首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Our study demonstrates that cholera toxin (CT) markedly enhances the intestinal anti-T. gondii antibody response following oral immunisation of mice with a T. gondii sonicate (TSo) and CT. The antibodies induced were mostly IgA and secretory IgA but a small quantity of IgG was also produced. In contrast, no intestinal anti-T. gondii IgM antibodies were detected. Anti-CT IgA antibodies were also present in intestinal secretions but in much lower quantities than the T. gondii-specific IgA. No anti-CT IgG nor IgM antibodies were detected. Western blot analysis showed that CT induced not only an increase of the intensity of the intestinal IgA antibody response to the 30-kDa band but also induced intestinal IgA antibodies against other major T. gondii proteins (p22, and the 28-kDa antigen) as recognised by specific monoclonal antibodies. The amplification of the anti-T. gondii secretory IgA response by means of an appropriate adjuvant may be one major step leading towards an orally induced immune protection against toxoplasmosis.  相似文献   

2.
Cholera toxin (CT) is the primary virulence factor responsible for severe cholera. Vibrio cholerae strains unable to produce CT show severe attenuation of virulence in animals and humans. The pentameric B subunit of CT (CTB) contains the immunodominant epitopes recognized by antibodies that neutralize CT. Although CTB is a potent immunogen and a promising protective vaccine antigen in animal models, immunization of humans with detoxified CT failed to protect against cholera. We recently demonstrated however that pups reared from mice immunized intraperitoneally (IP) with 3 doses of recombinant CTB were well protected against a highly lethal challenge dose of V. cholerae N16961. The present study investigated how the route and number of immunizations with CTB could influence protective efficacy in the suckling mouse model of cholera. To this end female mice were immunized with CTB intranasally (IN), IP, and subcutaneously (SC). Serum and fecal extracts were analyzed for anti-CTB antibodies by quantitative ELISA, and pups born to immunized mothers were challenged orogastrically with a lethal dose of V. cholerae. Pups from all immunized groups were highly protected from death by 48 hours (64–100% survival). Cox regression showed that percent body weight loss at 24 hours predicted death by 48 hours, but we were unable to validate a specific amount of weight loss as a surrogate marker for protection. Although CTB was highly protective in all regimens, three parenteral immunizations showed trends toward higher survival and less weight loss at 24 hours post infection. These results demonstrate that immunization with CTB by any of several routes and dosing regimens can provide protection against live V. cholerae challenge in the suckling mouse model of cholera. Our data extend the results of previous studies and provide additional support for the inclusion of CTB in the development of a subunit vaccine against V. cholerae.  相似文献   

3.
Vibrio cholerae expresses two primary virulence factors, cholera toxin (CT) and the toxin-coregulated pilus (TCP). CT causes profuse watery diarrhea, and TCP (composed of repeating copies of the major pilin TcpA) is required for intestinal colonization by V. cholerae. Antibodies to CT or TcpA can protect against cholera in animal models. We developed a TcpA holotoxin-like chimera (TcpA-A2-CTB) to elicit both anti-TcpA and anti-CTB antibodies and evaluated its immunogenicity and protective efficacy in the infant mouse model of cholera. Adult female CD-1 mice were immunized intraperitoneally three times with the TcpA-A2-CTB chimera and compared with similar groups immunized with a TcpA+CTB mixture, TcpA alone, TcpA with Salmonella typhimurium flagellin subunit FliC as adjuvant, or CTB alone. Blood and fecal samples were analyzed for antigen-specific IgG or IgA, respectively, using quantitative ELISA. Immunized females were mated; their reared offspring were challenged orogastrically with 10 or 20 LD50 of V. cholerae El Tor N16961; and vaccine efficacy was assessed by survival of the challenged pups at 48 hrs. All pups from dams immunized with the TcpA-A2-CTB chimera or the TcpA+CTB mixture survived at both challenge doses. In contrast, no pups from dams immunized with TcpA+FliC or CTB alone survived at the 20 LD50 challenge dose, although the anti-TcpA or anti-CTB antibody level elicited by these immunizations was comparable to the corresponding antibody level achieved by immunization with TcpA-A2-CTB or TcpA+CTB. Taken together, these findings comprise strong preliminary evidence for synergistic action between anti-TcpA and anti-CTB antibodies in protecting mice against cholera. Weight loss analysis showed that only immunization of dams with TcpA-A2-CTB chimera or TcpA+CTB mixture protected their pups against excess weight loss from severe diarrhea. These data support the concept of including both TcpA and CTB as immunogens in development of an effective multivalent subunit vaccine against V. cholerae.  相似文献   

