首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To discover the individual roles of the chitinases from Serratia marcescens 2170, chitinases A, B, and C1 (ChiA, ChiB, and ChiC1) were produced by Escherichia coli and their enzymatic properties as well as synergistic effect on chitin degradation were studied. All three chitinases showed a broad pH optimum and maintained significant chitinolytic activity between pH 4 and 10. ChiA was the most active enzyme toward insoluble chitins, but ChiC1 was the most active toward soluble chitin derivatives among the three chitinases. Although all three chitinases released (GlcNAc)2 almost exclusively from colloidal chitin, ChiB and ChiC1 split (GlcNAc)6 to (GlcNAc)3, while ChiA exclusively generated (GlcNAc)2 and (GlcNAc)4. Clear synergism on the hydrolysis of powdered chitin was observed in the combination between ChiA and either ChiB or ChiC, and the sites attacked by ChiA on the substrate are suggested to be different from those by either ChiB or ChiC1.  相似文献   

2.
Chitinolytic properties of Bacillus pabuli K1   总被引:3,自引:1,他引:3  
The chitinolytic properties of Bacillus pabuli K1 isolated from mouldy grain was studied. Chitinase activity was measured as the release of p -nitrophenol from p -nitrophenyl-N, N'-diacetylchitobiose. Influences of substrate concentration and different environmental variables on growth and chitinase activity were determined. The optimum environmental conditions for chitinase production were: 30°C, initial pH 8, initial oxygen 10% and aw > 0.99. Chitinase production was induced when B. pabuli K1 was grown on colloidal chitin. The smallest chito-oligosaccharide able to induce chitinase production was N, N'-diacetylchitobiose, (GlcNAc)2. Production was also induced by (GlcNAc)3 and (GlcNAc)4. When the bacterium was grown on glucose or N -acetylglucosamine, no chitinases were formed. The highest chitinase production observed was obtained with colloidal chitin as substrate. The production of chitinases by B. pabuli K1 growing on chitin was repressed by high levels (0.6%) of glucose. The production was also repressed by 0.6% starch, laminarin and β-glucan from barley and by glycerol. The addition of pectin and carboxymethyl cellulose increased chitinase production.  相似文献   

3.
Isothermal titration calorimetry has been applied to the determination of the kinetic parameters of chitinases (EC 3.2.1.14) by monitoring the heat released during the hydrolysis of chitin glycosidic bonds. Experiments were carried out using two different macromolecular substrates: a soluble polymer of N-acetylglucosamine and the insoluble chitin from crab shells. Different experimental temperatures were used in order to compare the thermodependence of the activity of two chitinases from the psychrophile Arthrobacter sp. TAD20 and of chitinase A from the mesophile Serratia marcescens. The method allowed to determine unequivocally the catalytic rate constant k(cat), the activation energy (E(a)) and the thermodynamic activation parameters (DeltaG(#), DeltaH(#), DeltaS(#)) of the chitinolytic reaction on the soluble substrate. The catalytic activity has also been determined on insoluble chitin, which displays an effect of substrate saturation by chitinases. On both substrates, the thermodependence of the activity of the psychrophilic chitinases was lower than that observed with the mesophilic counterpart.  相似文献   

