (RS), or from oncogene overexpression, as a protective mechanism against cancer. Senescence is associated with large-scale chromatin re-organization and changes in gene expression. Replication stress is a complex phenomenon, defined as the slowing or stalling of replication fork progression and/or DNA synthesis, which has serious implications for genome stability, and consequently in human diseases. Aberrant replication fork structures activate the replication stress response leading to the activation of dormant origins, which is thought to be a safeguard mechanism to complete DNA replication on time. However, the relationship between replicative stress and the changes in the spatiotemporal program of DNA replication in senescence progression remains unclear.

Here, we studied the DNA replication program during senescence progression in proliferative and pre-senescent cells from donors of various ages by single DNA fiber combing of replicated DNA, origin mapping by sequencing short nascent strands and genome-wide profiling of replication timing (TRT).

We demonstrate that, progression into RS leads to reduced replication fork rates and activation of dormant origins, which are the hallmarks of replication stress. However, with the exception of a delay in RT of the CREB5 gene in all pre-senescent cells, RT was globally unaffected by replication stress during entry into either oncogene-induced or RS. Consequently, we conclude that RT alterations associated with physiological and accelerated aging, do not result from senescence progression. Our results clarify the interplay between senescence, aging and replication programs and demonstrate that RT is largely resistant to replication stress.  相似文献   


18.
The germ line limited DNA of Ascaris suum was isolated from sperm and testis as a satellite DNA component in Hoechst 33258 — CsCl gradients. Employing restriction enzyme analysis, we show that the germ line limited DNA is composed entirely of two families of tandemly repeated sequences, one repeat unit is 125 bp, and the other 131 bp long. The total appr. 5 × 105 copies of the two families are physically separated from each other (segmental arrangement). Several repeat unit variants within both families could be detected. The copies of sequence variants are arranged in tandem (subsegmental arrangement). Reassociation and hybridization experiments revealed similar sequences of the two repeat units. The archaeotypic core sequence of both repeat units is probably a tetranucleotide which shows a theme and variation pattern. During chromatin diminution in the presoma cells the satellite DNA is eliminated from the chromosomes. However, a limited number of tandemly repeated copies of both kinds of repeat units could be detected in the soma genome using radioactive probes of both repeat units in Southern blots of muscle and intestine of adult animals. The tandem arrangement and the hierarchical pattern of restriction sites throughout different subfamilies supports the model of successive segmental amplification events during the evolution of the germ line limited DNA. Since the germ line limited satellite DNA is exclusively located at the ends of the chromosomes, a fold back structure for the telomeric DNA sequences is proposed which might have generated this DNA.  相似文献   

19.
In some species of hagfish, the phenomenon of chromosome elimination occurs during embryogenesis. However, only two repetitive DNA families are known to be represented in chromosomes that are eliminated from somatic cells of the Japanese hagfish Eptatretus okinoseanus. Using molecular analyses, another germ line-restricted, highly repetitive DNA family has been detected in another Japanese hagfish, Paramyxine atami. The repeat unit of this family, which is 83?bp long, has been designated “EEPa1”, for Eliminated Element of P. atami 1. DNA filter hybridization using EEPa1 as a probe revealed that this family is shared among several species and is conserved in the germline DNA. Although eliminated, repetitive DNA that is shared interspecifically has not been reported in hagfish species, cases of chromatin diminution and chromosome elimination processes have been described previously in other organisms.The patterns and intensities of hybridization signals suggest that members of the repetitive DNA family defined by EEPa1 have undergone concerted molecular evolution.  相似文献   

20.
During the early cleavage period of Ascaris suum , chromatin diminution takes place in the somatic founder cells. In the process of chromatin diminution numerous heterochromatic blocks, consisting predominantly of highly repeated DNA, are discarded during mitotic anaphase and are later on digested in the cytoplasm. Very little is known about proteins that are involved in chromatin diminution. We have detected a nuclear protein and purified it to near homogeneity by its preferential binding to UV-damaged DNA. We termed this protein chromatin diminution associated factor 1 (CDAF1), because maximum binding activity per nucleus was observed to develop in 4-8-cell stages, when chromatin diminution occurs for the first time. CDAF1 recognizes cyclobutane pyrimidine dimers in UV-damaged double-stranded DNA. Its binding properties identify CDAF1 as a novel kind of damaged-DNA binding protein. CDAF1 activity is almost not detectable in 1-celled embryos. It increases dramatically during formation of somatic founder cells and persists up to the first larval stage. However, CDAF1 is absent in tissues of adults. These findings led us to suggest that CDAF1 plays a dual role: during the early segregative cleavage period it might be involved in chromatin diminution as a transfactor and act in nucleotide excision repair as an accessory factor throughout embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号