首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary DNA polymorphisms in the human immunoglobulin gamma () region have been studied in random Arabo-Berber Tunisians and in a large Tunisian Berber kindred. Haplotypes have then been designated, based on variation in the BamHI restriction fragments containing the C1, C2, C4, and C genes. Two new haplotypes, in addition to the four previously described, have been observed. These new haplotypes, designated H5 and H6, were confirmed by family studies. The H5 haplotype was associated with black African Gm haplotypes · (Gm1,17;..;5,6,11 and Gm1,17;..;5,11) (Gma,z;..;blc3bo and Gma,z;..;blbo) and probably represents a common haplotype in the black population. The haplotype H6 may be derived from H5. One of 39 random Tunisians was homozygous for a multigene deletion. DNA polymorphisms of the C genes, in conjuction with Gm markers, provide highly variable genetic markers important for the characterization of human populations.  相似文献   

2.
Summary The Gm(25) allotype has been tested on sera from various populations. It is closely related to Gm(5), Gm(10), Gm(11), and Gm(14) in Caucasoids, and to Gm(10) and Gm(11) in Mongoloids, but it distinguishes itself in Negroids where the Gm(5, 10, 11, 14,-25) phenotype is present with a frequency depending on the regions studied. It was demonstrated to be carried by the Fc fragment of G2 Gm(5, 10, 11, 14). In a Caucasoid family it was possible to demonstrate the transmission of a rare gene, Gm1,10,11,17, 25. Among Old World Monkeys Gm(25) is present in Baboons and absent in Cercopitheci.
Résumé L'allotype Gm(25) a été étudié sur des sérums de populations variées. Il est lié aux Gm(5), Gm(10), Gm(11) et Gm(14) chez les Blancs, aux Gm(10) et Gm(11) chez les Jaunes, mais il s'en distingue chez les Noirs où se retrouve le phénotype Gm(5,10,11,14,-25) avec une fréquence variable selon les régions. Il est présent sur le fragment Fc des G3 Gm(5,10,11, 14). Dans une famille Caucasoide nous démontrons la transmission du rare gène Gm 1,10,11,17,25. L'étude sur des Singes de l'Ancien Monde démontre que le Gm(25) est présent chez les Babouins et absent chez les Cercopithèques.
  相似文献   

3.
Immunoglobulins in the Eastern Carolines   总被引:1,自引:0,他引:1  
Serum samples from Micronesian populations on the Pingelap, Mokil, Ponape and Kusaie islands were tested for the immunoglobulin G (IgG) allotypes, Gm (1, 2, 3, 5, 6, 13, 14, 21), and for Inv (1). All four populations have the Gm phenogroups, Gm1,21, Gm1,2,21, Gm1,3,5,13,14, and Gm1,5,6. The Ponapeans have Gm1,5,13,14 also. Pedigree analysis shows that the Gm1,5,6 phenogroup in the Pingelap and Mokil populations is derived from the single offspring of a member of a crew of a whaling ship and that the Gm1,2,21 phenogroup was introduced by three non-native individuals. The Gm allotypes indicate that the Ponapean and Kusiean populations also have phenogroups from other races, and historical data show that there has been adequate opportunity for this to have occurred. Only the phenogroups Gm1,21 and Gm1,5,13,14 appear to be endemic to eastern Micronesia.  相似文献   

4.
Summary Serum samples from 170 unrelated individuals from the Suceava District of Roumania and from 199 unrelated individuals from Bucharest, Roumania were tested for Gm(1, 2, 3, 5, 6, 13, 14, 17, 21) and Km(1)[Inv(1)]. Selected samples were also tested for Gm(15) and Gm(16).The frequencies of the three common Caucasoid haplotypes, Gm 3, 5, 13, 14, Gm 1, 17, 21, and Gm 1, 2, 17, 21 in these two populations were found to be similar to those in neighboring Slavic states and Hungary. Racial admixture was evidenced by the presence of the Gm 1, 13, 15, 16, 17 and Gm 1, 3, 5, 13, 14 haplotypes, which are primarily Mongoloid, and the Gm 1, 5, 13, 14, 17 haplotype which is primarily Negroid.Comparisons of these data with those from earlier studies of populations from Central Europe indicate that the frequency of the Gm 3, 5, 13, 14 haplotype within this region is high and essentially uniform. Published data for several blood group systems also indicate essentially uniform distributions of frequencies in this region. It is suggested that this region may be the center of a clin that radiates from it.Post-Doctoral Fellow supported by NIH Training Grant Gm07004.  相似文献   

