首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aortic vascular smooth muscle cells (VSMC) were used to study the effect of age on responses to high glucose concentrations or the cytokine, tumor necrosis factor-alpha (TNF-alpha). Activator protein-1 (AP-1) binding to DNA increased more in VSMC from old versus young rats (P < 0.02) and was related to increased expression of its components, c-Fos, Fra-1, and JunD. The relationship to upstream signals, i.e., activities of mitogen-activated protein kinases (MAPK), was studied using antibodies to total and phosphorylated forms of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK) and p38. High glucose and TNF-alpha increased ERK phosphorylation more in old (P < 0.05); whereas only TNF-alpha induced JNK activation in young (P < 0.04). PD98059, a MEK inhibitor, attenuated AP-1 activation, lowered c-Fos and Fra-1 protein levels and reduced cell number and cells positive for proliferating cell nuclear antigen in old. We concluded that age differentially influenced activation of signaling pathways in VSMC exposed to high glucose or TNF-alpha. This may contribute to the increased risk for vascular disease associated with aging and diabetes mellitus (DM).  相似文献   

3.
Advanced age is a major risk factor for atherosclerosis, but how aging per se influences pathogenesis is not clear. Insulin-like growth factor-1 receptor (IGF-1R) promotes aortic vascular smooth muscle cell (VSMC) growth, migration, and extracellular matrix formation, but how IGF-1R signaling changes with age in VSMC is not known. We previously found age-related differences in the activation of Akt/FOXO3a and ERK1/2 pathways in VSMC, but the upstream signaling remains unclear. Using explanted VSMC from Fischer 344/Brown Norway F1 hybrid rats shown to display age-related vascular pathology similar to humans, we compared IGF-1R expression in early passages of VSMC and found a constitutive activation of IGF-1R in VSMC from old compared to young rats, including IGF-1R expression and its tyrosine kinase activity. The link between IGF-1R activation and the Akt/FOXO3a and ERK pathways was confirmed through the induction of IGF-1R with IGF-1 in young cells and attenuation of IGF-1R with an inhibitor in old cells. The effects of three kinase inhibitors: AG1024, LY294002, and TCN, were compared in VSMC from old rats to differentiate IGF-1R from other upstream signaling that could also regulate the Akt/FOXO and ERK pathways. Genes for p27kip-1, catalase and MnSOD, which play important roles in the control of cell cycle arrest and stress resistance, were found to be FOXO3a-targets based on FOXO3a-siRNA treatment. Furthermore, IGF-1R signaling modulated these genes through activation of the Akt/FOXO3a pathway. Therefore, activation of IGF-1R signaling influences VSMC function in old rats and may contribute to the increased risk for atherosclerosis.  相似文献   

4.
Butein and phloretin are chalcones that are members of the flavonoid family of polyphenols. Flavonoids have well-known antioxidant and anti-inflammatory activities. In rat primary hepatocytes, we examined whether butein and phloretin affect tert-butylhydroperoxide (tBHP)-induced oxidative damage and the possible mechanism(s) involved. Treatment with butein and phloretin markedly attenuated tBHP-induced peroxide formation, and this amelioration was reversed by l-buthionine-S-sulfoximine [a glutamate cysteine ligase (GCL) inhibitor] and zinc protoporphyrin [a heme oxygenase 1 (HO-1) inhibitor]. Butein and phloretin induced both HO-1 and GCL protein and mRNA expression and increased intracellular glutathione (GSH) and total GSH content. Butein treatment activated the ERK1/2 signaling pathway and increased Nrf2 nuclear translocation, Nrf2 nuclear protein-DNA binding activity, and ARE-luciferase reporter activity. The roles of the ERK signaling pathway and Nrf2 in butein-induced HO-1 and GCL catalytic subunit (GCLC) expression were determined by using RNA interference directed against ERK2 and Nrf2. Both siERK2 and siNrf2 abolished butein-induced HO-1 and GCLC protein expression. These results suggest the involvement of ERK2 and Nrf2 in the induction of HO-1 and GCLC by butein. In an animal study, phloretin was shown to increase GSH content and HO-1 expression in rat liver and decrease carbon tetrachloride-induced hepatotoxicity. In conclusion, we demonstrate that butein and phloretin up-regulate HO-1 and GCL expression through the ERK2/Nrf2 pathway and protect hepatocytes against oxidative stress.  相似文献   

