首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electromotive force E and the conductance G of the Characorallina plasmalemma were measured under voltage clamp conditions.In the depolarized voltage range less negative than –60mV, E changed according to the Nerhst equation for K+, and Gincreased with the external K+ concentration [K+]o and alsowith the depolarization of the membrane potential. This is attributedto the voltage-dependent opening of the K+ channels in the largelydepolarized voltage region. The voltage-dependent increase ofG was due to the increase of the number of open K+ channelsper unit area. The density of the total K+ channels in the C. corallina plasmalemmawas estimated to be about 6.50/(10 µm)2. The single K+channel conductance K changed with the external [K+]o; it was79.3, 86.1, 105.9, 119.0 pS for external [K+]o of 0.2, 0.5,2.0 and 5.0 mu respectively. (Received May 22, 1986; Accepted August 22, 1986)  相似文献   

2.
Smith, J. R. 1987. Potassium transport across the membranesof Chara. II. 42K fluxes and the electrical current as a functionof membrane voltage.—J. exp. Bot. 38: 752–777. The current required to clamp the trans-membrane voltage ofinternodal cells of Chara australis at different levels wasmeasured simultaneously with either the 42K influx or efflux.Examination of the voltage-dependence of the ratio of the electricalcurrent to the unidirectional tracer fluxes yielded no evidenceof any amplification of the electrical driving force on theK+ ions. There was thus no evidence for the interaction of K+ions with themselves or any other species during their passageacross the membrane. These measurements allow the determinationof , the fraction of the electrical current carried by K+ ions.When the external [K+] = 10 mol m–3, the average valueof was 0?85 for Vm > –125 mV and 07?5 for Vm <–150 mV. When the external [K+] = 0?1 mol m–3, was 0?6 for Vm < –80 mV and 0?1 for Vm > –250mV. It was also found that the conductance associated with K+transport was inhibited by hyperpolarization. Key words: Potassium, conductance, flux-ratio  相似文献   

3.
Barley (Hordeum vulgare L.) varieties differed in their raponseto [K+]0, in terms of their utilization efficiencies (UE = freshweight. concentration of [K+]1–1). At low [K+]0, Compana,an efficient-non-responder demonstrated superior utilizationof absorbed K+. On the other hand, at high [K+]0, Fergus (anefficient responder) and BT 334 (an inefficient responder) hadhigher UE values for K+ than Compana which performed poorlyat this [K+]0. Kinetic parameters for K+ activation of the enzyme pyruvatekinase from 12 barley varieties, representing a range of UEvalues, were determined. Varieties showed substantial differencesin their Vmax values (P<0·01). Compana, an efficientvariety, had the highest Vmax (31 µmol g–1 freshwt. h–1) which was about 50% higher than that of Mingo,an inefficient variety. By contrast, Km values for the enzymeswere not significantly different among varieties The mean valuesfor all varieties (3·9±0·15 mol m–3K+) is far below the estimated cytoplasmic [K+] (100-200 molm–3). It is, therefore, unlikely that differences in theutilization of K+ by these varieties can be explained on thebasis of differential requirements for (K+) activation of theseenzymes. Alternative possibilities for differences in the utilizationof K+ are discussed. Key words: K+ utilization efficiency, Pyruvate kinase, Barley varieties  相似文献   