5.
Summary The results of a population genetic investigation on Iranians are given and compared to the results obtained on other populations from Southwestern and Southern Asia. Our total material from Iran comprises n=1020 nonrelated male and female individuals of different age. The following serum groups have been typed: Hp, Gc, Gm, and Inv. In general there exist no remarkable age or sex differences in the distribution of phenotypes and alleles (the only exception: sex differences in the distribution of the Gm (7)-phenotype). The regional distribution of phenotypes and alleles yield no marked differences, too, apart from the Invphenotypes, however. For the total material of Iran the following alleles frequencies could be calculated: Hp1=0.3045, Hp2=0.6595, Gc2=0.3405; Gm1=0.1780, Gm1,2=0.0537, Gm1,5=0.0632, Gm5=0.7051. The Gm (7)-phenotype turned out to be 36.6%; the Inv (1)-phenotype amounts to 25.6%. Comparing with other populations, especially Pakistani and Indian samples, some heterogeneity in the distribution of phenotypes and alleles within Southwestern and Southern Asia was to be demonstrated. Some distributional trends of alleles frequencies shall be mentioned here: the increase of Hp2, Gc1, and Gm1 alleles from West towards East, and in the opposite direction the decrease of Hp1, Gc2, and Gm5 alleles. Selective acting forces are supposed to be most important factors for this. D77  相似文献   

6.
Blood specimens from 69 gibbons (63Hylobates lar, 4Hylobates concolor, and 2Hylobates pileatus) were tested for human-type ABO, MN, and Rh blood groups. AmongH. lar, three phenotypes were noted in the ABO and MN blood groups respectively, but all fourH. concolor were grouped as AM. All group A gibbons were of subgroup A1; subgroups A2B and A12B were observed at a low frequency in group AB gibbons. Leb antigen was detected in about 30% of the red cell samples fromH. lar, but all the samples were negative for Lea. All the gibbons tested had c(hr) antigen but no other Rh antigens (D, C, E, and e) in their red cells. Some selected blood samples fromH. lar were also tested for some other blood group antigens and for the Gm and Inv factors. The Jka antigen was detected in all the red cell samples tested, but the S, s, U, K, k, and Fya antigens were not. In the tests of plasma with anti-Gm (1),H. lar could be divided into two groups, i.e., Gm(1)Gi and Gm(–1)Gi; Gm(2), Gm(4), and Inv(1) were absent in the species.  相似文献   

7.
A study was made of the distribution of the immunoglobulin markers Gm(a), (x), (z), (f), (g), (b0), (b1), (b3), (s), (t), (c3), (c5) and Inv (1) and Inv (a) in 906 individuals sampled from several population groups living in various parts of New Guinea and New Britain. A study of 123 families confirmed the presence of the following gene complexes: Gmza;g, Gmzax;g, Gmza;b and Gmfa;b. Gm(s), (t), (c3) and (c5) were absent and either all or none of Gm(b0), (b1) and (b3) present. Striking differences occurred in the geographical and ethnic distribution of the Gm gene complexes. Gmfa;g was either absent or in very low frequency, and Gmza;b, Gmzax;g and Gmza;g were present in varying frequencies in both the highland and western coastal populations in the mainland of New Guinea. All of these populations spoke non-Austronesian languages. On the other hand Gmfa;b was present in the Melanesian-speaking Motu of the Central District of the mainland, in the Melanesian-speaking Tolai and the non-Austronesian-speaking Sulka and Baining of the island of New Britain. It is suggested that Gmfa;b and Gmza;b are respectively Malayo-Polynesian and pre-Austronesian markers, although a clear cut distinction between modern populations derived from these stocks is often blurred by the effects of gene flow and drift. Considerable ethnic and geographical variation was also found in the distribution of Inv(1) and Inv(a). In two Highland NAN-speaking populations the Inv(1+a+) phenotype percentages were 1.0 and 5.4, whilst percentages ranging from 0.0 to 56.4% were found for coastal MN-speaking populations. The percentages of Inv(1+a+) in the total MN- and NAN-speaking populations were 31.6 and 10.0 respectively.  相似文献   