5.
Aberrant vascular smooth muscle cell (VSMC) growth is associated with many vascular diseases including atherosclerosis, hypertension, and restenosis. Platelet-derived growth factor-BB (PDGF) induces VSMC proliferation through control of cell cycle progression and protein and DNA synthesis. Multiple signaling cascades control VSMC growth, including members of the mitogen-activated protein kinase (MAPK) family as well as phosphatidylinositol 3-kinase (PI3K) and its downstream effector AKT/protein kinase B (PKB). Little is known about how these signals are integrated by mitogens and whether there are common receptor-proximal signaling control points that synchronize the execution of physiological growth functions. The nonreceptor proline-rich tyrosine kinase 2 (PYK2) is activated by a variety of growth factors and G protein receptor agonists in VSMC and lies upstream of both PI3K and MAPK cascades. The present study investigated the role of PYK2 in PDGF signaling in cultured rat aortic VSMC. PYK2 downregulation attenuated PDGF-dependent protein and DNA synthesis, which correlated with inhibition of AKT and extracellular signal-regulated kinases 1 and 2 (ERK1/2) but not p38 MAPK activation. Inhibition of PDGF-dependent protein kinase B (AKT) and ERK1/2 signaling by inhibitors of upstream kinases PI3K and MEK, respectively, as well as downregulation of PYK2 resulted in modulation of the G(1)/S phase of the cell cycle through inhibition of retinoblastoma protein (Rb) phosphorylation and cyclin D(1) expression, as well as p27(Kip) upregulation. Cell division kinase 2 (cdc2) phosphorylation at G(2)/M was also contingent on PDGF-dependent PI3K-AKT and ERK1/2 signaling. These data suggest that PYK2 is an important upstream mediator in PDGF-dependent signaling cascades that regulate VSMC proliferation.  相似文献   

6.
Vascular smooth muscle cells (VSMC) exist in either a contractile or a synthetic phenotype in vitro and in vivo. The molecular mechanisms regulating phenotypic modulation are unknown. Previous studies have suggested that the serine/threonine protein kinase mediator of nitric oxide (NO) and cyclic GMP (cGMP) signaling, the cGMP-dependent protein kinase (PKG) promotes modulation to the contractile phenotype in cultured rat aortic smooth muscle cells (RASMC). Because of the potential importance of the mitogen-activated protein kinase (MAP kinase) pathways in VSMC proliferation and phenotypic modulation, the effects of PKG expression in PKG-deficient and PKG-expressing adult RASMC on MAP kinases were examined. In PKG-expressing adult RASMC, 8-para-chlorophenylthio-cGMP activated extracellular signal- regulated kinases (ERK1/2) and c-Jun N-terminal kinase (JNK). The major effect of PKG activation was increased activation by MAP kinase kinase (MEK). The cAMP analog, 8-Br-cAMP inhibited ERK1/2 activation in PKG-deficient and PKG-expressing RASMC but had no effect on JNK activity. The effects of PKG on ERK and JNK activity were additive with those of platelet-derived growth factor (PDGF), suggesting that PKG activates MEK through a pathway not used by PDGF. The stimulatory effects of cGMP on ERK and JNK activation were also observed in low-passaged, contractile RASMC still expressing endogenous PKG, suggesting that the effects of PKG expression were not artifacts of cell transfections. These results suggest that in contractile adult RASMC, NO-cGMP signaling increases MAP kinase activity. Increased activation of these MAP kinase pathways may be one mechanism by which cGMP and PKG activation mediate c-fos induction and increased proliferation of contractile adult RASMC.  相似文献   

