首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—Samples of South Vietnamese soils intensely treated with Agent Orange defoliant were tested for the presence of fungi and actinomycetes with an elevated phenol oxidase activity. As a result, a fast-growing nonsporulating strain producing neutral phenol oxidases was isolated and identified asMycelia sterilia INBI2-26. The strain formed extracellular phenol oxidases during surface growth on a liquid medium in the presence of guayacol and copper sulfate, as well as during submerged cultivation in liquid medium containing wheat bran and sugar beet pulp. Isoelectric focusing of the culture liquid revealed two major catechol oxidases (PO1 and PO2) with pI 3.5 and 8, respectively. The enzymes were purified by Ultrafiltration, ion exchange chromatography, and exclusion HPLC. Both were stable between pH 3 and 8. At pH 8 and 40°C., they retained at least 50% of activity after incubation for 50 h. At 50°C., PO2 was more stable and retained 40% of activity after 50 h, whereas PO1 was inactivated in 3–6 h. The pH-optimutns for PO1 and PO2 toward catechol were 6 and 6.5; and theK m values were 1.5±0.35 and 1.25±0.2 mM, respectively. PO1 and PO2 most optimally oxidized 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) at pH 3 withK m values 1.6±0.18 and 0.045±0.01 mM, respectively, but displayed no activity toward tyrosine. The PO2 absorbance spectrum had a peak at 600 nm, thus indicating the enzyme to be a member of the laccase family.  相似文献   

2.
A nonsporulating strain of Streptomyces diastaticus producing alpha-L-arabinofuranosidase activity (EC 3.2-1.55) was isolated from soil. Two alpha-L-arabinosidases were purified by ion-exchange chromatography and chromatofocusing. The enzymes had molecular weights of 38,000 (C1) and 60,000 (C2) and pIs of 8.8 and 8.3, respectively. The optimum pH range of activity for both enzymes was between 4 and 7. The apparent Km values with p-nitrophenyl arabinofuranoside as the substrate were 10 mM (C1) and 12.5 mM (C2). C1 retained 50% of its activity after 8 h of incubation at 25 degrees C, while C2 retained 80% activity. After 3 h of incubation at 50 degrees C, C1 lost 90% of its initial activity while C2 lost only 40%. The purified enzymes hydrolyzed p-nitrophenyl alpha-L-arabinofuranoside and liberated arabinose from arabinoxylan and from a debranched beta-1,5-arabinan.  相似文献   

3.
A nonsporulating strain of Streptomyces diastaticus producing alpha-L-arabinofuranosidase activity (EC 3.2-1.55) was isolated from soil. Two alpha-L-arabinosidases were purified by ion-exchange chromatography and chromatofocusing. The enzymes had molecular weights of 38,000 (C1) and 60,000 (C2) and pIs of 8.8 and 8.3, respectively. The optimum pH range of activity for both enzymes was between 4 and 7. The apparent Km values with p-nitrophenyl arabinofuranoside as the substrate were 10 mM (C1) and 12.5 mM (C2). C1 retained 50% of its activity after 8 h of incubation at 25 degrees C, while C2 retained 80% activity. After 3 h of incubation at 50 degrees C, C1 lost 90% of its initial activity while C2 lost only 40%. The purified enzymes hydrolyzed p-nitrophenyl alpha-L-arabinofuranoside and liberated arabinose from arabinoxylan and from a debranched beta-1,5-arabinan.  相似文献   

4.
Lactoperoxidase (LPO) was purified from bovine milk using Amberlite CG 50 H+ resin, CM Sephadex C-50 ion-exchange chromatography, and Sephadex G-100 gel filtration chromatography. During the purification steps, the activity of enzyme was measured using 2,2'-azino-bis (3-ethylbenzthiazoline-6 sulfonic acid) diamonium salt (ABTS) as a chromogenic substrate at pH 6. Optimum pH and optimum temperature values for LPO were determined for ABTS, p-phenylendiamine, catechol, epinephrine, and pyrogallol as substrates, and then Km and Vmax values for the same substrate were obtained by means of Lineweaver-Burk graphics. The purification degree of the enzyme was controlled by SDS-PAGE and Rz (A412/A280) values. Km values, at optimum pH and 20 degrees C, were 0.197 mM, 0.063 mM, 0.64 mM, 25.2 mM, and 63.95 mM for p-phenylendiamine, ABTS, epinephrine, pyrogallol, and catechol, respectively. Vmax values, at optimum pH and 20 degrees C, were 3.5x10(-5) EU/mL, 4.0x10(-5) EU/mL, 5.8x10(-4) EU/mL, 8.4x10(-4) EU/mL, and 1.01x10(-3) EU/mL for the same substrates, respectively. p-Phenylendiamine was first found as a new substrate for LPO.  相似文献   

