首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient wound healing including clotting and subsequent reepithelization is essential for animals ranging from insects to mammals to recover from epithelial injury. It is likely that genes involved in wound healing are conserved through the phylogeny and therefore, Drosophila may be an useful in vivo model system to identify genes necessary during this process. Furthermore, epithelial movement during specific developmental processes, such as dorsal closure, ressembles of those seen in mammalian wound healing. As puckered (puc) gene is a target of the JUN N-terminal kinase signaling pathway during dorsal closure, we investigated puc gene expression during wound healing in Drosophila. We showed that puc gene expression is induced at the edge of the wound in epithelial cells and Jun kinase is phosphorylated in wounded epidermal tissues, suggesting that the JUN N-terminal kinase signaling pathway is activated by a signal produced by an epidermal wound. In the absence of the Drosophila c-Fos homologue, puc gene expression is no longer induced. Finally, impaired epithelial repair in JUN N-terminal kinase deficient flies demonstrates that the JUN N-terminal kinase signaling is required to initiate the cell shape change at the onset of the epithelial wound healing. We conclude that the embryonic JUN N-terminal kinase gene cassette is induced at the edge of the wound. In addition, Drosophila appears as a good in vivo model to study morphogenetic processes requiring epithelial regeneration such as wound healing in vertebrates.  相似文献   

2.
In Drosophila, the Jun-N-terminal Kinase-(JNK) signaling pathway is required for epithelial cell shape changes during dorsal closure of the embryo. In the absence of JNK pathway activity, as in the DJNKK/hemipterous (hep) mutant, the dorsolateral ectodermal cells fail both to elongate and move toward the dorsal midline, leading to dorsally open embryos. We show here that hep and the JNK pathway are required later in development, for correct morphogenesis of other epithelia, the imaginal discs. During metamorphosis, the imaginal discs undergo profound morphological changes, giving rise to the adult head and thoracic structures, including the cuticle and appendages. hep mutant pupae and pharate adults show severe defects in discs morphogenesis, especially in the fusion of the two lateral wing discs. We show that these defects are accompanied by a loss of expression of puckered (puc), a JNK phosphatase-encoding gene, in a subset of peripodial cells that ultimately delineates the margins of fusing discs. In further support of a role of puc in discs morphogenesis, pupal and adult hep phenotypes are suppressed by reducing puc function, indicative of a negative role of puc in disc morphogenesis. Furthermore, we show that the small GTPase Dcdc42, but not Drac1, is an activator of puc expression in a hep-dependent manner in imaginal discs. Altogether, these results demonstrate a new role for the JNK pathway in epithelial morphogenesis, and provide genetic evidence for a role of the peripodial membrane in disc morphogenesis. We discuss a general model whereby the JNK pathway regulates morphogenesis of epithelia with differentiated edges.  相似文献   

3.
When a fragment of a Drosophila imaginal disc is cultured in growth permissive conditions, it either regenerates the missing structures or duplicates the pattern present in the fragment. This kind of pattern regulation is known to be epimorphic, i.e. the new pattern is generated by proliferation in a specialized tissue called the blastema. Pattern regulation is accompanied by the healing of the cut surfaces restoring the continuous epithelia. Wound healing has been considered to be the inductive signal to commence regenerative cell divisions. Although the general outlines of the proliferation dynamics in a regenerating imaginal disc blastema have been well studied, little is known about the mechanisms driving cells into the regenerative cell cycles. In this study, we have investigated the role of Jun N-terminal Kinase (JNK) signaling in the wound healing and regeneration of a Drosophila wing imaginal disc. By utilizing in vivo and in vitro culturing of incised and fragmented discs, we have been able to visualize the dynamics in cellular architecture and gene expression involved in the healing and regeneration process. Our results directly show that homotypic wound healing is not a prerequisite for regenerative cell divisions. We also show that JNK signaling participates in imaginal disc wound healing and is regulated by the physical dynamics of the process, as well as in recruiting cells into the regenerative cell cycles. A model describing the determination of blastema size is discussed.  相似文献   

4.
Dorsal closure, a morphogenetic movement during Drosophila embryogenesis, is controlled by the Drosophila JNK pathway, D-Fos and the phosphatase Puckered (Puc). To identify principles of epithelial closure processes, we studied another cell sheet movement that we term thorax closure, the joining of the parts of the wing imaginal discs which give rise to the adult thorax during metamorphosis. In thorax closure a special row of margin cells express puc and accumulate prominent actin fibres during midline attachment. Genetic data indicate a requirement of D-Fos and the JNK pathway for thorax closure, and a negative regulatory role of Puc. Furthermore, puc expression co-localises with elevated levels of D-Fos, is reduced in a JNK or D-Fos loss-of-function background and is ectopically induced after JNK activation. This suggests that Puc acts downstream of the JNK pathway and D-Fos to mediate a negative feed-back loop. Therefore, the molecular circuitry required for thorax closure is very similar to the one directing dorsal closure in the embryo, even though the tissues are not related. This finding supports the hypothesis that the mechanism controlling dorsal closure has been co-opted for thorax closure in the evolution of insect metamorphosis and may represent a more widely used functional module for tissue closure in other species as well.  相似文献   