4.
Successful oral immunization to prevent infectious diseases in the gastrointestinal tract as well as distant mucosal tissues may depend on the effectiveness of an Ag to induce gut immune responses. We and others have previously reported that cholera toxin possesses strong adjuvant effects on the gut immune response to co-administered Ag. To explore further adjuvant effects of cholera toxin, the holotoxin or its B subunit was chemically cross-linked to Sendai virus. The resulting conjugates, which were not infectious, were evaluated for their capacity to induce gut immune responses against Sendai virus after oral administration to mice. Conjugating cholera toxin to virus significantly enhanced the adjuvant activity of cholera toxin compared to simple mixing. Cholera toxin B subunit, however, did not show an adjuvant effect either by itself or conjugated with the virus. Oral administration of the Sendai virus-cholera toxin conjugate was also able to prime for protective anti-viral responses in the respiratory tract. Mice that were orally immunized with the conjugate and intra-nasally boosted with inactivated virus alone showed virus-specific IgA titers in nasal secretions that correlated with protection against direct nasal challenge with live Sendai virus. For comparison, s.c. immunization was also studied. Systemic immunization with the virus-cholera toxin conjugate induced virus-specific antibody responses in serum as well as in the respiratory tract but failed to protect the upper respiratory tract against virus challenge. Systemic immunization plus an intra-nasal boost did, however, confer a variable degree of protection to the upper respiratory tract, which correlated primarily with bronchoalveolar lavage (lung) antibody titers.  相似文献   

5.
The present study evaluated the immune response elicited by a ubiquitin-fused ESAT-6 DNA vaccine against Mycobacterium tuberculosis. BALB/c mice were vaccinated with plasmid DNA encoding ESAT-6 protein, ubiquitin-fused ESAT-6 DNA vaccine (UbGR-ESAT-6), pcDNA3-ubiquitin and blank vector, respectively. ESAT-6 DNA vaccine immunization induced a Thl-polarized immune response. The production of Thl-type cytokine (IFN-γ) and proliferative T-cell responses was enhanced significantly in mice immunized with UbGR-ESAT-6 fusion DNA vaccine, compared to non-fusion DNA vaccine. This fusion DNA vaccine also resulted in an increased relative ratio of IgG2a to IgGl and the cytotoxicity of T cells. Thus, the present study demonstrated that the UbGR-ESAT-6 fusion DNA vaccine inoculation improved antigen-specific cellular immune responses, which is helpful for protection against tuberculosis infection.  相似文献   

6.
The mucosal immunization method is a needle-free alternative way of vaccination. This study evaluated the efficacy of mucosal immunization for rabies. Mice were intranasally administered five times with inactivated and concentrated rabies virus antigen (CRV) supplemented with or without cholera toxin (CT). The anti-rabies virus antibody titer of mice intranasally immunized with CRV plus CT (CRV/CT) was comparable to that of mice intraperitoneally immunized twice with the same amount of CRV. Virus neutralizing (VNA) titers of mice immunized intranasally with CRV/CT were slightly lower than those of intraperitoneally immunized mice. Both anti-rabies virus ELISA antibody and VNA titers of mice immunized with CRV without CT were significantly lower than those of mice immunized with CRV/CT. In mice intranasally immunized with CRV/CT, and intraperitoneally immunized mice, high levels of IgG(2a) antibody were detected, suggesting the activation of Th1-driven cellular immunity by the two ways of immunization. All immunized mice were challenged intracerebrally with a lethal dose of virulent rabies virus CVS strain. The survival rates of mice immunized with CRV/CT and CRV without CT were 67% and 17%, respectively, while the rate of intraperitoneally immunized mice was 100%. Antigen-specific whole IgG and IgG(2a), and VNA titers of survived mice were significantly higher than those of dead mice at the challenge day. These data suggest the possibility of intranasal immunization with inactivated antigen as a rabies vaccination strategy and the importance of a mucosal adjuvant such as CT.  相似文献   

