首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dielectrophoresis is a well established and effective means for the manipulation of viable cells. However, its effectiveness greatly depends upon the utilization of very low electrical conductivity media. High conductivity media, as in the case of cell culture media, result only in the induction of weaker repulsive forces (negative dielectrophoresis) and excessive medium heating. A dielectrophoresis-based cell separation device (DEP-filter) has been recently developed for perfusion cultures that successfully overcomes these obstacles and provides a very high degree of viable cell separation while most of the nonviable cells are removed from the bioreactor by the effluent stream. The latter results in high viabilities throughout the culture period and minimization of lysed cell proteases in the bioreactor. However, an important question that remains to be answered is whether we have any adverse effects by exposing the cultured cells to high frequency electric fields for extended periods of time. A special chamber was constructed to quantitate the effect under several operational conditions. Cell growth, glucose uptake, lactate and monoclonal antibody production data suggest that there is no appreciable effect and hence, operation over long periods of time of the DEP-filter should not have any adverse effect on the cultured cells. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Conductance transition induced by an electric field in lipid bilayers   总被引:5,自引:0,他引:5  
A cooperative phenomenon showing a structural change in the organization of bilayer lipid membranes at a critical value of the applied electric field is presented. The transition is characterized by a sharp increase in conductance. The phenomenon can be observed under current-clamp conditions (rather than the usual voltage-clamp conditions) to avoid rupturing the membrane. At a critical potential value the conductance increases and therefore the potential decreases to keep the current constant. Results refer to membranes made of egg phosphatidylcholine (PC), diphytanoylphosphatidylcholine and cholesterol/egg PC. It is found that the critical potential at which the transition occurs depends dramatically on pH and ionic concentration, indicating that the electrical properties of the external surface determine the major characteristics of such a transition.  相似文献   

3.
The transmembrane potential on a cell exposed to an electric field is a critical parameter for successful cell permeabilization. In this study, the effect of cell shape and orientation on the induced transmembrane potential was analyzed. The transmembrane potential was calculated on prolate and oblate spheroidal cells for various orientations with respect to the electric field direction, both numerically and analytically. Changing the orientation of the cells decreases the induced transmembrane potential from its maximum value when the longest axis of the cell is parallel to the electric field, to its minimum value when the longest axis of the cell is perpendicular to the electric field. The dependency on orientation is more pronounced for elongated cells while it is negligible for spherical cells. The part of the cell membrane where a threshold transmembrane potential is exceeded represents the area of electropermeabilization, i.e. the membrane area through which the transport of molecules is established. Therefore the surface exposed to the transmembrane potential above the threshold value was calculated. The biological relevance of these theoretical results was confirmed with experimental results of the electropermeabilization of plated Chinese hamster ovary cells, which are elongated. Theoretical and experimental results show that permeabilization is not only a function of electric field intensity and cell size but also of cell shape and orientation.  相似文献   

4.
Summary Protoplasts ofAvena sativa rotate in an alternating electric field provided that at least two cells are located close to each other. An optimum frequency range (20 to 30 kHz) exists where rotation of all cells exposed to the field is observed. Below and above this frequency range, rotation of some cells is only occasionally observed. The angular velocity of rotation depends on the square of the electric field strength. At field strengths above the value leading to electrical breakdown of the cell membrane, rotation is no longer observed due to deterioration of the cells. The absolute value of the angular velocity of rotation at a given field strength depends on the arrangement of the cells in the electric field. A maximum value is obtained if the angle between the field direction and the line connecting the two cells is 45o. With increasing distance between the two cells the rotation speed decreases. Furthermore, if two cells of different radii are positioned close to each other the cell with the smaller radius will rotate with a higher speed than the larger one. Rotation of cells in an alternating electric field is described theoretically by interaction between induced dipoles is adjacent cells. The optimum frequency range for rotation is related to the relaxation of the polarization process in the cell. The quadratic dependence of the angular velocity of rotation on the field strength results from the fact that the torque is the product of the external field and the induced dipole moment which is itself proportional to the external field. The theoretical and experimental results may be relevant for cyclosis (rotational streaming of cytoplasm) in living cells.  相似文献   