4.
Memon, A. R., Saccomani, M. and Glass, A. D. M. 1985. Efficiencyof potassium utilization by barley varieties: The role of subcellularcompartmentation.?J. exp. Bot. 36: 1860–1876. The subcellulardistributions of K+ in roots of three barley (Hordeum vulgareL.) varieties, grown at 10 and 100 mmol m–3 external K+([K+]o) were estimated by compartmental analyses. In general,increased [K+]o caused a 2–3 fold increase in vacuolar[K+], but cytoplasmic [K+] increased only slightly. Nevertheless,the three varieties, which had been selected for study on thebasis of their different rates of K+ utilization, showed distinctdifferences in the allocation of K+ between cytoplasm and vacuole.At 10 mmol m–3 [K+]o var. Betzes exhibited typical K+deficiency symptoms while var. Fergus and var. Compana did not,even though Betzes had higher [K+] in shoots and roots. Theinefficient utilization of K+ in this variety appears to beassociated with a failure to mobilize vacuolar K+ into the cytoplasmiccompartment (the ratio of vacuolar: cytoplasmic K+ contentsfor Betzes was 4.1 compared to 2.7 and 2.5, respectively, forFergus and Compana). Fergus and Betzes, which demonstrate pronouncedgrowth responses to increased [K+]0 between 10 and 100 mmolm–3, showed significant increases of cytoplasmic [K+]in this range of [K+]o. By contrast, cytoplasmic [K+] in Compana,a variety whose growth is not stimulated by increased [K+]0(from 10 to 100 mmol m–3) showed virtually no increase.It is suggested that the efficiency of K+ utilization and thegrowth response to [K+]0 in these varieties are functions ofthe subcellular distribution of this ion between cytoplasm andvacuole. Key words: Barley varieties, K+ subcellular compartmentation, utilization efficiency  相似文献   

5.
Smith, J. R., Smith, F. A. and Walker, N. A. 1987. Potassiumtransport across the membrane of Chara. I. The relationshipbetween radioactive tracer influx and electrical conductance.—J.exp. Bot. 38:731–751. The 42K influx () and the electrical conductance (Gm) were measured simultaneously for the ‘membrane’of internodal cells of Chara australis as a function of theexternal [KCl] (K?. In bathing solutions of pH = 5?0, progressively increased from 20?5to 430?60 nmol m–2 s–1 and Gm increased from 0?36?0?02to 3?8?0?8 S m–2 when K? was increased from 0?1 to 10mol m–3. The resting membrane potential difference (p.d.)was approximately -135 mV for low K? and approached the expectedNernst equilibrium p.d. for K+ ions when K? > 1?0 mol m–3.Measurements of 36Cl influx suggested that the 42K influx waspredominantly electrogenic. The equivalent Goldman permeabilityto K+ ions (Pk) was approximately 20–30 nm s–1 anddid not vary significantly with increasing K?. The equivalentconductance attributable to the electrogenic transport of K+ ions was calculated from assuming passive, independent diffusionof K+ ions and the ratio was found to be typically close to one. It was also found that themagnitudes of and Gm measuredsimultaneously for each individual cell were also well correlatedfor K? 1?0 mol m–3, and that the slope of the line ofbest fit was close to one. For each K? it was found that theconductance not attributable to K+ translocation and presumablyassociated primarily with the transport of protons or theirequivalents was typically 0?2–0?5 Sm–2. For K? >1?0 mol m–3 the results indicated that the transport ofK+ ions was essentially independent, i.e. there was no evidencefor flux interactions. The results also indicated that the equivalentconductance derived from the measured 42K influx could usefullyindicate the fraction of the electrical conductance attributableto the translocation of K+ ions. Key words: Potassium, conductance, influx  相似文献   

6.
We hypothesized that highextracellular K+ concentration([K+]o)-mediated stimulation ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) may result in a net gain of K+ and Cland thus lead to high-[K+]o-induced swellingand glutamate release. In the current study, relative cell volumechanges were determined in astrocytes. Under 75 mM[K+]o, astrocytes swelled by 20.2 ± 4.9%. This high-[K+]o-mediated swelling wasabolished by the NKCC1 inhibitor bumetanide (10 µM, 1.0 ± 3.1%; P < 0.05). Intracellular36Cl accumulation was increased from acontrol value of 0.39 ± 0.06 to 0.68 ± 0.05 µmol/mgprotein in response to 75 mM [K+]o. Thisincrease was significantly reduced by bumetanide (P < 0.05). Basal intracellular Na+ concentration([Na+]i) was reduced from 19.1 ± 0.8 to16.8 ± 1.9 mM by bumetanide (P < 0.05).[Na+]i decreased to 8.4 ± 1.0 mM under75 mM [K+]o and was further reduced to5.2 ± 1.7 mM by bumetanide. In addition, the recovery rate of[Na+]i on return to 5.8 mM[K+]o was decreased by 40% in the presenceof bumetanide (P < 0.05). Bumetanide inhibitedhigh-[K+]o-induced 14C-labeledD-aspartate release by ~50% (P < 0.05).These results suggest that NKCC1 contributes tohigh-[K+]o-induced astrocyte swelling andglutamate release.