7.
To investigate the antibacterial activity of mucosal Th1 and Th2 immune responses induced nasally and orally, mice were immunized with mucosal vaccine containing fimbrial protein of Porphyromonas gingivalis, a causative agent for a destructive chronic inflammation in the periodontium, and cholera toxin (CT) as mucosal adjuvant. Nasal vaccine containing low doses of fimbriae (10 micrograms) and CT (1 microgram) induced Ag-specific Th1/Th2-type response in CD4+ T cells in mucosal effector tissues, including nasal passage and submandibular glands, which accounted for the generation of Ag-specific IgA-producing cells. In contrast, oral immunization required higher amounts of fimbriae and CT for the induction of Ag-specific IgA responses. Fimbriae-specific IgA mAbs generated from submandibular glands of nasally immunized mice inhibited P. gingivalis attachment to and reduced subsequent inflammatory cytokine production from epithelial cells. These findings suggest that nasal vaccination is an effective immunization regimen for the induction of Ag-specific Th1 and Th2 cell-driven IgA immune responses that possess the ability to inhibit bacterial attachment to epithelial cells and subsequent inflammatory cytokine production.  相似文献   

8.
Since epithelial mucin 1 (MUC1) is associated with several adenocarcinomas at the mucosal sites, it is pertinent to test the efficacy of a mucosally targeted vaccine formulation. The B subunit of the Vibrio cholerae cholera toxin (CTB) has great potential to act as a mucosal carrier for subunit vaccines. In the present study we evaluated whether a MUC1 tandem repeat (TR) peptide chemically linked to CTB would break self-antigen tolerance in the transgenic MUC1-tolerant mouse model (MUC1.Tg) through oral or parenteral immunizations. We report that oral immunization with the CTB–MUC1 conjugate along with mucosal adjuvant, unmethylated CpG oligodeoxynucleotide (ODN) and interleukin-12 (IL-12) did not break self-antigen tolerance in MUC1.Tg mice, but induced a strong humoral response in wild-type C57BL/6 mice. However, self-antigen tolerance in the MUC1.Tg mouse model was broken after parenteral immunizations with different doses of the CTB–MUC1 conjugate protein and with the adjuvant CpG ODN co-delivered with CTB–MUC1. Importantly, mice immunized systemically with CpG ODN alone and with CTB–MUC1 exhibited decreased tumor burden when challenged with a mammary gland tumor cell line that expresses human MUC1.  相似文献   

9.
Vaccination is expected to make a major contribution to the goal of eliminating tuberculosis worldwide by 2050. Because the protection afforded by the currently available tuberculosis vaccine, BCG, is insufficient, new vaccine strategies are urgently needed. Protective immunity against MTB depends on generation of a Th1-type cellular immune response characterized by secretion of IFN-γ from antigen-specific T cells. Epitope-driven vaccines are created from sub-sequences of proteins (epitopes) derived by scanning the protein sequences of pathogens and selecting epitopes with patterns of amino acids which permit binding to human MHC molecules. Guided by the crystal structure of HSP65 and its characteristics, four functional T cell epitopes elaborately elicited from ESAT-6, Ag85A, CFP-10 and Ag85B were cast into the intermediate domain of HSP65. A panel of a novel chimeric vaccine, ECANS, expressing HSP65 and combined T cell epitopes was created. Gene cloning and sequencing, DNA vaccination and humoral and cellular responses were studied. After being immunized with DNA vaccine three times, all mice injected with ECANS had specific cellular immune responses. In addition, lymphocytes obtained from the spleen of ECANS immunized mice at week eight exhibited significantly greater specific lymphocyte proliferation, IFN-γ secretion and CTL activity than those of mice that had been immunized with BCG. DNA vaccine with ECANS can successfully induce enhanced specific cellular immune response to PPD, and further study of its protective effects against Mycobacterium tuberculosis in vivo is needed.  相似文献   