4.
Soil isolates of mesophilic Penicillium monoverticillium CFR 2, Aspergillus flavus CFR 10 and Fusarium oxysporum CFR 8 were cultivated in solid state fermentation (SSF) using wheat bran solid medium supplemented with α-chitin in order to produce chitinolytic enzyme. Under SSF cultivation, maximum enzymes (U/g IDS) production was 41.0 (endo-chitinase) and 195.4 (β-N-acetylhexosaminidase) by P. monoverticillium, 26.8 (endo-chitinase) and 222.1 (β-N-acetylhexosaminidase) by A. flavus and 13.3 (endo-chitinase) and 168.3 (β-N-acetylhexosaminidase) by F. oxysporum after 166?h of incubation. The crude endo-chitinase and β-N-acetylhexosaminidase derived from A. flavus and F. oxysporum revealed optimum temperature at 62?±?1°C, but the enzymes from P. monoverticillium showed optimum temperature at 52?±?1°C for maximum activity. Several fold increase in endo-chitinase and β-N-acetylhexosaminidase activities in the crude enzymes preparation was achieved after concentrating with polyethylene glycol. The concentrated crude chitinases from P. monoverticillium, A. flavus and F. oxysporum, respectively yielded 95.6, 96.6 and 96.1?mmol/l of N-acetyl-D: -glucosamine (GlcNAc) in 48?h of reaction from colloidal chitin. While, the crude enzyme preparations of P. monoverticillium, A. flavus and F. oxysporum produced 10.11, 6.85 and 10.7?mmol/l of GlcNAc respectively, in 48?h of reaction from crystalline α-chitin. HPLC analysis of colloidal chitin hydrolysates prepared with crude chitinases derived from P. monoverticillium, A. flavus and F. oxysporum revealed that the major reaction product was monomeric GlcNAc (~80%) and a small amount of (GlcNAc)(4) (~20%), indicating the potential of these enzymes for efficient production of GlcNAc from α-chitin.  相似文献   

5.
For a long time, fungi have been characterized by their ability to secrete enzymes, mostly hydrolytic in function, and thus are defined as extracellular degraders. Chitin and chitinolytic enzymes are gaining importance for their biotechnological applications. Particularly, chitinases are used in agriculture to control plant pathogens. Metarhizium anisopliae produces an extracellular chitinase when grown on a medium containing chitin, indicating that synthesis is subject to induction by the substrate. Various sugar combinations were investigated for induction and repression of chitinase. N-acetylglucosamine (GlcNAc) shows a special dual regulation on chitinase production. M. anisopliae has at least two distinct, cell-bound, chitinolytic enzymes when cultured with GlcNAc as one of the carbon sources, and we suggest that this carbohydrate has an important role in protein secretion.  相似文献   

6.
Substrate specificities of tobacco chitinases   总被引:15,自引:0,他引:15  
Ten tobacco chitinases (1,4-N-acetyl-β-D-glucosaminide glycanhydrolase, EC 3.2.1.14) were purified from tobacco leaves hypersensitively reacting to tobacco mosaic virus. The 10 enzymes, which belong to five distinct structural classes of plant chitinases, were incubated with several potential substrates such as chitin, a β-1,4 N-acetyl-D-glucosamine (GlcNAc) polymer, chitosan (partially deacetylated chitin), chitin oligomers of variable length and bacterial cell wall. Tobacco chitinases are all endo-type enzymes that liberate oligomers from chitin and are capable of processing the chito-oligomers further at differential rates. Chitin reaction products were separated and quantified by HPLC and differential kinetics of oligomer accumulation and degradation were observed with the distinct classes of chitinases. Depending on the substrate to be hydrolysed, each isoform displayed a different spectrum of activity. For example, class I isoforms were the most active on chitin and (GlcNAc)4–6 whereas class III basic isoforms were the most efficient in inducing bacterial lysis. Class V and class VI chitinases were shown to more readily hydrolyse chitin oligomers than the chitin polymer itself. Together, these data indicate that the 10 tobacco chitinases represent complementary enzymes which may have synergistic effects on their substrates. This paper discusses their implication in plant defense by attacking pathogen's structural components and in plant development by maturing signal molecules.  相似文献   