  相似文献   

7.
Phosphate Uptake in the Cyanobacterium Synechococcus R-2 PCC 7942   总被引:4,自引:0,他引:4  
Phosphate uptake rates in Synechococcus R-2 in BG-11 media (anitrate-based medium, not phosphate limited) were measured usingcells grown semi-continuously and in continuous culture. Netuptake of phosphate is proportional to external concentration.Growing cells at pHo 10 have a net uptake rate of about 600pmol m–2 s–1 phosphate, but the isotopic flux for32P phosphate was about 4 nmol m–2 s–1. There appearsto be a constitutive over-capacity for phosphate uptake. TheKm and Vmax, of the saturable component were not significantlydifferent at pHo 7.5 and 10, hence the transport system probablyrecognizes both H2PO4and HPO2–4. The intracellularinorganic phosphate concentration is about 3 to 10 mol m–3,but there is an intracellular polyphosphate store of about 400mol m–3. Intracellular inorganic phosphate is 25 to 50kJ mol–1 from electrochemical equilibrium in both thelight and dark and at pHo 7.5 and 10. Phosphate uptake is veryslow in the dark ( 100 pmol m–2 s–1) and is light-activated(pHo 7.51.3 nmol m–2 s–1, pHo 10600 pmol m–2s–1). Uptake has an irreversible requirement for Mg2+in the medium. Uptake in the light is strongly Na+-dependent.Phosphate uptake was negatively electrogenic (net negative chargetaken up when transporting phosphate) at pHo 7.5, but positivelyelectrogenic at pHo 10. This seems to exclude a sodium motiveforce driven mechanism. An ATP-driven phosphate uptake mechanismneeds to have a stoichiometry of one phosphate taken up perATP (1 PO4 in/ATP) to be thermodynamically possible under allthe conditions tested in the present study. (Received June 16, 1997; Accepted September 4, 1997)  相似文献   

8.
The euryhaline charophyte Lamprothamnium papulosum has the abilityto reduce the extracellular electron acceptor ferricyanide (Fe3+Cy).Addition of 0.5 mol m–3 Fe3+Cy stimulated H+-efflux ata rate of 0.8 H+/Fe3+Cy-reduced and increased K+-efflux intoa potassium-free medium at a rate of 0.66 K+/Fe3+Cy-reduced.0.5 mol m–3 Fe3+Cy-induced maximum membrane depolarizationfor cells with resting potentials more negative than the diffusionpotential. The peak value of Fe3+Cy-induced depolarizationswas similar to the potential obtained by poisoning the electrogenicpump with DCCD. The value of maximum depolarization was determinedby (K+)0. Em tended to more positive values with increasing(K+)0. Depolarizations coincided with a decrease in membraneresistance (Rm) from a resting value of 1.5 m2 to 0.2 m2 inthe depolarized state. Depolarization increased the sensitivityof the membrane potential (Em) to (K+)0. The resting potentialwas only slightly changed when (K+)0 was increased from 3 to15 mol m–3. The Fe3+ Cy-induced depolarized Em changedin a Nernstian fashion when (K+)0 was increased. It is concludedthat Fe3+Cy reduction causes a net depolarization current flowacross the plasmalemma. The depolarization shifts the membranefrom a hyperpolarized pump dominated state into a depolarizedK+ diffusion state. Key words: Ferricyanide reduction, membrane potential, Lamprothamnium  相似文献   