10.
Cereal crops such as maize and rice are considered attractive for vaccine production and oral delivery. Here, we evaluated the rice Oryza sativa for production of As16—an antigen protective against the roundworm Ascaris suum. The antigen was produced as a chimeric protein fused with cholera toxin B subunit (CTB), and its expression level in the endosperm reached 50 μg/g seed. Feeding the transgenic (Tg) rice seeds to mice elicited an As16-specific serum antibody response when administered in combination with cholera toxin (CT) as the mucosal adjuvant. Although omitting the adjuvant from the vaccine formulation resulted in failure to develop the specific immune response, subcutaneous booster immunization with bacterially expressed As16 induced the antibody response, indicating priming capability of the Tg rice. Tg rice/CT-fed mice orally administered A. suum eggs had a lower lung worm burden than control mice. This suggests that the rice-delivered antigen functions as a prophylactic edible vaccine for controlling parasitic infection in animals.  相似文献   

11.
Although cholera toxin (CT) is a potent mucosal adjuvant, its activity in systemic immunity is relatively undocumented. In the present study, we investigated its adjuvant effect on systemic and mucosal antibody responses following intraperitoneal immunization of mice with BSA. CT increased levels of anti-BSA specific IgG1, IgM, and IgA antibodies in the peritoneum and serum, as well as IgA and IgG1 antibodies in the intestinal fluids. The B subunit of CT (CTB) was as potent as CT itself, with potency comparable to that of incomplete Freund's adjuvant. CTB also increased the number of BSA-specific Ig secreting cells in the spleen and mesenteric lymph node, and stimulated expression of B7.2 but not of MHC class II molecules on peritoneal macrophages, particularly in the presence of IFN-gamma. Our results imply that intraperitoneally administered CTB enhances systemic and mucosal antibody responses, in part at least via effects on macrophages.  相似文献   

12.
Intranasal immunization of mice with a chimeric VP6 protein and the mucosal adjuvant Escherichia coli heat labile toxin LT(R192G) induces nearly complete protection against murine rotavirus (strain EDIM [epizootic diarrhea of infant mice virus]) shedding for at least 1 year. The aim of this study was to identify the protective lymphocytes elicited by this new vaccine candidate. Immunization of mouse strains lacking one or more lymphocyte populations revealed that protection was dependent on alphabeta T cells but mice lacking gammadelta T cells and B cells remained fully protected. Furthermore, depletion of CD8 T cells in immunized B-cell-deficient mice before challenge resulted in no loss of protection, while depletion of CD4 T cells caused complete loss of protection. Therefore, alphabeta CD4 T cells appeared to be the only lymphocytes required for protection. As confirmation, purified splenic T cells from immunized mice were intraperitoneally injected into Rag-2 mice chronically infected with EDIM. Transfer of 2 x 10(6) CD8 T cells had no effect on shedding, while transfer of 2 x 10(5) CD4 T cells fully resolved shedding in 7 days. Interestingly, transfer of naive splenic CD4 T cells also resolved shedding but more time and cells were required. Together, these results establish CD4 T cells as effectors of protection against rotavirus after intranasal immunization of mice with VP6 and LT(R192G).  相似文献   