8.
Summary A total of 469 individuals belonging to 4 endogamous groups (Brahamins, Rajputs, Doms and Tharus) from the Kumaon region (North India) were tested for Hp, Gc, Gm and Inv systems.The frequency of the Hp1 allele is low (0.130–0.220) in all 4 groups as in the case of other Indian populations. The absence of the Gm5 allele and high frequency of Inv(1) (49.34%) confirm the Mongoloid affiliations of the Tharus. Brahamins, Rajputs and Doms possess 4 alleles (Gm1, Gm1,2, Gm1,5 and Gm5) at the Gm locus and the frequency of Gm1,2 allele is very low (0.067–0.106) for these groups. The frequency of Inv(1) for Brahamins (19.61%) and Doms (22.78%) lies within the range of variation of European populations. Rajputs, however, show a higher Inv(1) frequency (38.76%).Genetic distances calculated with the help of Hp, Gc and Gm systems demonstrate similarity between Brahamins, Rajputs and Doms and a deviant position for the Tharus.Supported by the Deutsche Forschungsgemeinschaft.  相似文献   

9.
Summary Allotypes of IgG1, IgG2, IgG3, and IgA2 subclasses were investigated in seven Lebanese communities (three Moslem and four Christian). The Gm-Am haplotypes found were mainly those prevalent in Caucasians with a low frequency of haplotypes usually observed in Africans and Orientals. The difference between highlanders and lowlanders as expressed by G2m(23) was highly significant and suggested a possible adaptation to selective pressure related to the 2 genes, possibly due to endemic malaria in the past. Exceptional Gm-Am haplotypes were unambiguously determined by family studies. Some were characterized either by a deletion or a repression or, in contrast, by a partial or total duplication of genes. Two others had uncommon combinations of allotypes: Gm 17;23;5,10,11,13,14 A2m 1, where G1m(17) was present without G1m(1); and Gm 3;23;5,14 A2m 1, where the CH3 allotypes G3m(10,11,13) were lacking.To whom offprint requests should be sent  相似文献   

10.
Summary Linkage relations between the C6 and 33 other genetic marker loci have been analyzed in Norwegian pedigrees, including 114 matings with 388 informative children, by use of the MOSM computer program. No suggestion of linkage was found. Very close or close linkage (<0.06) has been ruled out for males between C6 and the following 19 marker loci: GPT, HLA+Bf, Rh, C3, Hp, PGM 3, Km, Gm, Fy, Gc, AB0, Jk, GLO 1, K, MNSs, PTC, ACP 1, PGM 1 and Pi. For several of the relations even loose linkage is unlikely.  相似文献   

11.
The Gm and Km immunoglobulin allotypes are presented, for the first time, for six South American Indian tribes (Baniwa, Kanamari, Kraho, Makiritare, Panoa, and Ticuna) and one Central American tribe (Guaymi). Additional allotype information is presented for five previously reported South American tribes (Cayapo, Piaroa, Trio, Xavante and Yanomama). The distributions of the Gm and Km allotypes among all the tribal populations tested to date are reviewed and evidence is presented for the presence of a north (high) -south (low) cline in Km frequency. The wave theory of the populating of the South American continent was tested by an examination of the distribution of six alleles (Gmax;g, Gma;b0,3,t, Dia, Rz, TFD Chi, and 6PGDC), absent in some populations but with polymorphic proportions in others. The present, limited, data failed to confirm the theory.  相似文献   

12.
Phenotype and allelic frequencies for ABO, MNSs, P, Rh, Kell, Duffy, and Diego blood groups, as well as for transferrins (Tf), haptoglobins (Hp), phosphoglucomutase 1 (PGM1), adenylate kinase (AK), 6-phosphogluconate dehydrogenase (PGD), and acid phosphatase (AcP) are described in 9–10 adjoining populations of Reindeer Chukchi. Additionally, one of three presently existing territorial subgroups of Siberian Eskimos was studied. The total sample size ranges from 931 to 1,066 in Chukchi, and from 99 to 102 in Eskimos, depending on the genetic system studied. Substantially reduced samples for Kidd and ABO secretion were investigated solely in the Reindeer Chukchi. Significant heterogeneity of allelic frequencies has been observed among Chukchi populations (χ = 378.47, P < 0.001). Summed genetic heterogeneity between Reindeer Chukchi and Siberian Eskimos was also found to be highly significant (χ = 186.54, P < 0.001). Both groups can be readily discriminated with only four outliers: NS , P1, R1, and Pa. Random genetic drift is suggested to be responsible for a large proportion of heterogeneity of allelic frequencies at the MNSs, P, and Rh blood-group system sites both among the Chukchi and Eskimos. Conversely, stabilizing selection is assumed as the principal agent maintaining homogeneous allelic frequencies at the AcP locus within the Chukchi subdivisions, whereas disruptive selection may be considered as a major factor leading to different pa frequencies between Chukchi and Eskimos.  相似文献   