7.
Cloning and characterization of two novel zebrafish P2X receptor subunits   总被引:6,自引:0,他引:6  
Activation of Kupffer cells by lipopolysaccharide (LPS) after ethanol feeding results in overproduction of TNF-alpha, leading to liver injury. Since dilinoleoylphosphatidylcholine (DLPC) protects against liver injury and has antioxidant properties, we investigated whether it alters LPS signaling leading to decreased TNF-alpha production. Kupffer cells were isolated from rats fed alcohol-containing or isocaloric control diets for 3 weeks. With ethanol, cytochrome P4502E1 was upregulated. When stimulated with LPS in culture, Kupffer cells released more TNF-alpha compared to control rats; DLPC diminished the increase. It also reduced ERK1/2 and p38 phosphorylation as well as NF-kappaB activation with decreased nuclear p65 and increased cytosolic IkappaB-alpha expression. ERK1/2 and NF-kappaB activation were abolished by the ERK1/2 inhibitor PD098059. The p38 inhibitor SB203580 abolished p38 activation without affecting NF-kappaB. Both inhibitors reduced TNF-alpha generation. Thus, DLPC diminishes LPS-dependent TNF-alpha generation by inhibiting p38 and ERK1/2 activation; the latter leads to decreased NF-kappaB activation.  相似文献   

8.
9.
10.
11.
We previously demonstrated that microtubule disruption impairs stimulation of glucose uptake in cardiomyocytes and that 9-cis retinoic acid (9cRA) treatment preserved both microtubule integrity and stimulated glucose transport. Herein we investigated whether 1) activation of the extracellular signal-regulated kinases (ERK1/2) is responsible for microtubule destabilization and 2) ERK1/2 inactivation may explain the positive effects of 9cRA on glucose uptake and microtubule stabilization. Adult rat cardiomyocytes in primary culture showed increased basal ERK1/2 phosphorylation. Cardiomyocytes exposed to inhibitors of the ERK1/2 kinase mitogen/extracellular signal-regulated kinase (MEK) 1/2 had preserved microtubular scaffold, including microtubule-organizing centers (MTOC), together with increased insulin and metabolic stress-stimulated glucose transport as well as signaling, thus replicating the effects of 9cRA treatment. Although 9cRA treatment did not significantly reduce global ERK1/2 activation, it markedly reduced perinuclear-activated ERK1/2 at the location of MTOC. 9cRA also triggered relocation of the ERK1/2 phosphatase mitogen-activated protein kinase phosphatase-3 from the cytosol to the nucleus. These results indicate that, in cardiomyocytes, microtubule destabilization, leading to impaired stimulation of glucose transport, is mediated by ERK1/2 activation, impacting on the MTOC. 9cRA acid restores stimulated glucose transport indirectly through compartmentalized inactivation of ERK1/2.  相似文献   

12.
GSH is synthesized sequentially by glutamate-cysteine ligase (GCL) and GSH synthase and defends against oxidative stress, which promotes hepatic stellate cell (HSC) activation. Changes in GSH synthesis during HSC activation are poorly characterized. Here, we examined the expression of GSH synthetic enzymes in rat HSC activation and reversion to quiescence. Expression of the GCL catalytic subunit (GCLC) fell during HSC activation and increased when activated HSCs revert back to quiescence. Blocking the increase in GCLC expression kept HSCs in an activated state. Activated HSCs have higher nuclear levels and binding activity of MafG to the antioxidant response element (ARE) of GCLC but lower Nrf2/MafG heterodimer binding to the ARE. Quiescent HSCs have a lower nuclear MafG level but higher Nrf2/MafG heterodimer binding to ARE. This occurred because of enhanced sumoylation of Nrf2 and MafG by SUMO-1, which promoted Nrf2 binding to ARE and heterodimerization with MafG. In vivo, knockdown of GCLC exacerbated bile duct ligation-induced liver injury and fibrosis. Ursodeoxycholic acid and S-adenosylmethionine are anti-fibrotic in bile duct ligation, but this effect was nearly lost if GCLC induction was blocked. In conclusion, sumoylation of Nrf2 and MafG enhances heterodimerization and increases GCLC expression, which keeps HSCs in a quiescent state. Antifibrotic agents require activation of GCLC to fully exert their protective effect.  相似文献   