13.
Proteus mirabilis is commonly associated with complicated UTI and expresses several virulence factors, including MR/P fimbriae. In the present study mice were immunised nasally with MrpA, the structural subunit of MR/P, with or without CT as a mucosal adjuvant. The animals were then challenged with P. mirabilis and induction of specific serum and urine IgG and IgA, IFN-γ production and bacterial kidney and bladder colonization were assessed. MrpA-immunised mice exhibited significant induction of serum IgA and urine IgA and IgG. MrpA/CT-immunised mice showed both significant serum and urine IgA and IgG production. Only this group showed significant IFN-γ production. Both groups of animals had significant decrease in bacterial colonization of kidneys but not of bladders. No correlation between specific antibody induction in serum and CFU decrease was observed in any group of animals. Our results suggest that a mucosal adjuvant (CT) in the urinary tract enhanced humoral and cytokine response although it did not influence the degree of protection against UTI provided by MrpA. Further studies are necessary to understand immune modulation in the urinary tract.  相似文献   

14.
Absence of suitable mucosal adjuvants for humans prompted us to consider alternative vaccine designs for mucosal immunization. Because adenovirus is adept in binding to the respiratory epithelium, we tested the adenovirus 2 fiber protein (Ad2F) as a potential vaccine-targeting molecule to mediate vaccine uptake. The vaccine component (the host cell-binding domain to botulinum toxin (BoNT) serotype A) was genetically fused to Ad2F to enable epithelial binding. The binding domain for BoNT was selected because it lies within the immunodominant H chain as a beta-trefoil (Hcbetatre) structure; we hypothesize that induced neutralizing Abs should be protective. Mice were nasally immunized with the Hcbetatre or Hcbetatre-Ad2F, with or without cholera toxin (CT). Without CT, mice immunized with Hcbetatre produced weak secretory IgA (sIgA) and plasma IgG Ab response. Hcbetatre-Ad2F-immunized mice produced a sIgA response equivalent to mice coimmunized with CT. With CT, Hcbetatre-Ad2F-immunized mice showed a more rapid onset of sIgA and plasma IgG Ab responses that were supported by a mixed Th1/Th2 cells, as opposed to mostly Th2 cells by Hcbetatre-dosed mice. Mice immunized with adjuvanted Hcbetatre-Ad2F or Hcbetatre were protected against lethal BoNT serotype A challenge. Using a mouse neutralization assay, fecal Abs from Hcbetatre-Ad2F or Hcbetatre plus CT-dosed mice could confer protection. Parenteral immunization showed that the inclusion of Ad2F enhances anti-Hcbetatre Ab titers even in the absence of adjuvant. This study shows that the Hcbetatre structure can confer protective immunity and that use of Hcbetatre-Ad2F gives more rapid and sustained mucosal and plasma Ab responses.  相似文献   

15.
Cholera toxin (CT) is a mucosal adjuvant capable of inducing strong immune responses to co-administered antigens following oral or intranasal immunization of mice. To date, the direct effect of CT on antigen-specific CD4+ T cell migration and proliferation profiles in vivo is not well characterized. In this study, the effect of CT on the migration pattern and proliferative responses of adoptively transferred, CD4+ TCR transgenic T cells in orally or intranasally vaccinated mice, was analyzed by flow cytometry. GFP-expressing or CFSE-labeled OT-II lymphocytes were adoptively transferred to naïve C57BL/6 mice, and mice were subsequently vaccinated with OVA with or without CT via the oral or intranasal route. CT did not alter the migration pattern of antigen-specific T cells, regardless of the route of immunization, but increased the number of transgenic CD4+ T cells in draining lymphoid tissue. This increase in the number of transgenic CD4+ T cells was not due to cells undergoing more rounds of cellular division in vivo, suggesting that CT may exert an indirect adjuvant effect on CD4+ T cells. The findings reported here suggest that CT functions as a mucosal adjuvant by increasing the number of antigen specific CD4+ T cells independent of their migration pattern or kinetics of cellular division.  相似文献   