7.
Listeria spp., including the food-borne pathogen Listeria monocytogenes, are ubiquitous microorganisms in the environment and thus are difficult to exclude from food processing plants. The factors that contribute to their multiplication and survival in nature are not well understood, but the ability to catabolize various carbohydrates is likely to be very important. One major source of carbon and nitrogen in nature is chitin, an insoluble linear beta-1,4-linked polymer of N-acetylglucosamine (GlcNAc). Chitin is found in cell walls of fungi and certain algae, in the cuticles of arthropods, and in shells and radulae of molluscs. In the present study, we demonstrated that L. monocytogenes and other Listeria spp. are able to hydrolyze alpha-chitin. The chitinolytic activity is repressed by the presence of glucose in the medium, suggesting that chitinolytic activity is subjected to catabolite repression. Activity is also regulated by temperature and is higher at 30 degrees C than at 37 degrees C. In L. monocytogenes EGD, chitin hydrolysis depends on genes encoding two chitinases, lmo0105 (chiB) and lmo1883 (chiA), but not on a gene encoding a putative chitin binding protein (lmo2467). The chiB and chiA genes are phylogenetically related to various well-characterized chitinases. The potential biological implications of chitinolytic activity of Listeria are discussed.  相似文献   

8.
Two chitinolytic fungal strains, Trichoderma aureoviride DY-59 and Rhizopus microsporus VS-9, were isolated from soil samples of Korea and Vietnam, respectively. DY-59 and VS-9 crude chitinases secreted by these fungi in the 0.5% swollen chitin culture medium had an optimal pH of 4 and the optimal temperatures of 40°C and 60°C, respectively. Enzymatic hydrolysis products from crab swollen chitin were N-acetyl-β-D-glucosamine (GlcNAc) by DY-59 chitinase, and GlcNAc and N, N′-diacetylchitobiose (GlcNAc)2 by VS-9 chitinases. The chitinases degraded the cell wall of Fusarium solani hyphae to produce oligosaccharides, among which GlcNAc, (GlcNAc)2, and pentamer (GlcNAc)5 were identified by high-pressure liquid chromatography. DY-59 and VS-9 chitinases inhibited F. solani microconidial germination by more than 70% and 60% at final protein concentrations of 5 and 27 μg mL−1, respectively, at 30°C for 20 h treatment.  相似文献   

9.
Thermococcus chitonophagus produces several, cellular and extracellular chitinolytic enzymes following induction with various types of chitin and chitin oligomers, as well as cellulose. Factors affecting the anaerobic culture of this archaeon, such as optimal temperature, agitation speed and type of chitin, were investigated. A series of chitinases, co-isolated with the major, cell membrane-associated endochitinase (Chi70), and a periplasmic chitobiase (Chi90) were subsequently isolated. In addition, a distinct chitinolytic activity was detected in the culture supernatant and partially purified. This enzyme exhibited an apparent molecular mass of 50 kDa (Chi50) and was optimally active at 80°C and pH 6.0. Chi50 was classified as an exochitinase based on its ability to release chitobiose as the exclusive hydrolysis product of colloidal chitin. A multi-component enzymatic apparatus, consisting of an extracellular exochitinase (Chi50), a periplasmic chitobiase (Chi90) and at least one cell-membrane-anchored endochitinase (Chi70), seems to be sufficient for effective synergistic in vivo degradation of chitin. Induction with chitin stimulates the coordinated expression of a combination of chitinolytic enzymes exhibiting different specificities for polymeric chitin and its degradation products. Among all investigated potential inducers and nutrient substrates, colloidal chitin was the strongest inducer of chitinase synthesis, whereas the highest growth rate was obtained following the addition of yeast extract and/or peptone to the minimal, mineralic culture medium in the absence of chitin. In rich medium, chitin monomer acted as a repressor of total chitinolytic activity, indicating the presence of a negative feedback regulatory mechanism. Despite the undisputable fact that the multi-component chitinolytic system of this archaeon is strongly induced by chitin, it is clear that, even in the absence of any chitinous substrates, there is low-level, basal, constitutive production of chitinolytic enzymes, which can be attributed to the presence of traces of chito-oligosaccharides and other structurally related molecules (in the undefined, rich, non-inducing medium) that act as potential inducers of chitinolytic activity. The low, basal and constitutive levels of chitinase gene expression may be sufficient to initiate chitin degradation and to release soluble oligomers, which, in turn, induce chitinase synthesis.  相似文献   