13.
Gammaglobulin groups (Gm and Inv) of various Southern African populations   总被引:9,自引:0,他引:9  
Data are presented on the distribution of the Gm and Inv groups in approximately 3500 individuals belonging to a number of diverse Southern African populations. The indigenous peoples show the presence of the Gm alleles known to occur in Negroes (Gm1, 5, 13, 14, Gm1, 5, 6, 14 and Gm1, 5, 6) but the Bushmen possess some of them in very low frequencies and have, in addition and in appreciable frequencies the Gm1 and Gm1, 13 alleles which have not been reported as occurring in West African populations. The distribution of the Gm1, 13 allele in various Bantu-speaking tribes of the sub-continent reveals a marked cline, increasing from north to south along the eastern seaboard. The correlation between the frequency of Gm1, 13 and the Khoisan morphological, features present in a number of the tribes, and with the linguistic evidence which has been used to group them is high. The Bushmen possess a Gm1, 5 allele and may also have a Gm1, 5, 13, 14, 17, 21 allele. A Gm1, 2, 5, 13, 14, 17 allele seems to be present in the Bantu. Its presence in Eastern New Guinea would also appear to be indicated by the population data presented here.  相似文献   

14.
Summary This paper reports the distribution of immunoglobulin Gm and Km allotypes in 74 Chinese geographical populations. These populations are derived from 24 nationalities comprising 96.6% of the total population of China. A total of 9,560 individuals were phenotyped for Gm(1,2,3,5,21) factors, and 9,611 were phenotyped for Km(1). Phylogenetic trees were constructed on the basis of Gm haplotype frequencies and genetic distances. The results of cluster analysis show the heterogeneity of the Chinese nation, and confirm the hypothesis that the modern Chinese nation originated from two distinct populations, one population originating in the Yellow River valley and the other originating in the Yangtze River valley during early neolithic times (3,000–7,000 years ago). Frequencies of the Gm haplotype of 74 Chinese populations were compared with those of 33 populations from major racial groups. The results suggest that during human evolution, the Negroid group and Caucasoid-Mongoloid group diverged first, followed by a divergence between the Caucasoid and Mongoloid. Interrace divergence is high in comparison with intrarace divergence. There appear to be two distinct subgroups of Mongoloid, northern and southern Mongoloid. The northern and southern Mongoloid have Gm1;21 and Gm1,3;5 haplotypes as race-associate markers, respectively. Furthermore, the Caucasian-associated haplotype Gm3;5 was found in several of the minorities living in the northwest part of China. The presence of the Gm3;5 haplotype is attributed to the Caucasians living in Central Asia throughout the Silk Road. The amount of Caucasian admixture has been estimated. In contrast to the Gm haplotype distribution, Km1 gene frequencies showed a random distribution in the populations studied.  相似文献   

15.
Blood samples from 448 people living in six villages in the Huon Peninsula in northeast Papua, New Guinea, were tested for Gm(1,2,3,5,6,10,11,13,14,17,21,24,26) and Inv(1) [Km(1)]. All the people are non-Austronesian (NAN) speakers. As expected, there was a low frequency of the Gm1,3,5,10,11,13,14,26 haplotype, but in contradiction to expectations there was a complete absence of the Gm1,2,17,21,26 haplotype. In addition, samples from people in one village (Yupna) and probably those for two other villages (Irumu 13 and 14) have the rare haplotype Gm1,5,10,11,13,14,21,26 at polymorphic frequencies. Two samples from people living in Yupna had the rare phenotype Gm(1,3,17,21,26), indicating the presence of any one of several rare haplotypes that had been observed in other populations. These are discussed.  相似文献   

16.
Summary The authors report the distribution of Gm- and Inv-groups in Hungary. In our total material of 378 males and females of different age, the frequency of the following Gm-phenotypes turned out: Gm (1, 2, 4, 5, 10)=4.1%, Gm(1,-2, 4, 5, 10)=25.3%, Gm(1,-2,-4,-5,-10)=3.4%, Gm(1, 2,-4,-5,-10)=0.4%, and Gm(-1,-2, 4, 5, 10)=66.8%. The alleles frequencies have been calculated to be Gm1=0.1622, Gm1, 2=0.0228, Gm4, 5, 10=0.8150. Observed and expected Gm-phenotypes frequencies are in good agreement under the assumption of the 3-alleles-model Gm1, Gm1, 2, Gm4, 5, 10. The Invphenotypes frequencies came out to be: Inv(1,-2)=0.5$, Inv(1,2)=8.2%, and Inv(-1,-2)=91.3%.Among our Hungarian samples no significant differences were found, neither in the distribution of Gm-nor Inv-phenotypes and alleles. There exist no significant differences in the distribution of Inv-groups between our Hungarian sample and two German samples, but the Hungarian sample differs clearly from Czechoslovakian and Yugoslavian ones in the distribution of the Gm-phenotypes.Supported by a grant from the Caisse Nationale de Sécurité Sociale.Attaché de Recherche á l'I.N.S.E.R.M.  相似文献   