16.
The gram-negative anaerobic oral bacterium Porphyromonas gingivalis initiates periodontal disease through fimbrial attachment to saliva-coated oral surfaces. To study the effects of immunomodulation on enhancement of subunit vaccination, the expression in E. coli and immunogenicity of P. gingivalis fimbrial protein (FimA) linked to the C-terminus of the cholera toxin B subunit (CTB) were investigated. Complementary DNAs encoding the P. gingivalis 381 fimbrillin protein sequence FimA1 (amino acid residues 1-200) and FimA2 (amino acid residues 201-337) were cloned into an E. coli expression vector downstream of a cDNA fragment encoding the immunostimulatory CTB. CTB-FimA1 and CTB-FimA2 fusion proteins synthesized in E. coli BL21 (DE3) cells were purified under denaturing conditions by Ni2+-NTA affinity column chromatography. Renaturation of the CTB-FimA1 and CTB-FimA2 fusion proteins, permitted identification of CTB-FimA pentamers and restored CTB binding activity to GM1-ganglioside to provide a biologically active CTB-FimA fusion protein. Mice orally inoculated with purified CTB-FimA1 or CTB-FimA2 fusion proteins generated measurable FimA1 and FimA2 IgG antibody titers, while no serum fimbrial IgG antibodies were detected when mice were inoculated with FimA1 or FimA2 proteins alone. Immunoblot analysis confirmed that sera from mice immunized with CTB linked to FimA1 or FimA2 contained antibodies specific for P. gingivalis fimbrial proteins. In addition, mice immunized with FimA2 or CTB-FimA2 generated measurable intestinal IgA titers indicating the presence of fimbrial antibody class switching. Further, mice orally immunized with CTB-FimA1 generated higher IgA antibody titers than mice inoculated with FimA1 alone. The experimental data show that the immunostimulatory molecule CTB enhances B cell-mediated immunity against linked P. gingivalis FimA fusion proteins, in comparison to immunization with FimA protein alone. Thus, linkage of CTB to P. gingivalis fimbrial antigens can increase subunit vaccine immunogenicity to provide enhanced protection against periodontal disease.  相似文献   

17.
Topical application of cholera toxin (CT) onto mouse skin can induce a humoral immune response to CT as well as to coadministered Ags. In this study, we examined the nontoxic cell-binding B subunit of CT (CTB) as a potential adjuvant for cutaneous immune responses when coadministered with the prototype protein Ag, OVA. CTB applied onto skin induced serum Ab responses to itself with magnitudes comparable to those evoked by CT but was poorly efficient at promoting systemic Ab responses to coadministered OVA. However, transcutaneous immunization (TCI) with either CT or CTB and OVA led to vigorous OVA-specific T cell proliferative responses. Furthermore, CTB potentiated Th1-driven responses (IFN-gamma production) whereas CT induced both Th1 and Th2 cytokine production. Coadministration of the toxic subunit CTA, together with CTB and OVA Ag, led to enhanced Th1 and Th2 responses. Moreover, whereas TCI with CT enhanced serum IgE responses to coadministered OVA, CTB suppressed these responses. TCI with either CT or CTB led to an increased accumulation of dendritic cells in the exposed epidermis and the underlying dermis. Thus, in contrast to CT, CTB appears to behave very differently when given by the transcutaneous as opposed to a mucosal route and the results suggest that the adjuvanticity of CT on Th1- and Th2-dependent responses induced by TCI involves two distinct moieties, the B and the A subunits, respectively.  相似文献   