10.
The chitinase A (ChiA)-coding gene of Pseudomonas sp. BK1, which was isolated from a marine red alga Porphyra dentata, was cloned and expressed in Escherichia coli. The structural gene consists of 1602 bp encoding a protein of 534 amino acids, with a predicted molecular weight of 55,370 Da. The deduced amino acid sequence of ChiA showed low identity (less than 32%) with other bacterial chitinases. The ChiA was composed of multiple domains, unlike the arrangement of domains in other bacterial chitinases. Recombinant ChiA overproduced as inclusion bodies was solubilized in the presence of 8 M urea, purified in a urea-denatured form and re-folded by removing urea. The purified enzyme showed maximum activity at pH 5.0 and 40 degrees C. It exhibited high activity towards glycol chitosan and glycol chitin, and lower activity towards colloidal chitin. The enzyme hydrolyzed the oligosaccharides from (GlcNAc)4 to (GlcNAc)6, but not GlcNAc to (GlcNAc)3. The results suggest that the ChiA is a novel enzyme, with different domain structure and action mode from bacterial family 18 chitinases.  相似文献   

11.
Four kinds of thermostable chitinase were isolated from the cell-free culture broth of Bacillus licheniformis X-7u by successive column chromatographies on Butyl-Toyopearl, Q-Sepharose, and Sephacryl S-200. We named the enzymes chitinases I(89 kDa), II(76 kDa), III(66 kDa) and IV(59 kDa). Chitinases II, III and IV possessed extremely high optimum temperatures (70-80 degrees C), showing remarkable heat stability. Chitinases II, III and IV produced (GlcNAc)2 and GlcNAc from colloidal chitin and chitinase I predominantly produced (GlcNAc)2. The action pattern of chitinase I on PN-(GlcNAc)4 also showed a stronger propensity to cleave off the (GlcNAc)2 unit from the non-reducing end than the other three chitinases. Chitinases II, III and IV catalyzed a transglycosylation reaction that converted (GlcNAc)4 into (GlcNAc)6.  相似文献   

12.
13.
A strain isolated from the feces of takin was identified as Clostridium aminovalericum. In response to various types of chitin used as growth substrates, the bacterium produced a complete array of chitinolytic enzymes: chitinase ('endochitinase'), exochitinase, beta-N-acetylglucosaminidase, chitosanase and chitin deacetylase. The highest activities of chitinase (536 pkat/mL) and exochitinase (747 pkat/mL) were induced by colloidal chitin. Fungal chitin also induced high levels of these enzymes (463 pkat/mL and 502 pkat/mL, respectively). Crab shell chitin was the best inducer of chitosanase activity (232 pkat/mL). The chitinolytic enzymes of this strain were separated from culture filtrate by ion-exchange chromatography on the carboxylic sorbent Polygran 27. At pH 4.5, some isoforms of the chitinolytic enzymes (30% of total enzyme activity) did not bind to Polygran 27. The enzymes were eluted under a stepwise pH gradient (pH 5-8) in 0.1 mol/L phosphate buffer. At merely acidic pH (4.5-5.5), the adsorbed enzymes were co-eluted. However, at pH close to neutral values, the peaks of highly purified isoforms of exochitinases and chitinases were isolated. The protein and enzyme recovery reached 90%.  相似文献   