9.
In this study, we have investigated the dependence of Na+ transport regulation on membrane cholesterol content in A6 renal epithelia. We continuously monitored short-circuit current (Isc), transepithelial conductance (GT), and transepithelial capacitance (CT) to evaluate the effects of cholesterol extraction from the apical and basolateral membranes in steady-state conditions and during activation with hyposmotic shock, oxytocin, and adenosine. Cholesterol extraction was achieved by perfusing the epithelia with methyl--cyclodextrin (mCD) for 1 h. In steady-state conditions, apical membrane cholesterol extraction did not significantly affect the electrophysiological parameters; in contrast, marked reductions were observed during basolateral mCD treatment. However, apical mCD application hampered the responses of Isc and GT to hypotonicity, oxytocin, and adenosine. Analysis of the blocker-induced fluctuation in Isc demonstrated that apical mCD treatment decreased the epithelial Na+ channel (ENaC) open probability (Po) in the steady state as well as after activation of Na+ transport by adenosine, whereas the density of conducting channels was not significantly changed as confirmed by CT measurements. Na+ transport activation by hypotonicity was abolished during basolateral mCD treatment as a result of reduced Na+/K+ pump activity. On the basis of the findings in this study, we conclude that basolateral membrane cholesterol extraction reduces Na+/K+ pump activity, whereas the reduced cholesterol content of the apical membranes affects the activation of Na+ transport by reducing ENaC Po. epithelial Na+ channel; Na+-K+-ATPase activity; short-circuit current; methyl--cyclodextrin; channel open probability  相似文献   

10.
A modest diet-induced increase in serum cholesterol in rabbits increases the sensitivity of the sarcolemmal Na+/K+ pump to intracellular Na+, whereas a large increase in cholesterol levels decreases the sensitivity to Na+. To examine the mechanisms, we isolated cardiac myocytes from controls and from rabbits with diet-induced increases in serum cholesterol. The myocytes were voltage clamped with the use of patch pipettes that contained osmotically balanced solutions with Na+ in a concentration of 10 mM and K+ in concentrations ([K+]pip) ranging from 0 to 140 mM. There was no effect of dietary cholesterol on electrogenic Na+/K+ current (Ip) when pipette solutions were K+ free. A modest increase in serum cholesterol caused a [K+]pip-dependent increase in Ip, whereas a large increase caused a [K+]pip-dependent decrease in Ip. Modeling suggested that pump stimulation with a modest increase in serum cholesterol can be explained by a decrease in the microscopic association constant KK describing the backward reaction E1 + 2K+ E2(K+)2, whereas pump inhibition with a large increase in serum cholesterol can be explained by an increase in KK. Because hypercholesterolemia upregulates angiotensin II receptors and because angiotensin II regulates the Na+/K+ pump in cardiac myocytes in a [K+]pip-dependent manner, we blocked angiotensin synthesis or angiotensin II receptors in vivo in cholesterol-fed rabbits. This abolished cholesterol-induced pump inhibition. Because the -isoform of protein kinase C (PKC) mediates effects of angiotensin II on the pump, we included specific PKC-blocking peptide in patch pipette filling solutions. The peptide reversed cholesterol-induced pump inhibition. partial reactions; protein kinase C; angiotensin converting enzyme inhibitors; arteriosclerosis; insulin resistance  相似文献   

11.
A possible role of extracellular Cl concentration ([Cl]o) in fatigue was investigated in isolated skeletal muscles of the mouse. When [Cl]o was lowered from 128 to 10 mM, peak tetanic force was unchanged, fade was exacerbated (wire stimulation electrodes), and a hump appeared during tetanic relaxation in both nonfatigued slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles. Low [Cl]o increased the rate of fatigue 1) with prolonged, continuous tetanic stimulation in soleus, 2) with repeated intermittent tetanic stimulation in soleus or EDL, and 3) to a greater extent with repeated tetanic stimulation when wire stimulation electrodes were used rather than plate stimulation electrodes in soleus. In nonfatigued soleus muscles, application of 9 mM K+ with low [Cl]o caused more rapid and greater tetanic force depression, along with greater depolarization, than was evident at normal [Cl]o. These effects of raised [K+]o and low [Cl]o were synergistic. From these data, we suggest that normal [Cl]o provides protection against fatigue involving high-intensity contractions in both fast- and slow-twitch mammalian muscle. This phenomenon possibly involves attenuation of the depolarization caused by stimulation- or exercise-induced run-down of the transsarcolemmal K+ gradient. potassium; skeletal muscle contraction; membrane potential; myotonia  相似文献   