17.
Check-plot designs have a lower selection intensity than unreplicated non-check-plot designs if both the number of test lines to be selected (s) and of total plots in the trial (N) are kept constant. For a check-plot design to be more efficient, local control must effectively reduce the plot error variance and increase heritability to such a level that it compensates for the corresponding loss in selection intensity and makes the expected gain from selection at least equal to that in the non-check-plot design. To realize this goal, the required minimum reduction in plot error variance in a checkplot design (relative to that in a non-check-plot design) depends on (1) check-plot frequencyf c , (2) fractionk = s/N, and (3) ratiow 0= 0 2 / g 2 of non-check-plot design plot error variance 0 2 to genetic variance g 2 among test lines. Lowerw 0 and higherf c andk are found to require a relatively higher reduction in plot error variance in check-plot designs. A condition is derived to show when a check-plot design may never be more efficient.  相似文献   

18.
19.
Summary Eleven different secosteroids or steroids (10–10 to 10–8 m) were acutely and reversibly introduced in solutions delivered to the lumen of single proximal tubules of the amphibianNecturus kidney while recording basolateral cell membrane potentialV m. Seven of these molecules (1,25(OH)2D3, 25(OH)D3, 24,25(OH)2D3, 5,6-trans-25(OH)D3, 19-diol-cholesterol, estradiol and testosterone) resulted in changes ofV m (V m) occurring in a few seconds, the largest V m being observed with 1,25(OH)2D3, +6.5±0.75 mV (n=19); these seven (seco)steroids but not the four inactive sterols (vitamin D3, cholesterol, 1D3 and aldosterone) possess a hydroxyl group on at least one carbon of the C17 to C25 lateral chain of the sterol ring. The V m effect was present in Na+-free or Cl-free media, but it was abolished in HCO3-free media. Depolarization of cell membrane potential by addition of glucose, 11mm, in luminal perfusion fluid abolished the 1,25(OH)2D3-evoked V m effect, suggesting dependence of the latter on the absolute value of membrane potential. Barium, a blocking agent of K+ conductances, suppressed the 1,25(OH)2D3-evoked V m effect, even when the proper effects of barium of cell membrane potential were canceled by current clamp. Pretreatment with quinine, a putative blocker of Ca2+-dependent K+ channels also abolished the 1,25(OH)2D3-evoked depolarization. Such observations are consistent with the presence of Ca2+-dependent K+ channels at the apical cell membrane of the proximal tubule, these channels being inactivated by 1,25(OH)2D3 and probably by other (seco)steroids.  相似文献   

20.
The apparent molar volumes V2,φ have been determined for glycine, -α-alanine, -α-amino-n-butyric acid, -valine and -leucine in aqueous solutions of 0.5, 1.0, 1.5 and 2.0 mol kg−1 sodium acetate by density measurements at 308.15 K. These data have been used to derive the infinite dilution apparent molar volumes V02,φ for the amino acids in aqueous sodium acetate solutions and the standard volumes of transfer, ΔtV0, of the amino acids from water to aqueous sodium acetate solutions. It has been observed that both V02,φ and ΔtV0 vary linearly with increasing number of carbon atoms in the alkyl chain of the amino acids. These linear correlations have been utilized to estimate the contributions of the charged end groups (NH3+,COO), CH2 group and other alkyl chains of the amino acids to V02,φ and ΔtV0. The results show that V02,φ values for (NH3+,COO) groups increase with sodium acetate concentration, and those for CH2 are almost constant over the studied sodium acetate concentration range. The transfer volume increases and the hydration number of the amino acids decreases with increasing electrolyte concentrations. These facts indicate that strong interactions occur between the ions of sodium acetate and the charged centers of the amino acids. The volumetric interaction parameters of the amino acids with sodium acetate were calculated in water. The pair interaction parameters are found to be positive and decreased with increasing alkyl chain length of the amino acids, suggesting that sodium acetate has a stronger dehydration effect on amino acids which have longer hydrophobic alkyl chains. These phenomena are discussed by means of the cosphere overlap model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号