5.
Electric birefringence decay curves of collagen suspended in aqueous buffered media were plotted as functions of pulse width and amplitude. They were then resolved into two components by means of an analog simulator. When these data were combined with the results of repeated pulsing, it was shown that an electric field promotes aggregation of collagen, although the variety of aggregate sizes falls within a fixed range. Observations of electric birefringence of dissolved collagen preparations as a function of ionic strengths tend to indicate that the bonding that occurs in an electric field is electrostatic.  相似文献   

6.
Intracellular recordings were made from pacemaker-command cells of the electric organ discharge (EOD) of the weakly electric fish Eigenmannia virescens. The fish was immobilized with gallamine triethiodide (Flaxedil) which silenced the EOD. A simulated EOD of this fish (ca. 300 Hz) and a sine wave simulating a neighbor, a few Hz higher (+deltaF) or lower (-deltaF) were introduced into the bath to elicit the "jamming avoidance response" (JAR), monitored through the pacemaker potential. We observed that accompanying the JAR there is a minute hyperpolarizing postsynaptic potential (hpsp) superimposed on the pacemaker potential. A shift in the phase of the hpsp occurs with a change in the sign of deltaF, and therefore of the JAR. Assuming that the behaviorally correlated hpsp is inhibitory, it suggests that mutual inhibition may play a role in regulating the synchronous firing frequency of command neurons, which are electrically coupled with one-another. Scheich and Bullock (1974) proposed a neuronal scheme for the JAR in which they suggest that two systems (P and T) operate together in the nervous system. The T system affects the pacemaker cells at a precise, variable phase of the pacemaker cycle. Although the present results indeed reveal a shift in the hpsp with a change in the sign of deltaF, the actual significance of this shift remains to be evaluated. The unexpected direction of the shift suggests either that the hpsp is excitatory at the phases when it occurs, or that effectiveness of inhibition decreases at later phases in this case instead of increasing as in other cases, or that the hpsp opposes the JAR. The parallel P system is probably more important in explaining the JAR, acting by a DC level control rather than a phase control.  相似文献   

7.
Intracellular recordings were made from pacemaker-command cells of the electric organ discharge (EOD) of the weakly electric fish Eigenmannia virescens. The fish was immobilized with gallamine triethiodide (Flaxedil) which silenced the EOD. A simulated EOD of this fish (ca. 300 Hz) and a sine wave simulating a neighbor, a few Hz higher (+ΔF) or lower (-ΔF) were introduced into the bath to elicit the “jamming avoidance response” (JAR), monitored through the pacemaker potential. We observed that accompanying the JAR there is a minute hyperpolarizing postsynaptic potential (hpsp) superimposed on the pacemaker potential. A shift in the phase of the hpsp occurs with a change in the sign of ΔF, and therefore of the JAR. Assuming that the behaviorally correlated hpsp is inhibitory, it suggests that mutual inhibition may play a role in regulating the synchronous firing frequency of command neurons, which are electrically coupled with one-another. Scheich and Bullock (1974) proposed a neuronal scheme for the JAR in which they suggest that two systems (P and T) operate together in the nervous system. The T system affects the pacemaker cells at a precise, variable phase of the pacemaker cycle. Although the present results indeed reveal a shift in the hpsp with a change in the sign of ΔF, the actual significance of this shift remains to be evaluated. The unexpected direction of the shift suggests either that the hpsp is excitatory at the phases when it occurs, or that effectiveness of inhibition decreases at later phases in this case instead of increasing as in other cases, or that the hpsp opposes the JAR. The parallel P system is probably more important in explaining the JAR, acting by a DC level control rather than a phase control.  相似文献   

8.
Dielectrophoretic manipulation of cells with spiral electrodes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Electrokinetic responses of human breast cancer MDA-MB-231 cells were studied in suspensions of conductivities 18, 56, and 160 mS/m on a microelectrode array consisting of four parallel spiral electrode elements energized with phase-quadrature signals of frequencies between 100 Hz and 100 MHz. At low frequencies cells were levitated and transported toward or away from the center of the spiral array, whereas at high frequencies cells were trapped at electrode edges. The frequencies of transition between these characteristic cell behaviors increased with increasing suspension conductivity. Levitation heights and radial velocities were determined simultaneously for individual cells as a function of the applied field magnitude and frequency. Results were compared with theoretical predictions from generalized dielectrophoresis theory applied in conjunction with cell dielectric parameters and simulated electric field distributions corrected for electrode polarization effects. It was shown that the conventional and traveling-wave dielectrophoretic force components dominated cell levitation and radial motion, respectively. Both theoretical predictions and experimental data showed that the cell radial velocity was very sensitive to the field frequency when the in-phase component of the field-induced polarization was close to zero. Applications of spiral electrode arrays, including the isolation of cells of clinical relevance, are discussed.  相似文献   