12.
Smith, J. R. and Kerr, R. J. 1987. Potassium transport acrossthe membranes of Chara. IV. Interactions with other cations.—J.exp. Bot. 38: 788–799. The 42K influx () and the membrane electrical conductance (Gm were measured simultaneously forintemodal cells of Chara australis bathed in solutions containingdifferent concentrations of various cationic species. It wasfound that the potassium permeability (Pk,) of the membranewas reduced significantly when the bathing [CaSO4 exceeded 01mol m–1. Concentrations of tetra-ethylammonium ions (TEA)exceeding 0?3 mol m–3 were found to reduce significantlyboth and , but even high concentrations (10 mol m–3)usually did not reduce the fluxes by more than a factor of 3.Na+ ions were found to be capable of reducing PK by a factorof 5?6 to a value of 4 nm s–1. This appeared to be aminimum value for PK which was not reduced even if several inhibitorycations were present simultaneously. This suggests that possiblyonly one of two different modes of K+ transport can be inhibitedby cations. The possible geometry of the inhibitable K+ channelis briefly discussed and the implications of the presence ofNa+ and Ca2+ ions in many common bathing solutions are considered. Key words: Potassium, calcium, tetraethylammonium, inhibition  相似文献   

13.
To examine effects of cytosolicNa+, K+, and Cs+ on the voltagedependence of the Na+-K+ pump, we measuredNa+-K+ pump current (Ip)of ventricular myocytes voltage-clamped at potentials(Vm) from 100 to +60 mV. Superfusates weredesigned to eliminate voltage dependence at extracellular pump sites.The cytosolic compartment of myocytes was perfused with patch pipette solutions with a Na+ concentration ([Na]pip)of 80 mM and a K+ concentration from 0 to 80 mM or withsolutions containing Na+ in concentrations from 0.1 to 100 mM and K+ in a concentration of either 0 or 80 mM. When[Na]pip was 80 mM, K+ in pipette solutionshad a voltage-dependent inhibitory effect on Ipand induced a negative slope of theIp-Vm relationship. Cs+ in pipette solutions had an effect onIp qualitatively similar to that ofK+. Increases in Ip with increasesin [Na]pip were voltage dependent. The dielectriccoefficient derived from[Na]pip-Ip relationships at thedifferent test potentials was 0.15 when pipette solutions included 80 mM K+ and 0.06 when pipette solutions were K+ free.

  相似文献   

14.
Insulin enhancesNa+-K+ pump activity in various noncardiactissues. We examined whether insulin exposure in vitro regulates Na+-K+ pump function in rabbit ventricularmyocytes. Pump current (Ip) was measured using thewhole-cell patch-clamp technique at test potentials(Vms) from 100 to +60 mV. When theNa+ concentration in the patch pipette([Na]pip) was 10 mM, insulin caused aVm-dependent increase in Ip.The increase was ~70% when Vm was at nearphysiological diastolic potentials. This effect persisted afterelimination of extracellular voltage-dependent steps and whenK+ and K+-congeners were excluded from thepatch pipettes. When [Na]pip was 80 mM, causingnear-maximal pump stimulation, insulin had no effect, suggesting thatit did not cause an increase in membrane pump density. Effects oftyrphostin A25, wortmannin, okadaic acid, or bisindolylmaleimide I inpipette solutions suggested that the insulin-induced increase inIp involved activation of tyrosine kinase,phosphatidylinositol 3-kinase, and protein phosphatase 1, whereasprotein phosphatase 2A and protein kinase C were not involved.

  相似文献   

15.
Control of Passive Permeability in the Chara Plasmalemma   总被引:2,自引:0,他引:2  
Conductance to K+ alters as a function of membrane potential(m). Conductance to H+ (or OH) changes with externalpH (pHo) This conductance change can be modulated by alteringcytoplasmic pH or external K+ concentration, both of which alsoalter m. We suggest a role for H+ conductance in regulatingcytoplasmic pH above pHo 7.0.  相似文献   