18.
An oral killed cholera vaccine containing 1×1011 cells of Vibrio cholerae O1 (heat- or formalin-killed) representing the Ogawa and Inaba biotypes and containing 1 mg of B-subunit of cholera toxin (CTB) produced by recombinant DNA technology (the WC/rCTB vaccine) was subjected to temperatures of 4 C, 30 C or 42 C for up to 6 months time. Lipopolysaccharide antigen (LPS) and CTB content of the vaccine samples determined at various times remained unchanged during the study except for the CTB component which decreased by about 50% after 6 months of storage at 42 C. Immunogenicity determined by immunization of rabbits with the vaccine in Freund's complete adjuvant and measuring anti-LPS and anti-CTB antibody titers in the serum by an ELISA was also found to be unaltered. Lyophilization of the vaccine and storage at room temperature for 7 days also did not have any adverse effect on antigen content or immunogenicity as tested above. There was up to one log reduction in serum antibody titers after immunization without using any adjuvant or using Freund's incomplete adjuvant, and up to two logs following oral immunization. Immunization by oral feeding of the vaccine followed by RITARD challenge with a virulent V. cholerae O1 strain showed evidence of protection against severe or lethal diarrhea. The results suggest that the vaccine retains its antigen content and ability to induce antibodies unchanged when maintained at elevated temperatures for relatively long periods of time.  相似文献   

19.
Mice with a deficiency in IFN-γ or IFN-γ receptor (IFN-γR) are more susceptible to collagen-induced arthritis (CIA), an experimental autoimmune disease that relies on the use of complete Freund's adjuvant (CFA). Here we report that the heightened susceptibility of IFN-γR knock-out (KO) mice is associated with a functional impairment of CD4+CD25+ Treg cells. Treatment of wild-type mice with depleting anti-CD25 antibody after CFA-assisted immunisation with collagen type II (CII) significantly accelerated the onset of arthritis and increased the severity of CIA. This is an indication of a role of Treg cells in the effector phase of CIA. IFN-γR deficiency did not affect the number of CD4+CD25+ T cells in the central and peripheral lymphoid tissues. In addition, CD4+CD25+ T cells isolated from naive IFN-γR KO mice had a normal potential to suppress T cell proliferation in vitro. However, after immunisation with CII in CFA, the suppressive activity of CD4+CD25+ T cells became significantly more impaired in IFN-γR-deficient mice. Moreover, expression of the mRNA for Foxp3, a highly specific marker for Treg cells, was lower. We further demonstrated that the effect of endogenous IFN-γ, which accounts for more suppressive activity in wild-type mice, concerns both Treg cells and accessory cells. Our results demonstrate that the decrease in Treg cell activity in CIA is counter-regulated by endogenous IFN-γ.  相似文献   

20.
Plants have been used as expression systems for a number of vaccines. However, the expression of vaccines in plants sometimes results in unexpected modification of the vaccines by N‐terminal blocking and sugar‐chain attachment. Although MucoRice‐CTB was thought to be the first cold‐chain‐free and unpurified oral vaccine, the molecular heterogeneity of MucoRice‐CTB, together with plant‐based sugar modifications of the CTB protein, has made it difficult to assess immunological activity of vaccine and yield from rice seed. Using a T‐DNA vector driven by a prolamin promoter and a signal peptide added to an overexpression vaccine cassette, we established MucoRice‐CTB/Q as a new generation oral cholera vaccine for humans use. We confirmed that MucoRice‐CTB/Q produces a single CTB monomer with an Asn to Gln substitution at the 4th glycosylation position. The complete amino acid sequence of MucoRice‐CTB/Q was determined by MS/MS analysis and the exact amount of expressed CTB was determined by SDS‐PAGE densitometric analysis to be an average of 2.35 mg of CTB/g of seed. To compare the immunogenicity of MucoRice‐CTB/Q, which has no plant‐based glycosylation modifications, with that of the original MucoRice‐CTB/N, which is modified with a plant N‐glycan, we orally immunized mice and macaques with the two preparations. Similar levels of CTB‐specific systemic IgG and mucosal IgA antibodies with toxin‐neutralizing activity were induced in mice and macaques orally immunized with MucoRice‐CTB/Q or MucoRice‐CTB/N. These results show that the molecular uniformed MucoRice‐CTB/Q vaccine without plant N‐glycan has potential as a safe and efficacious oral vaccine candidate for human use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号