5.
Dorsal closure (DC) is a morphogenetic movement that establishes the dorsal ectoderm of the drosophila embryo. During this process, the two lateral epithelia stretch toward the dorsal midline, the suture line of the two leading edges. Cell migration during DC relies both on cell shape change controlled by the activity of the JNK pathway in the leading edge cells and modification of cell adhesiveness, probably dependent upon activation of the Dpp (TGF-beta) pathway. Coupling of the JNK and TGF-beta pathways is essential. The sequence of the cellular and molecular events of DC highlights interesting common features with wound healing in vertebrates. Like DC, wound healing relies on the migration of epithelia bordered by leading edges controlling the direction and speed of the movement. This review summarizes recent data concerning the control of epithelial morphogenesis during DC and the bases of wound healing. The molecular and cellular events that underlie these two analogous migratory processes are detailed, discussed and compared. We suggest that DC is a good genetic model for wound healing studying.  相似文献   

6.
Following a period of neglect, there has been a resurgence of interest in Drosophila imaginal discs as a model with which to analyze the relationships between growth and pattern formation during regeneration. To broaden our understanding of this process, we used cell lineage techniques to trace the origin of blastema cells and the early and late boundaries of the blastema in regenerating 3/4 wing disc fragments, examined the distribution of S-phase, mitotic and dead cells, and undertook clonal analysis to determine the topology of cell proliferation and its relationship to pattern formation. Using lineage tagging with the JNK phosphatase puckered (puc), we demonstrate that a substantial number of blastema cells arise from cells in which JNK is activated. Furthermore, we show that DNA synthesis and mitosis are activated well before wound healing is completed, in a region where the JNK pathway is activated; later, DNA synthesis and mitosis are observed in scattered cells throughout the blastema. Finally, clonal analysis shows a close relationship between the size and shape of clones and disparities in the positional values of the apposed surfaces.  相似文献   

7.
During Drosophila oogenesis, the formation of the egg respiratory appendages and the micropyle require the shaping of anterior and dorsal follicle cells. Prior to their morphogenesis, cells of the presumptive appendages are determined by integrating dorsal-ventral and anterior-posterior positional information provided by the epidermal growth factor receptor (EGFR) and Decapentaplegic (Dpp) pathways, respectively. We show here that another signaling pathway, the Drosophila Jun-N-terminal kinase (JNK) cascade, is essential for the correct morphogenesis of the dorsal appendages and the micropyle during oogenesis. Mutant follicle cell clones of members of the JNK pathway, including DJNKK/hemipterous (hep), DJNK/basket (bsk), and Djun, block dorsal appendage formation and affect the micropyle shape and size, suggesting a late requirement for the JNK pathway in anterior chorion morphogenesis. In support of this view, hep does not affect early follicle cell patterning as indicated by the normal expression of kekkon (kek) and Broad-Complex (BR-C), two of the targets of the EGFR pathway in dorsal follicle cells. Furthermore, the expression of the TGF-beta homolog dpp, which is under the control of hep in embryos, is not coupled to JNK activity during oogenesis. We show that hep controls the expression of puckered (puc) in the follicular epithelium in a cell-autonomous manner. Since puc overexpression in the egg follicular epithelium mimics JNK appendages and micropyle phenotypes, it indicates a negative role of puc in their morphogenesis. The role of the JNK pathway in the morphogenesis of follicle cells and other epithelia during development is discussed.  相似文献   

8.
9.
Drosophila imaginal discs are monolayered epithelial invaginations that grow during larval stages and evert at metamorphosis to assemble the adult exoskeleton. They consist of columnar cells, forming the imaginal epithelium, as well as squamous cells, which constitute the peripodial epithelium and stalk (PS). Here, we uncover a new morphogenetic/cellular mechanism for disc eversion. We show that imaginal discs evert by apposing their peripodial side to the larval epidermis and through the invasion of the larval epidermis by PS cells, which undergo a pseudo-epithelial-mesenchymal transition (PEMT). As a consequence, the PS/larval bilayer is perforated and the imaginal epithelia protrude, a process reminiscent of other developmental events, such as epithelial perforation in chordates. When eversion is completed, PS cells localize to the leading front, heading disc expansion. We found that the JNK pathway is necessary for PS/larval cells apposition, the PEMT, and the motile activity of leading front cells.  相似文献   