16.
Cell-attached recordings revealedK+ channel activity in basolateral membranes ofguinea pig distal colonic crypts. Inwardly rectified currents wereapparent with a pipette solution containing 140 mM K+.Single-channel conductance () was 9 pS at the resting membrane potential. Another inward rectifier with  of 19 pS was observed occasionally. At a holding potential of 80 mV,  was 21 and 41 pS,respectively. Identity as K+ channels was confirmed afterpatch excision by changing the bath ion composition. From reversalpotentials, relative permeability of Na+ overK+ (PNa/PK)was 0.02 ± 0.02, withPRb/PK = 1.1 andPCl/PK < 0.03. Spontaneous open probability (Po) of the 9-pSinward rectifier (gpKir) was voltageindependent in cell-attached patches. Both a low(Po = 0.09 ± 0.01) and a moderate(Po = 0.41 ± 0.01) activity mode wereobserved. Excision moved gpKir to the mediumactivity mode; Po ofgpKir was independent of bath Ca2+activity and bath acidification. Addition of Cl andK+ secretagogues altered Po ofgpKir. Forskolin or carbachol (10 µM)activated the small-conductance gpKir inquiescent patches and increased Po inlow-activity patches. K+ secretagogues, either epinephrine(5 µM) or prostaglandin E2 (100 nM), decreasedPo of gpKir in activepatches. This gpKir may be involved inelectrogenic secretion of Cl and K+ acrossthe colonic epithelium, which requires a large basolateral membraneK+ conductance during maximal Cl secretionand, presumably, a lower K+ conductance during primaryelectrogenic K+ secretion.

  相似文献   

17.
Secretion of Cl and K+ in the colonic epithelium operates through a cellular mechanism requiring K+ channels in the basolateral and apical membranes. Transepithelial current [short-circuit current (Isc)] and conductance (Gt) were measured for isolated distal colonic mucosa during secretory activation by epinephrine (Epi) or PGE2 and synergistically by PGE2 and carbachol (PGE2 + CCh). TRAM-34 at 0.5 µM, an inhibitor of KCa3.1 (IK, Kcnn4) K+ channels (H. Wulff, M. J. Miller, W. Hänsel, S. Grissmer, M. D. Cahalan, and K. G. Chandy. Proc Natl Acad Sci USA 97: 8151–8156, 2000), did not alter secretory Isc or Gt in guinea pig or rat colon. The presence of KCa3.1 in the mucosa was confirmed by immunoblot and immunofluorescence detection. At 100 µM, TRAM-34 inhibited Isc and Gt activated by Epi (4%), PGE2 (30%) and PGE2 + CCh (60%). The IC50 of 4.0 µM implicated involvement of K+ channels other than KCa3.1. The secretory responses augmented by the K+ channel opener 1-EBIO were inhibited only at a high concentration of TRAM-34, suggesting further that KCa3.1 was not involved. Sensitivity of the synergistic response (PGE2 + CCh) to a high concentration TRAM-34 supported a requirement for multiple K+ conductive pathways in secretion. Clofilium (100 µM), a quaternary ammonium, inhibited Cl secretory Isc and Gt activated by PGE2 (20%) but not K+ secretion activated by Epi. Thus Cl secretion activated by physiological secretagogues occurred without apparent activity of KCa3.1 channels but was dependent on other types of K+ channels sensitive to high concentrations of TRAM-34 and/or clofilium. epinephrine; prostaglandin E2; cholinergic; Kcnn4; TRAM-34; clofilium  相似文献   

18.
We have reported that ryanodine receptor (RyR) channels display three different responses to cytoplasmic free Ca2+ concentration ([Ca2+]) depending on their redox state (Marengo JJ, Hidalgo C, and Bull R. Biophys J 74: 1263–1277, 1998), with low, moderate, and high maximal fractional open times (Po). Activation by ATP of single RyR channels from rat brain cortex was tested in planar lipid bilayers with 10 or 0.1 µM cytoplasmic [Ca2+]. At 10 µM [Ca2+], low-Po channels presented lower apparent affinity to activation by ATP [[ATP] for half-maximal activation (KaATP) = 422 µM] than moderate-Po channels (KaATP = 82 µM). Oxidation of low-Po channels with thimerosal or 2,2'-dithiodipyridine (DTDP) gave rise to moderate-Po channels and decreased KaATP from 422 to 82 µM. At 0.1 µM cytoplasmic [Ca2+], ATP induced an almost negligible activation of low-Po channels. After oxidation to high-Po behavior, activation by ATP was markedly increased. Noise analysis of single-channel fluctuations of low-Po channels at 10 µM [Ca2+] plus ATP revealed the presence of subconductance states, suggesting a conduction mechanism that involves four independent subchannels. On oxidation the subchannels opened and closed in a concerted mode. subconductance states; calcium ion release channels; calcium ion regulation; thimerosal; 2,2'-dithiodipyridine  相似文献   