5.
1. The transfer of sulfate ester group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to poly-(Glu6, Ala3, Tyr1) (EAY; Mr 47 kDa) in rat submandibular salivary gland has been investigated. The highest tyrosylprotein sulfotransferase activity was obtained in the Golgi-enriched fraction in the presence of 2 mM 5'AMP, 20 mM MnCl2 and 50 mM NaF at pH 6.2. 2. The apparent Km values for EAY and PAPS were 1.6 x 10(-6) and 1.9 x 10(-6) M, respectively. 3. Inclusion of NaCl, EDTA, NEM and DTT was inhibitory for the enzyme activity. The enzyme was 28 times less susceptible to 2,6-dichloro-4-nitrophenol inhibition than to phenol sulfotransferase inhibition. 4. This study is the first report characterizing a sulfotransferase activity specific for tyrosylprotein in rat submandibular salivary glands.  相似文献   

6.
The activity of phosphoglucose isomerase, its kinetic properties, and the effect of 6-phosphogluconate on its activity in the forward (glucose 6-phosphate----fructose 6-phosphate) and the reverse (fructose 6-phosphate----glucose 6-phosphate) reactions were determined in adult rat brain in vitro. The activity of phosphoglucose isomerase (in nmol/min/mg of whole brain protein) was 1,865 +/- 20 in the forward reaction and 1,756 +/- 32 in the reverse reaction at pH 7.5. It was 1,992 +/- 28 and 2,620 +/- 46, respectively, at pH 8.5. The apparent Km and Vmax of phosphoglucose isomerase were 0.593 +/- 0.031 mM and 2,291 +/- 61 nmol/min/mg of protein, respectively, for glucose 6-phosphate and 0.095 +/- 0.013 mM and 2,035 +/- 98 nmol/min/mg of protein, respectively, for fructose 6-phosphate. The activity of phosphoglucose isomerase was inhibited intensely and competitively by 6-phosphogluconate, with an apparent Ki of 0.048 +/- 0.005 mM for glucose 6-phosphate and 0.042 +/- 0.004 mM for fructose 6-phosphate as the substrate. With glucose 6-phosphate as the substrate, at concentrations from 0.05 to 0.5 mM, the activity of the enzyme was inhibited completely in the presence of 0.5-2.0 mM 6-phosphogluconate. With 0.05-0.2 mM fructose 6-phosphate as the substrate, it was inhibited greater than or equal to 85% at the same concentrations of the inhibitor. No significant changes were observed in the values of Km, Vmax, and Ki for phosphoglucose isomerase in the brain of 6-aminonicotinamide-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Laccase is an enzyme that catalyzes the oxidation of phenolic compounds by coupling the reduction of oxygen to water. While many laccases have been identified in plant and fungal species, enzymes of prokaryotic origin are poorly known. Here we report the enzymological characterization of EpoA, a laccase-like extracytoplasmic phenol oxidase produced by Streptomyces griseus. EpoA was expressed and purified with an Escherichia coli host-vector system as a recombinant protein fused with a C-terminal histidine-tag (rEpoA). Physicochemical analyses showed that rEpoA comprises a stable homotrimer containing all three types of copper (types 1-3). Various known laccase substrates were oxidized by rEpoA, while neither syringaldazine nor guaiacol served as substrates. Among the substrates examined, rEpoA most effectively oxidized N,N-dimethyl-p-phenylenediamine sulphate with a Km value of 0.42 mM. Several metal chelators caused marked inhibition of rEpoA activity, implying the presence of a metal center essential for the oxidase activity. The pH and temperature optima of rEpoA were 6.5 and 40 degrees C, respectively. The enzyme retained 40% activity after preincubation at 70 degrees C for 60 min. EpoA-like activities were detected in cell extracts of 8/40 environmental actinomycetes strains, which suggests that similar oxidases are widely distributed among this group of bacteria.  相似文献   