10.
11.
MAPK phosphatases (MKPs) are important negative regulators of MAPKs in vivo, but ascertaining the role of specific MKPs is hindered by functional redundancy in vertebrates. Thus, we characterized MKP function by examining the function of Puckered (Puc), the sole Drosophila Jun N-terminal kinase (JNK)-specific MKP, during embryonic and imaginal disc development. We demonstrate that Puc is a key anti-apoptotic factor that prevents apoptosis in epithelial cells by restraining basal JNK signaling. Furthermore, we demonstrate that JNK signaling plays an important role in gamma-irradiation-induced apoptosis, and examine how JNK signaling fits into the circuitry regulating this process. Radiation upregulates both JNK activity and puc expression in a p53-dependent manner, and apoptosis induced by loss of Puc can be suppressed by p53 inactivation. JNK signaling acts upstream of both Reaper and effector caspases. Finally, we demonstrate that JNK signaling directs normal developmentally regulated apoptotic events. However, if cell death is prevented, JNK activation can trigger tissue overgrowth. Thus, MKPs are key regulators of the delicate balance between proliferation, differentiation and apoptosis during development.  相似文献   

12.
The coordinated migration and fusion of epithelial sheets is a crucial morphogenetic tool used on numerous occasions during the normal development of an embryo and re-activated as part of the wound healing response. Drosophila dorsal closure, whereby a hole in the embryonic epithelium is zipped closed late in embryogenesis, serves as an excellent, genetically tractable model for epithelial migration. Using live confocal imaging, we have dissected multiple roles for the small GTPase Rac in this process. We show that constitutive activation of Rac1 leads to excessive assembly of lamellipodia and precocious halting of epithelial sweeping, possibly through premature activation of contact-inhibition machinery. Conversely, blocking Rac activity, either by loss-of-function mutations or expression of dominant negative Rac1, disables the assembly of both actin cable and protrusions by epithelial cells. Movies of mutant embryos show that continued contraction of the amnioserosa is sufficient to draw the epithelial edges towards one another, allowing the zipper machinery to bypass non-functioning regions of leading edge. In addition to illustrating the key role of Rac in organization of leading edge actin, loss-of-function mutants also provide substantive proof that Rac acts upstream in the Jun N-terminal kinase (JNK) cascade to direct epithelial cell shape changes during dorsal closure.  相似文献   

13.
Thorax closure in Drosophila is a process during adult morphogenesis in which the anterior ends of the presumptive notum of the two wing imaginal discs fuse to make a seamless thorax. Similar to dorsal closure during embryogenesis, this process is regulated by plegic and JNK signaling pathways. Despite the fact that Peripodial Membrane (PM) cells do not contribute to the formation of any adult structure, they are known to facilitate the process of thorax closure. Here we show that JNK signaling is activated only in a subset of PM cells, known as medial edge cells. While the mechanism that activates JNK signaling specifically in the medial edge cells of the PM is still not understood, the results presented here show that the pair rule gene odd skipped is required to ensure that JNK signaling is not activated anywhere else in the wing disc. Medial edge cells of the PM are elongated in shape, while the remaining PM cells are hexagonal. Down regulation of JNK signaling in the medial edge cells results in defective thorax closure in adult flies. It also causes the transformation of the morphology of medial edge cells into hexagonal shape. Conversely, activation of JNK signaling in hexagonal cells of the PM causes transformation of their morphology to elongated shape. Thus, similar to dorsal closure during embryogenesis, JNK-mediated elongation of medial edge cells is functionally correlated to the process of thorax closure.  相似文献   

14.
Zhang M  Liu NY  Wang XE  Chen YH  Li QL  Lu KR  Sun L  Jia Q  Zhang L  Zhang L 《PloS one》2011,6(9):e25143

Background

Activin B has been reported to promote the proliferation and migration of keratinocytes in vitro via the RhoA-JNK signaling pathway, whereas its in vivo role and mechanism in wound healing process has not yet been elucidated.

Principal Findings

In this study, we explored the potential mechanism by which activin B induces epithelial wound healing in mice. Recombinant lentiviral plasmids, with RhoA (N19) and RhoA (L63) were used to infect wounded KM mice. The wound healing process was monitored after different treatments. Activin B-induced cell proliferation on the wounded skin was visualized by electron microscopy and analyzed by 5′-bromodeoxyuridine (BrdU) incorporation assay. Protein expression of p-JNK or p-cJun was determined by immunohistochemical staining and immunoblotting analysis. Activin B efficiently stimulated the proliferation of keratinocytes and hair follicle cells at the wound area and promoted wound closure. RhoA positively regulated activin B-induced wound healing by up-regulating the expression of p-JNK and p-cJun. Moreover, suppression of RhoA activation delayed activin B-induced wound healing, while JNK inhibition recapitulated phenotypes of RhoA inhibition on wound healing.