19.
The cellular mechanism for Cl and K+ secretion in the colonic epithelium requires K+ channels in the basolateral and apical membranes. Colonic mucosa from guinea pig and rat were fixed, sectioned, and then probed with antibodies to the K+ channel proteins KVLQT1 (Kcnq1) and minK-related peptide 2 (MiRP2, Kcne3). Immunofluorescence labeling for Kcnq1 was most prominent in the lateral membrane of crypt cells in rat colon. The guinea pig distal colon had distinct lateral membrane immunoreactivity for Kcnq1 in crypt and surface cells. In addition, Kcne3, an auxiliary subunit for Kcnq1, was detected in the lateral membrane of crypt and surface cells in guinea pig distal colon. Transepithelial short-circuit current (Isc) and transepithelial conductance (Gt) were measured for colonic mucosa during secretory activation by epinephrine (EPI), prostaglandin E2 (PGE2), and carbachol (CCh). HMR1556 (10 µM), an inhibitor of Kcnq1 channels (Gerlach U, Brendel J, Lang HJ, Paulus EF, Weidmann K, Brüggemann A, Busch A, Suessbrich H, Bleich M, and Greger R. J Med Chem 44: 3831–3837, 2001), partially (50%) inhibited Cl secretory Isc and Gt activated by PGE2 and CCh in rat colon with an IC50 of 55 nM, but in guinea pig distal colon Cl secretory Isc and Gt were unaltered. EPI-activated K+-secretory Isc and Gt also were essentially unaltered by HMR1556 in both rat and guinea pig colon. Although immunofluorescence labeling with a Kcnq1 antibody supported the basolateral membrane presence in colonic epithelium of the guinea pig as well as the rat, the Kcnq1 K+ channel is not an essential component for producing Cl secretion. Other K+ channels present in the basolateral membrane presumably must also contribute directly to the K+ conductance necessary for K+ exit during activation of Cl secretion in the colonic mucosa. HMR1556; K+ secretion; epinephrine; prostaglandin E2; cholinergic  相似文献   

20.
Intensive exercise is associated with a pronounced increase in extracellular K+ ([K+]o). Because of the ensuing depolarization and loss of excitability, this contributes to muscle fatigue. Intensive exercise also increases the level of circulating catecholamines and lactic acid, which both have been shown to alleviate the depressing effect of hyperkalemia in slow-twitch muscles. Because of their larger exercise-induced loss of K+, fast-twitch muscles are more prone to fatigue caused by increased [K+]o than slow-twitch muscles. Fast-twitch muscles also produce more lactic acid. We therefore compared the effects of catecholamines and lactic acid on the maintenance of contractility in rat fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles. Intact muscles were mounted on force transducers and stimulated electrically to evoke short isometric tetani. Elevated [K+]o (11 and 13 mM) was used to reduce force to 20% of control force at 4 mM K+. In EDL, the 2-agonist salbutamol (10–5 M) restored tetanic force to 83 ± 2% of control force, whereas in soleus salbutamol restored tetanic force to 93 ± 1%. In both muscles, salbutamol induced hyperpolarization (5–8 mV), reduced intracellular Na+ content and increased Na+-K+ pump activity, leading to an increased K+ tolerance. Lactic acid (24 mM) restored force from 22 ± 4% to 58 ± 2% of control force in EDL, an effect that was significantly lower than in soleus muscle. These results amplify and generalize the concept that the exercise-induced acidification and increase in plasma catecholamines counterbalance fatigue arising from rundown of Na+ and K+ gradients. muscle fatigue; Na+-K+ pump; membrane potential  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号