8.
Human neutrophil cathepsin G or bovine chymotrypsin proteolytically cleaved human alpha-thrombin at the B-chain Trp148-Thr149 bond generating a new form, zeta-thrombin. While incubation of alpha-thrombin with cathepsin G at pH 7.4 and 37 degrees C resulted in a partial loss of fibrinogen clotting activity, 86 +/- 13% of the clotting activity and 99 +/- 16% of the active sites titratable with p-nitrophenyl p-guanidinobenzoate were retained upon controlled passage of alpha-thrombin through chymotrypsin-Sepharose 4B at pH 6.2 or 7.4 and 24 degrees C (n = 15). Kinetic parameters for H-D-hexahydrotyrosyl-Ala-Arg p-nitroanilide were Km = 1.52 +/- 0.60 vs 1.32 +/- 0.18 microM and kcat = 51.9 +/- 2.9 vs 35.8 +/- 6.4 s-1 with alpha-thrombin vs chymotrypsin-prepared zeta-thrombin (n = 4 vs 3), respectively (I = 0.15 M, pH 7.4, and 24 degrees C). Some 95% of the clotting activity was lost when zeta-thrombin was passed through trypsin-Sepharose 4B under conditions for converting alpha- to nonclotting beta- and subsequently gamma-thrombin. The resulting gamma-like thrombins eluted bimodally with 260 and 310 mM NaCl when applied to Amberlite CG-50 resin [cross-linked poly(methylacrylic acid)] developed with a linear salt gradient in 50 mM Tris at pH 7.4 and 24 degrees C. These elution peaks correspond to 240, 330, and 350 mM NaCl for gamma-, alpha-, and zeta-thrombin, respectfully, implying that the anion-binding exosite is partially destroyed in gamma-like thrombins but is intact in zeta-thrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Corynebacterium glutamicum assimilated phenol, benzoate, 4-hydroxybenzoate p-cresol and 3,4-dihydroxybenzoate. Ring cleavage was by catechol 1,2-dioxygenase when phenol or benzoate was used and by protocatechuate 3,4-dioxygenase when the others were used as substrate. The locus ncg12319 of its genome was cloned and expressed in Escherichia coli. Enzyme assays showed that ncg12319 encodes a catechol 1,2-dioxygenase. This catechol 1,2-dioxygenase was purified and accepted catechol, 3-, or 4-methylcatechols, but not chlorinated catechols, as substrates. The optimal temperature and pH for catechol cleavage catalyzed by the enzyme were 30 degrees C and 9, respectively, and the Km and Vmax were determined to be 4.24 micromol l(-1) and 3.7 micromol l(-1) min(-1) mg(-1) protein, respectively.  相似文献   

10.
Phenoloxidase from Artemia sinica (AsPO) was purified by Superdex 200 gel-filtration and Q Sepharose fast flow ion-exchange chromatography, and its properties were characterized biochemically and enzymatically by using L-dihydroxyphenylalanine (L-DOPA) as the specific substrate. Results showed that AsPO was isolated as a monomeric protein of 125.5 kDa in molecular mass. The optimal pH value and temperature are 7.0 and 50°C, respectively, for its PO activity. The AsPO had an apparent K(m) value of 4.2 mM on L-DOPA, and 10.9 mM on catechol, respectively. Oxidase inhibitor on PO activity showed that the AsPO was extremely sensitive to ascorbic acid, sodium sulfite, and citric acid; and was very sensitive to cysteine, benzoic acid, and 1-phenyl-2-thiourea. Combined with its specific enzyme activity on L-DOPA and catechol, it can be concluded that AsPO is most probably a typical catechol-type O-diphenoloxidase. Its PO activity was also sensitive to metal ions and chelators, and 20 mM DETC-inhibited PO activity was obviously recovered by 15 mM Cu(2+), indicating that AsPO is most probably a copper-containing metalloenzyme. All these data about specific substrate, sensitivity to oxidase inhibitor metal ions and chelators indicate that the AsPO has the properties of a catechol-type copper-containing O-diphenoloxidase that functions as a vital humoral factor in host defense via melaninization as in other Crustaceans.  相似文献   