13.
Liu F  Su Y  Li B  Ni B 《Experimental cell research》2003,287(2):387-396
The increased intracellular levels and aberrant processing of the amyloid precursor protein (APP) are associated with beta-amyloid peptide (A beta) production, cerebrovascular amyloid deposition, and amyloid plaque formation. Here we report that APP level, soluble APP (sAPP) secretion, and A beta production in HEK293 cells transfected with either wild-type APP(751) or APP(751) carrying the Swedish mutation are all elevated by hepatocyte growth factor (HGF). We investigated the potential molecular mechanisms underlying the HGF effect. Our data show that HGF stimulated extended activation of extracellular signal-regulated protein kinases (ERK1/2). Pretreatment of cells with inhibitors (UO126 or PD98059) for MEK, the upstream kinase of ERK1/2, abolished ERK1/2 activation evoked by HGF, and abrogated HGF-induced increases in APP levels and sAPP secretion. In addition, transient expression of active MEK1 activated ERK1/2 and increased intracellular APP levels and sAPP secretion. Inhibition of ERK1/2 activity, however, failed to block HGF-stimulated A beta production. Consistently, transient expression of active MEK1 did not increase A beta accumulation. Taken together, these results suggest that: (1) HGF regulates the intracellular levels of APP and the secretion of sAPP and A beta; (2) the modulation of APP levels and sAPP secretion induced by HGF is mediated via the MEK1/ERK1/2 signaling pathway; (3) HGF-stimulated A beta production is independent of ERK activity and, therefore, independent of HGF-evoked elevation of intracellular APP levels.  相似文献   

14.
Matrix metalloproteinase-1 (MMP-1, collagenase-1) plays a pivotal role in the process of joint destruction in degenerative joint diseases. We have examined the regulation of MMP-1 production in human chondrocytic HCS-2/8 cells stimulated by tumor necrosis factor-alpha (TNF-alpha). In response to TNF-alpha, MMP-1 is induced and actively released from HCS-2/8 cells. The induction of MMP-1 expression correlates with activation of ERK1/2, MEK, and Raf-1, and is potently prevented by U0126, a selective inhibitor of MEK1/2 activation. In contrast, SB203580, a selective p38 mitogen-activated protein kinases (MAPK) inhibitor, had no effects on TNF-alpha-induced MMP-1 release. A serine/threonine kinase, Akt was not activated in TNF-alpha-stimulated HCS-2/8 cells. TNF-alpha stimulated the production of PGE(2) in addition to MMP-1 in HCS-2/8 cells. Exogenously added PGE(2) potently inhibited TNF-alpha-induced both MMP-1 production and activation of ERK1/2. The effects of PGE(2) were mimicked by ONO-AE1-329, a selective EP4 receptor agonist but not by butaprost, a selective EP2 agonist. In contrast, blockade of endogenously produced PGE(2) signaling by ONO-AE3-208, a selective EP4 receptor antagonist, enhanced TNF-alpha-induced MMP-1 production. Furthermore, the suppression of MMP-1 production by exogenously added PGE(2) was reversed by ONO-AE3-208. Activation of EP4 receptor resulted in cAMP-mediated phosphorylation of Raf-1 on Ser259, a negative regulatory site, and blocked activation of Raf-1/MEK/ERK cascade. Taken together, these findings indicate that Raf-1/MEK/ERK signaling pathway plays a crucial role in the production of MMP-1 in HCS-2/8 cells in response to TNF-alpha, and that the produced PGE(2) downregulates the expression of MMP-1 by blockage of TNF-alpha-induced Raf-1 activation through EP4-PGE(2) receptor activation.  相似文献   