14.
Chitiniphilus shinanonensis strain SAY3(T) is a chitinolytic bacterium isolated from moat water of Ueda Castle in Nagano Prefecture, Japan. Fifteen genes encoding putative chitinolytic enzymes (chiA-chiO) have been isolated from this bacterium. Five of these constitute a single operon (chiCDEFG). The open reading frames of chiC, chiD, chiE, and chiG show sequence similarity to family 18 chitinases, while chiF encodes a polypeptide with two chitin-binding domains but no catalytic domain. Each of the five genes was successfully expressed in Escherichia coli, and the resulting recombinant proteins were characterized. Four of the recombinant proteins (ChiC, ChiD, ChiE, and ChiG) exhibited endo-type chitinase activity toward chitinous substrates, while ChiF showed no chitinolytic activity. In contrast to most endo-type chitinases, which mainly produce a dimer of N-acetyl-D-glucosamine (GlcNAc) as final product, ChiG completely split the GlcNAc dimer into GlcNAc monomers, indicating that it is a novel chitinase.  相似文献   

15.
With the goal of understanding the chitinolytic mechanism of the potential biological control strain Serratia marcescens CFFSUR-B2, genes encoding chitinases ChiA, ChiB and ChiC, chitobiase (Chb) and chitin binding protein (CBP) were cloned, the protein products overexpressed in Escherichia coli as 6His-Sumo fusion proteins and purified by affinity chromatography. Following affinity tag removal, the chitinolytic activity of the recombinant proteins was evaluated individually and in combination using colloidal chitin as substrate. ChiB and ChiC were highly active while ChiA was inactive. Reactions containing both ChiB and ChiC showed significantly increased N-acetylglucosamine trimer and dimer formation, but decreased monomer formation, compared to reactions with either enzyme alone. This suggests that while both ChiB and ChiC have a general affinity for the same substrate, they attack different sites and together degrade chitin more efficiently than either enzyme separately. Chb and CBP in combination with ChiB and ChiC (individually or together) increased their chitinase activity. We report for the first time the potentiating effect of Chb on the activity of the chitinases and the synergistic activity of a mixture of all five proteins (the three chitinases, Chb and CBP). These results contribute to our understanding of the mechanism of action of the chitinases produced by strain CFFSUR-B2 and provide a molecular basis for its high potential as a biocontrol agent against fungal pathogens.  相似文献   

16.
A locally isolated stain Aeromonas schubertii was cultured and induced by powdered chitin for the production of chitinases. Extracellular proteins were purified by ammonium sulfate precipitation, dialysis to remove salts, and then preparative isoelectric focusing (IEF) to yield several chitinases. The purified enzymes were analyzed by SDS–PAGE (sodium dodecyl sulfate–polyacrylamide gel electrophoresis) with and without glycol chitin and were found to be SDS-resistant. The chitinase present in the highest abundance was the one with an estimated molecular weight of 75 kDa. The Michaelis constant and turnover number were determined to be 0.29 mM and 1 s−1, respectively, for this enzyme using colloidal chitin azure as the substrate. However, the ethanol treatment of this enzyme could significantly increase its chitinolytic activity. Other chitinases obtained in the same IEF fraction were determined to have molecular weights of ca. 30, 38, and 110 kDa. Since the proteins with highest chitinase activity were collected from IEF fraction tube with pH value of 4.8, those chitinase were believed to be acidic. An activity assay method using colloidal chitin azure as the substrate was recommended since it possessed a broader range of linearity in comparison with conventional reducing sugar equivalent method.  相似文献   

17.
P M Moore  J F Peberdy 《Microbios》1975,12(47-48):29-39
The enzyme chitin synthetase (UDP-acetylaminodeoxyglucosyl transferase, EC 2.4.1.16) in Cunninghamella elegans has been investigated. The enzyme was present in the microsomal, cell wall, mitochondrial and the soluble cytoplasmic fraction of the mycelium, with the former having the highest specific activity. The properties of the enzyme in this fraction were investigated; the Km for UDP GlcNAc was 1.23 mM and 2.08 mM GlcNAc in the presence of 1 mM UDP GlcNAc. The temperature optimum was between 26 degrees and 29 degrees C and maximal activity was at pH 6.25. Mg++ ions had no effect on chitin synthesis, but soluble chitodextrins inhibited the enzyme. The production of chitin synthetase was correlated with the growth of the fungus, maximum activity being found during the late exponential phase of growth. Chitin was confirmed as the sole product of enzyme action, by digestion with chitinase.  相似文献   