11.
Some aspects of the induction of enzymes participating in the metabolism of phenol and resorcinol in Trichosporon cutaneum were studied using intact cells and cell-free preparations.Activities of phenol hydroxylase (1.14.13.7), catechol 1,2-oxygenase (1.13.11.1), cis,cis-muconate cyclase (5.5.1.-), delactonizing enzyme(s) and maleolylacetate reductase were 50–400 times higher in fully induced cells than in noninduced cells.In addition to phenol and resorcinol, also catechol, cresols and fluorophenols could induce phenol hydroxylase.The induction was severely inhibited by phenol concentrations higher than 1 mM. Using optimum inducer concentrations (0.01–0.10 mM), it took more than 8 h to obtain full induction, whether in proliferating or in nonproliferating cells.Phenol hydroxylase, catechol 1,2-oxygenase and cis,cis-muconate cyclase were induced simultaneously. The synthesis of the de-lactonizing activity was delayed in relation to these three preceeding enzymes of the pathway.High glucose concentration (over 15 mM) inhibited completely the induction of phenol oxidation by nonproliferating cells. It also inhibited phenol oxidation by pre-induced cells.Among the NADPH-generating enzymes, the activity of iso-citrate dehydrogenase was elevated in cells grown on phenol and resorcinol instead of glucose.  相似文献   

12.
Scytalidium thermophilum produces an extracellular phenol oxidase on glucose-containing medium. Certain phenolic acids, specifically gallic acid and tannic acid, induce the expression of the enzyme. Production at 45°C in batch cultures is growth-associated and is enhanced in the presence of 160 μM CuSO4.5 H2O and 3 mM gallic acid. The highest enzyme activity is observed at pH 7.5 and 65°C, on catechol. When incubated for 1 h at pH 7 and pH 8, 95% and 86% of the activity is retained. Thermostability decreases gradually from 40°C to 80°C. Estimated molecular mass is c. 83 kDa, and pI is acidic at c. 5.4. Substrate specificity and inhibition analysis in culture supernatants suggest that the enzyme has unique properties showing activity towards catechol; 3,4-dihydroxy-l-phenylalanine (l-DOPA); 4-amino-N, N-diethylaniline (ADA); p-hydroquinone; gallic acid; tannic acid and caffeic acid, and no activity towards l-tyrosine, guaiacol, 2,2′-azino-bis(3-ethyl-benzthiazoline-6-sulphonic acid) (ABTS) and syringaldazine. Inhibition is observed in the presence of salicyl hydroxamic acid (SHAM) and p-coumaric acid. Enzyme activity is enhanced by cetyltrimethylammonium bromide (CTAB) and polyvinylpyrrolidone (PVP), and the organic solvents dimethyl sulfoxide (DMSO) and ethanol. No inhibition is observed in the presence of carbon monoxide. Benzoin, benzoyl benzoin and hydrobenzoin are converted into benzil, and stereoselective oxidation is observed on hydrobenzoin. The reported enzyme is novel due to its catalytic properties resembling mainly catechol oxidases, but displaying some features of laccases at the same time.  相似文献   

13.
An isolated yeast strain was grown aerobically on phenol as a sole carbon source up to 24 mM; the rate of degradation of phenol at 30 degrees C was greater than other microorganisms at the comparable phenol concentrations. This microorganism was further identified and is designated Candida albicans TL3. The catabolic activity of C. albicans TL3 for degradation of phenol was evaluated with the K(s) and V(max) values of 1.7 +/- 0.1 mM and 0.66 +/- 0.02 micromol/min/mg of protein, respectively. With application of enzymatic, chromatographic and mass-spectrometric analyses, we confirmed that catechol and cis,cis-muconic acid were produced during the biodegradation of phenol performed by C. albicans TL3, indicating the occurrence of an ortho-fission pathway. The maximum activity of phenol hydroxylase and catechol-1,2-dioxygenase were induced when this strain grew in phenol culture media at 22 mM and 10 mM, respectively. In addition to phenol, C. albicans TL3 was effective in degrading formaldehyde, which is another major pollutant in waste water from a factory producing phenolic resin. The promising result from the bio-treatment of such factory effluent makes Candida albicans TL3 be a potentially useful strain for industrial application.  相似文献   