Conclusion

These results demonstrate that activin B promotes epithelial wound closure in vivo through the RhoA-Rock-JNK-cJun signaling pathway, providing novel insight into the essential role of activin B in the therapy of wound repair.  相似文献   

15.
16.
A newly emerged oncogenic cell in the epithelial population has to confront antitumor selective pressures in the host tissue. However, the mechanisms by which surrounding normal tissue exerts antitumor effects against oncogenically transformed cells are poorly understood. In Drosophila imaginal epithelia, clones of cells mutant for evolutionarily conserved tumor suppressor genes such as scrib or dlg lose their epithelial integrity and are eliminated from epithelia when surrounded by wild-type tissue. Here, we show that surrounding normal cells activate nonapoptotic JNK signaling in response to the emergence of oncogenic mutant cells. This JNK activation leads to upregulation of PVR, the Drosophila PDGF/VEGF receptor. Genetic and time-lapse imaging analyses reveal that PVR expression in surrounding cells activates the ELMO/Mbc-mediated phagocytic pathway, thereby eliminating oncogenic neighbors by engulfment. Our data indicate that JNK-mediated cell engulfment could be an evolutionarily conserved intrinsic tumor-suppression mechanism that eliminates premalignant cells from epithelia.  相似文献   

17.
18.
The Ral GTPase is activated by RalGDS, which is one of the effector proteins for Ras. Previous studies have suggested that Ral might function to regulate the cytoskeleton; however, its in vivo function is unknown. We have identified a Drosophila homologue of Ral that is widely expressed during embryogenesis and imaginal disc development. Two mutant Drosophila Ral (DRal) proteins, DRal(G20V) and DRal(S25N), were generated and analyzed for nucleotide binding and GTPase activity. The biochemical analyses demonstrated that DRal(G20V) and DRal(S25N) act as constitutively active and dominant negative mutants, respectively. Overexpression of the wild-type DRal did not cause any visible phenotype, whereas DRal(G20V) and DRal(S25N) mutants caused defects in the development of various tissues including the cuticular surface, which is covered by parallel arrays of polarized structures such as hairs and sensory bristles. The dominant negative DRal protein caused defects in the development of hairs and bristles. These phenotypes were genetically suppressed by loss of function mutations of hemipterous and basket, encoding Drosophila Jun NH(2)-terminal kinase kinase (JNKK) and Jun NH(2)-terminal kinase (JNK), respectively. Expression of the constitutively active DRal protein caused defects in the process of dorsal closure during embryogenesis and inhibited the phosphorylation of JNK in cultured S2 cells. These results indicate that DRal regulates developmental cell shape changes through the JNK pathway.  相似文献   

19.
The Drosophila Jun N-terminal kinase (JNK) gene basket (bsk) promoter contains a DNA replication-related element (DRE)-like sequence, raising the possibility of regulation by the DNA replication-related element-binding factor (DREF). Chromatin immunoprecipitation assays with anti-DREF IgG showed the bsk gene promoter region to be effectively amplified. Luciferase transient expression assays revealed the DRE-like sequence to be important for bsk gene promoter activity, and knockdown of DREF decreased the bsk mRNA level and the bsk gene promoter activity. Furthermore, knockdown of DREF in the notum compartment of wing discs by pannier-GAL4 and UAS-DREFIR resulted in a split thorax phenotype. Monitoring of JNK activity in the wing disc by LacZ expression in a puckered (puc)-LacZ enhancer trap line revealed the reduction in DREF knockdown clones. These findings indicate that DREF is involved in regulation of Drosophila thorax development via actions on the JNK pathway.  相似文献   

20.
c-Jun N-terminal kinases (JNKs) are intracellular stress-activated signalling molecules, which are controlled by a highly evolutionarily conserved signalling cascade. In mammalian cells, JNKs are regulated by a wide variety of cellular stresses and growth factors and have been implicated in the regulation of remarkably diverse biological processes, such as cell shape changes, immune responses and apoptosis. How can such different stimuli activate the JNK pathway and what roles does JNK play in vivo? Molecular genetic analysis of the Drosophila JNK gene has started to provide answers to these questions, confirming the role of this molecule in development and stress responses and suggesting a conserved function for JNK signalling in processes such as wound healing. Here, we review this work and discuss how future experiments in Drosophila should reveal the cell type-specific mechanisms by which JNKs perform their diverse functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号