18.
Bacillus circulans WL-12, isolated as a yeast cell wall-lytic bacterium, secretes a variety of polysaccharide-degrading enzymes into culture medium. When chitinases of the bacterium were induced with chitin, six distinct chitinase molecules were detected in the culture supernatant. These chitinases (A1, A2, B1, B2, C, and D) showed the following distinct sizes and isoelectric points: Mr 74,000, pI 4.7 (A1); Mr 69,000, pI 4.5 (A2); Mr 38,000, pI 6.6 (B1); Mr 38,000, pI 5.9 (B2); Mr 39,000, pI 8.5 (C); and Mr 52,000, pI 5.2 (D). Among these chitinases, A1 and A2 had the highest colloidal-chitin-hydrolyzing activities. Chitinase A1 showed a strong affinity to insoluble substrate chitin. Purified chitinase A1 released predominantly chitobiose [(GlcNAc)2] and a trace amount of N-acetylglucosamine (GlcNAc) from colloidal chitin. N-terminal amino acid sequence analysis of chitinases A1 and A2 indicated that chitinase A2 was generated from chitinase A1, presumably by proteolytic removal of a C-terminal portion of chitinase A1. Since chitinase A2 did not have the ability to bind to chitin, the importance of the C-terminal region of chitinase A1 to the strong affinity of chitinase A1 to substrate chitin was suggested. Strong affinity of the chitinase seemed to be required for complete degradation of insoluble substrate chitin. From these results, it was concluded that chitinase A1 is the key enzyme in the chitinase system of this bacterium.  相似文献   

19.
Serratia marcescens produces three chitinases, ChiA, ChiB and ChiC which together enable the bacterium to efficiently degrade the insoluble chitin polymer. We present an overview of the structural properties of these enzymes, as well as an analysis of their activities towards artificial chromogenic chito-oligosaccharide-based substrates, chito-oligosaccharides, chitin and chitosan. We also present comparative inhibition data for the pseudotrisaccharide allosamidin (an analogue of the reaction intermediate) and the cyclic pentapeptide argadin. The results show that the enzymes differ in terms of their subsite architecture and their efficiency towards chitinous substrates. The idea that the three chitinases play different roles during chitin degradation was confirmed by the synergistic effects that were observed for certain combinations of the enzymes. Studies of the degradation of the soluble heteropolymer chitosan provided insight into processivity. Taken together, the available data for Serratia chitinases show that the chitinolytic machinery of this bacterium consists of two processive exo-enzymes that degrade the chitin chains in opposite directions (ChiA and ChiB) and a non-processive endo-enzyme, ChiC.  相似文献   

20.
Serratia marcescens produces three chitinases, ChiA, ChiB and ChiC which together enable the bacterium to efficiently degrade the insoluble chitin polymer. We present an overview of the structural properties of these enzymes, as well as an analysis of their activities towards artificial chromogenic chito-oligosaccharide-based substrates, chito-oligosaccharides, chitin and chitosan. We also present comparative inhibition data for the pseudotrisaccharide allosamidin (an analogue of the reaction intermediate) and the cyclic pentapeptide argadin. The results show that the enzymes differ in terms of their subsite architecture and their efficiency towards chitinous substrates. The idea that the three chitinases play different roles during chitin degradation was confirmed by the synergistic effects that were observed for certain combinations of the enzymes. Studies of the degradation of the soluble heteropolymer chitosan provided insight into processivity. Taken together, the available data for Serratia chitinases show that the chitinolytic machinery of this bacterium consists of two processive exo-enzymes that degrade the chitin chains in opposite directions (ChiA and ChiB) and a non-processive endo-enzyme, ChiC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号