14.
Cellulases produced by two Bacillus strains, CH43 and HR68, isolated from hot springs in Zimbabwe, were purified to homogeneity from culture supernatants. Both enzymes had molecular mass of 40 kDa and isoelectric point of 5.4. The enzymes also resembled each other in N-terminal amino acid sequence which was Ala-Gly-Thr-Lys-Thr-Pro-Val-Ala-Lys-Asn-Gly-Gln, showing 100% homology with that of endoglucanases from Bacillus subtilis belonging to glycoside hydrolase family five. The cellulases were optimally active in the pH range of 5-6.5. The optimum temperature was 65 and 70 degrees C for the endoglucanase of CH43 and HR68, respectively. The CH43 enzyme was stable at 50 degrees C in a pH range of 6-10, and HR68 at pH 6-8. Both the enzymes retained complete activity for at least 24 h at 50 degrees C. The enzymes showed highest activity with beta-glucan as substrate followed by carboxymethylcellulose. Significant activity was also observed with crystalline forms of cellulose such as filter paper and Avicel, particularly for HR68 cellulase. For carboxymethycellulose, the CH43 and HR68 cellulases had a Km of 1.5 and 1.7 mg ml(-1), respectively, and Vmax of 0.93 and 1.70 mmol glucose min(-1) mg protein(-1) respectively. The activity of the enzymes was not influenced by most metal ions at 1 mM concentration, but was increased by about 38% by Co2+. The inhibition by Hg2+ and Mn2+ was higher for CH43 than for HR68 enzyme. Ag+ inhibited the CH43 activity but stimulated the HR68 activity. The CH43 cellulase was inhibited by N-bromosuccinimide and iodoacetamide while HR68 was unaffected.  相似文献   

15.
3-O-methyl-D-glucose (which is not metabolized in isolated parenchymal cells) was used to characterize the hexose transport process in hepatocytes prepared from 24 h fasted rats. The Vmax and Km obtained were 161 +/- 12 nmol/mg dry wt./min and 39 +/- 4 mM respectively (Europe-Finner GN, 1984, Biosci. Rep. 4, 483-489). Streptozotocin-induced diabetes decreased the Km of the system by 50% to a value of 19 +/- 6 mM without causing any change in the Vmax. Short term insulin treatment of cells prepared from 24 h diabetic rats appeared to partially return the system to normal.  相似文献   

16.
The aim of the present study was to purify and characterize angiotensin-converting enzyme (ACE) present in frog ovary (Rana esculenta). Detergent and trypsin-extracted enzymes were purified using a one-step process, consisting of affinity chromatography on lisinopril coupled to Sepharose 6B. The molecular mass was 150 kDa for both detergent-extracted and trypsin-extracted enzyme. The specific activity of detergent-extracted and trypsin-extracted ACE was 294 U mg(-1) and 326 U mg(-1) respectively. The optimum pH range was from 7-8.5 at 37 degrees C and the optimum temperature was 50 degrees C. Optimum chloride concentration was about 200 mM for synthetic substrate FAPGG (N-[3-(2-furyl)acryloyl] L-phenylalanyl glycyl glycine) and angiotensin I, and 10 mM for bradykinin. The Km and Kcat values for FAPGG were 0.608 +/- 0.07 mM and 249 sec(-1) respectively and I50 values for captopril and lisinopril, two specific ACE inhibitors, were 68 +/- 12.55 nM and 6.763 +/- 0.66 nM respectively. Frog ovary tissue from prereproductive period was incubated in vitro in the presence of frog ovary ACE (2.5 mU/ml), captopril (0.1 mM), and lisinopril (0.1 mM). Production of 17beta-estradiol, progesterone, and prostaglandins E2 and F2alpha was determined. The data showed a modulation of 17beta-estradiol, progesterone and prostaglandin E2 production by ovary ACE.  相似文献   

17.
Fruit tree leaf tissues were screened in a search for determination of an alternative source(s) for commercial phenol oxidase (PO) production considering the importance of utilization of green biomass for production of value-added products. Mulberry, pear, sour cherry and apricot leaves were identified as promising PO production sources, due to their comparable enzyme activities with respect to mushroom (Agaricus bisporus), a well-known PO source. Within the scope of this research, further biochemical characterization was only performed for mulberry (Morus alba) leaf tissue due to its high PO activity (ca. 19 EU g−1 tissue) and also its known non-toxic and edible nature which are important properties of an enzyme source to be used without detailed purification. In mulberry leaves, presence of three different PO activities, laccase, peroxidase and catechol oxidase of 62–64 kDa molecular weights, were identified. Since simple extraction/concentration steps without fractionation/purification was aimed as PO production process, operational parameters such as optimal temperature, pH and kinetic studies of overall PO activity were investigated using concentrated crude extract. The highest PO activity against 4-methyl catechol was observed at 45°C and pH 7. Michaelis–Menten kinetic parameters, K m and V max, of PO activity were determined as 6 mM 4-methyl catechol and 2.2 μmol quinone produced min−1 ml−1, respectively. PO activity of mulberry leaves increased up to late November. Consequently, mulberry leaves seem as a suitable PO source for industrial applications in which a wide range of substrate utilization is necessary.  相似文献   