15.
16.
17.
Small differences in amplitude, duration, and temporal patterns of change in the concentration of free intracellular Ca2+ ([Ca2+](i)) can profoundly affect cell physiology, altering programs of gene expression, cell proliferation, secretory activity, and cell survival. We report a novel mechanism for amplitude modulation of [Ca2+](i) that involves mitogen-activated protein kinase (MAPK). We show that epidermal growth factor (EGF) potentiates gastrin-(1-17) (G17)-stimulated Ca2+ release from intracellular Ca2+ stores through a MAPK-dependent pathway. G17 activation of the cholecystokinin/gastrin receptor (CCK(2)R), a G protein-coupled receptor, stimulates release of Ca2+ from inositol 1,4,5-triphosphate-sensitive Ca2+ stores. Pretreating rat intestinal epithelial cells expressing CCK(2)R with EGF increased the level of G17-stimulated Ca2+ release from intracellular stores. The stimulatory effect of EGF on CCK(2)R-mediated Ca2+ release requires activation of the MAPK kinase (MEK)1,2/extracellular signal-regulated kinase (ERK)1,2 pathway. Inhibition of the MEK1,2/ERK1,2 pathway by either serum starvation or treatment with selective MEK1,2 inhibitors PD98059 and U0126 or expression of a dominant-negative mutant form of MEK1 decreased the amplitude of the G17-stimulated Ca2+ release response. Activation of the MEK1,2/ERK1,2 pathway either by pretreating cells with EGF or by expression of constitutively active K-ras (K-rasV12G) or MEK1 (MEK1*) increased the amplitude of G17-stimulated Ca2+ release. Although EGF, MEK1*, and K-rasV12G activated the MEK1,2/ERK1,2 pathway, they did not increase [Ca2+](i) in the absence of G17. These data demonstrate that the activation state of the MEK1,2/ERK1,2 pathway can modulate the amplitude of the CCK(2)R-mediated Ca2+ release response and identify a novel mechanism for cross-talk between EGF receptor- and CCK(2)R-regulated signaling pathways.  相似文献   

18.
This study characterized the upstream signalling molecules involved in extracellular signal-regulated kinase (ERK) 1/2 activation and determined their effects on differential tumour necrosis factor (TNF)-alpha expression by monocytes/macrophages infected with virulent or avirulent mycobacteria. The avirulent Mycobacterium tuberculosis (MTB) strain H37Ra (MTBRa) induced higher levels of activation of ERK 1/2 and the upstream MAPK kinase (MEK)1 and, subsequently, higher levels of TNF-alpha expression in human primary monocytes and monocyte-derived macrophages, as compared with MTB strain H37Rv (MTBRv). The MTB-induced activation of ERK 1/2 was not dependent on Ras or Raf. However, inhibition of the activity of atypical protein kinase C (PKC) zeta decreased the in vitro phosphorylation of MEK, ERK 1/2 activation and subsequent TNF-alpha induction caused by MTBRv or MTBRa. Toll-like receptor (TLR) 2 was found to play a major role in MTB-induced TNF-alpha expression and PKCzeta phosphorylation. Co-immunoprecipitation experiments showed that PKCzeta interacts physically with TLR2 after MTB stimulation. Moreover, PKCzeta phosphorylation was increased more in macrophages following MTBRa, versus MTBRv, infection. This is the first demonstration that PKCzeta interacts with TLR2 to play an essential role in MTB-induced ERK 1/2 activation and subsequent TNF-alpha expression in monocytes/macrophages.  相似文献   

19.
Vascular endothelial growth factor (VEGF) stimulates angiogenesis by binding to VEGF receptor 2 (VEGFR2) on endothelial cells (ECs). Downstream activation of the extracellular related kinases 1/2 (ERK1/2) is important for angiogenesis to proceed. Receptor internalization has been implicated in VEGFR2 signaling, but its role in the activation of ERK1/2 is unclear. To explore this question we utilized pitstop and dynasore, two small molecule inhibitors of endocytosis. First, we confirmed that both inhibitors block the internalization of VEGFR2 in ECs. We then stimulated ECs with VEGF in the presence and absence of the inhibitors and examined VEGFR2 signaling to ERK1/2. Activation of VEGFR2 and C-Raf still occurred in the presence of the inhibitors, whereas the activation of MEK1/2 and ERK1/2 was abrogated. Therefore, although internalization is not required for activation of either VEGFR2 or C-Raf in ECs stimulated with VEGF, internalization is necessary to activate the more distal kinases in the cascade. Importantly, inhibition of internalization also prevented activation of ERK1/2 when ECs were stimulated with other pro-angiogenic growth factors, namely fibroblast growth factor 2 and hepatocyte growth factor. In contrast, the same inhibitors did not block ERK1/2 activation in fibroblasts or cancer cells stimulated with growth factors. Finally, we show that these small molecule inhibitors of endocytosis block angiogenesis in vitro and in vivo. Therefore, receptor internalization may be a generic requirement for pro-angiogenic growth factors to activate ERK1/2 signaling in human ECs, and targeting receptor trafficking may present a therapeutic opportunity to block tumor angiogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号