9.
10.
The transmembrane potential generated by an alternating electric field (ac) depends strongly on the frequency of the field and can be calculated using the Schwan Equation. We have measured the critical electric breakdown potential, delta psi crit, of the plasma membrane of murine myeloma cell line (Tib9) using ac fields, by monitoring the entry of a fluorescence probe, propidium iodide, into the cells. This dye is weakly fluorescent in solution but becomes strongly fluorescent when it binds to DNA. Experiments were done under a microscope by direct visual examination of single cells or by examining photographic prints. When an ac field reached the intensity, Ecrit, that generated a maximal membrane potential delta psi max, equal to or greater than the delta psi crit, the membrane was perforated at the two loci facing the electrodes. The dye diffused into the cell, giving rise to two bright, narrow bands, which expanded to the whole cell in 1-3 min. delta psi crit's were measured in three media of different resistivities, rho ext, (52,600, 7,050, and 2,380 omega cm), over the range of 0.1-300 kHz, with the field duration of 200 ms. Regression analysis based on the Schwan Equation showed that in a medium of given resistivity, the delta psi crit was constant over the frequency range studied. When the capacitance of the membrane, Cmembr, was taken to be 0.90 microF cm-2, the resistivity of the cytoplasmic medium, rho int, was determined to be 910-1,100 omega cm. The delta psi crit were 0.33, 0.48, and 0.53 V, respectively, for the three media in decreasing resistivities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Absorbance measurements performed with high molecular weight poly A at pH 8 show that the degree of single strand stacking present at high ionic strength is reduced at low ionic strengths. The salt dependence of the poly A conformation is assigned to an electrostatic repulsion between subsequent turns of the single strand “helix” structure. - Electric fields of 5 to 80 kV/cm induce an increase in the poly A absorbance consistent with a decrease in the ion concentration in the environment of the polymer. The increase of the absorbance is a linear function of the field strength suggesting that the conformation change is caused by a dissociation field effect. At increasing ionic strength, threshold values of the electric field strength have to be exceeded in order to induce measurable absorbance changes. - The time required for the conformation change decreases from about 2 μsec at 10−4 M ionic strength to about 0.3 μsec at high ionic strengths. At low ionic strengths the ion equilibration may influence the rate limiting step, whereas the arrangement of the nucleotide residues into the ordered structure is rate limiting at high ionic strengths.  相似文献   

12.
Summary Growth rates and cell diameters were determined from 12 species of plant roots exposed to a 60-Hertz (Hz) electric field of 360 Volts per meter (V/m) in an aqueous inorganic nutrient medium [conductivity: 0.07–0.09 Siemens per meter (S/m)]. The degree of growth depression ranged from zero to nearly 100 percent of control. Cell diameters ranged from 13.5 to 31.8 µm as an averaged value for procambial, cortical, and meristem cells. Sensitivity to the electric field as determined by root growth rate reduction increased with increasing cell size. Sensitivity also increased with increase in 60 Hz induced transmembrane potentials; the transmembrane potential threshold for growth reduction was about 6.0 mV and the potential for near-complete cessation of growth was about 10–11 mV.Two different hypothetical mechanisms of action by which applied electric fields induce biological effects at the cellular level were tested. The two mechanisms pertain to different possible modes of action of applied electric fields: one mechanism postulates the involvement of the transmembrane field, the other mechanism postulates the tangential electric field as the important factor for inducing biological effects. The data support the transmembrane and not the tangential field mechanism. It is concluded that the effects observed are consistent with a membrane related mechanism and that there is a narrow range (a few mV) between threshold and debilitating induced membrane potentials.  相似文献   

13.
The electric charges on an enzyme may move concomitantly with a conformational change. Such an enzyme will absorb energy from an oscillating electric field. If in addition the enzyme has a larger association constant for substrate than for product, as is often true, it can use this energy to drive the catalyzed reaction away from equilibrium. Approximate analytical expressions are given for the field-driven flux, electrical power absorbed, free-energy produced per unit time, thermodynamic efficiency, and zero-flux concentrations. The field-driven flux is written as a generalized Michaelis-Menten equation.  相似文献   