18.
恶臭假单胞菌ND6菌株的萘降解质粒pND6-1中编码儿茶酚1,2-双加氧酶的catA基因在大肠杆菌中进行了克隆和表达,并研究表达产物的酶学性质。结果表明:酶的Km为0.019μmol/L,Vmax为1.434μmol/(min.mg);具有很好的耐热性,在50℃保温45min后仍能够保留酶活力的93.7%;Fe2+对酶活性有显著的促进作用,其比活力是对照反应的292%;酶对4-氯儿茶酚的催化活性非常低,属于Ⅰ型儿茶酚1,2-双加氧酶。以萘为底物生长时,ND6菌株的细胞提取液中既存在催化邻位裂解途径的儿茶酚1,2-双加氧酶活性,也存在催化间位裂解途径的儿茶酚2,3-双加氧酶活性。以苯甲酸、对羟基苯甲酸和苯乙酸为唯一碳源生长时,ND6菌株细胞提取液的儿茶酚1,2-双加氧酶活性远远大于儿茶酚2,3-双加氧酶活性。表明ND6菌株既能通过儿茶酚间位裂解途径降解萘,也能通过儿茶酚邻位裂解途径降解萘,而以苯甲酸、对羟基苯甲酸和苯乙酸为诱导物时只利用儿茶酚邻位裂解途径。  相似文献   

19.
Glucose-6-phosphate dehydrogenase (G6PD) catalyses the first step of the pentose phosphate pathway which generates NADPH for anabolic pathways and protection systems in liver. G6PD was purified from dog liver with a specific activity of 130 U x mg(-1) and a yield of 18%. PAGE showed two bands on protein staining; only the slower moving band had G6PD activity. The observation of one band on SDS/PAGE with M(r) of 52.5 kDa suggested the faster moving band on native protein staining was the monomeric form of the enzyme.Dog liver G6PD had a pH optimum of 7.8. The activation energy, activation enthalpy, and Q10, for the enzymatic reaction were calculated to be 8.96, 8.34 kcal x mol(-1), and 1.62, respectively.The enzyme obeyed "Rapid Equilibrium Random Bi Bi" kinetic model with Km values of 122 +/- 18 microM for glucose-6-phosphate (G6P) and 10 +/- 1 microM for NADP. G6P and 2-deoxyglucose-6-phosphate were used with catalytic efficiencies (kcat/Km) of 1.86 x 10(6) and 5.55 x 10(6) M(-1) x s(-1), respectively. The intrinsic Km value for 2-deoxyglucose-6-phosphate was 24 +/- 4mM. Deamino-NADP (d-NADP) could replace NADP as coenzyme. With G6P as cosubstrate, Km d-ANADP was 23 +/- 3mM; Km for G6P remained the same as with NADP as coenzyme (122 +/- 18 microM). The catalytic efficiencies of NADP and d-ANADP (G6P as substrate) were 2.28 x 10(7) and 6.76 x 10(6) M(-1) x s(-1), respectively. Dog liver G6PD was inhibited competitively by NADPH (K(i)=12.0 +/- 7.0 microM). Low K(i) indicates tight enzyme:NADPH binding and the importance of NADPH in the regulation of the pentose phosphate pathway.  相似文献   

20.
Properties of exo-1,4-beta-xylosidase from the fungus Aspergillus niger 15 were investigated. The enzyme was homogeneous during gel filtration, electrophoresis in polyacrylamide gel in the presence and absence of Na dodecyl sulfate, ultracentrifugation and isoelectric focusing. The enzyme had a temperature optimum at 70 degrees, pH optimum 3.8-4.0 for p-nitrophenyl-beta-D-xylopyranoside (p-NPX), was stable at pH 3-8, retained its 100% activity for 1 hour at 50 degrees and 42% activity at 60 degrees. Km was 0.23 mM for p-NPX and 0.67 mM for xylobiose. Xylose was a competitive inhibitor of exo-1,4-beta-xylodidase with Ki = 2.9 mM. The enzyme showed a transglycosilase activity. The aminoacid analysis of exo-1,4-beta-xylosidase showed that the enzyme molecule contained predominantly dicarboxylic and hydrophobic amino acids as well as serine. The enzyme contained no carbohydrates. Its activity was inhibited by p-chloromercury benzoate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号