14.
Weakly electric fish acquire information about their surroundings by detecting and interpreting the spatial and temporal patterns of electric potential across their skin, caused by perturbations in a self-generated, oscillating electric field. Computational and experimental studies have focused on understanding the electric images due to simple, passive objects. The present study considers electric images of a conspecific fish. It is known that the electric fields of two fish interact to produce beats with spatially varying profiles of amplitude and phase. Such patterns have been shown to be critical for electrosensory-mediated behaviours, such as the jamming avoidance response, but they have yet to be well described. We have created a biophysically realistic model of a wave-type weakly electric fish by using a genetic algorithm to calibrate the parameters to the electric field of a real fish. We use the model to study a pair of fish and compute the electric images of one fish onto the other at three representative phases within a beat cycle. Analysis of the images reveals rostral/caudal and ipsilateral/contralateral patterns of amplitude and phase that have implications for localization of conspecifics (both position and orientation) and communication between conspecifics. We then show how the common stimulation paradigm used to mimic a conspecific during in vivo electrophysiological experiments, based on a transverse arrangement of two electrodes, can be improved in order to more accurately reflect the important qualitative features of naturalistic inputs, as revealed by our model.  相似文献   

15.
16.
The anisotropy of electrical conductivity of suspensions of such bacteria, as E. coli, Serratia marcescens, Pseudomonas fluorescens induced by a sinusoidal external electric field and relaxation of the anisotropy after switching off the field were investigated. On the basis of the experimental relationships the anisotropy of electrical polarizability and coefficient of rotational diffusion of the cells were evaluated. The anisotropy of electrical polarizability and coefficient of the rotational diffusion obtained are in a good agreement with the available data of other methods.  相似文献   

17.
18.
The structures of B-form and A-form DNA are studied in 0–70 and 70–80% ethanol solutions, respectively, in an electric field, using linear dichroism. The limiting reduced linear dichroism data of B-form DNA are chain length dependent in 0% ethanol solution. However, there is no such chain length dependence of the limiting reduced linear dichroism of the A-form. Our reslts also suggest that (1) the transition moments at 260 nm lie within the plaxe of the DNA bases, (2) the two allomorphs (A and B forms) of the long chain DNA in solution in the electric field are like the respective classica forms.  相似文献   

19.
Electropermeabilization of immobilized human leukemia K562 cells was studied by measuring changes in cell volume. Such changes reflect mass transfer between the cell and external medium. Electropermeabilization was carried out in an isosmotic water-sorbitol medium with a range of electric field strengths from 500 to 800 V. cm(-1), corresponding to low-energy levels. Electroporation of the K562 cell membrane was found to provoke an inflow of sorbitol and a corresponding osmotic inflow of water and/or an outflow of intracellular solutes due to Fick diffusion. Such flows were found to involve the shrinkage, swelling, or rupture of K562 cells, depending on the characteristics of the electric field and of the physiological state of cells. The behavior of immobilized cells was observed during their exposure to the electric field. The response in immobilized cell volume corresponded with the theoretical pore size and pore opening time, permitting an explanation of the behavior of cell suspensions subject to electrical fields.  相似文献   

20.
Electric field pulses have been reported to induce long-lived permeabilization and fusogenicity on cell membranes. The two membrane property alterations are under the control of the field strength, the pulse duration, and the number of pulses. Experiments on mammalian cells pulsed by square wave form pulses and then brought into contact randomly through centrifugation revealed an even stronger analogy between the two processes. Permeabilization was known to affect well-defined regions of the cell surface. Fusion can be obtained only when permeabilized surfaces on the two partners were brought into contact. Permeabilization was under the control of the pulse duration and of the number of pulses. A similar relationship was observed as far as fusion is concerned. But a critical level of local permeabilization must be present for fusion to take place when contacts are created. The same conclusions are obtained from previous experiments on ghosts subjected to exponentially decaying field pulses and then brought into contact by dielectrophoresis. These observations are in agreement with a model of membrane fusion in which the merging of local random defects occurs when the two membranes are brought into contact. The local defects are considered part of the structural membrane reorganization induced by the external field. Their density is dependent on the pulse duration and number of pulses. They support the long-lived permeabilization. Their number must be very large to support the occurrence of membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号