首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In prokaryotes, lateral gene transfer across chromosomal lineages may be mediated by plasmids, phages, transposable elements, and other accessory DNA elements. However, the importance of such transfer and the evolutionary forces that may restrict gene exchange remain largely unexplored in native settings. In this study, tests of phylogenetic congruence are employed to explore the range of horizontal transfer of symbiotic (sym) loci among distinct chromosomal lineages of native rhizobia, the nitrogen-fixing symbiont of legumes. Rhizobial strains isolated from nodules of several host plant genera were sequenced at three loci: symbiotic nodulation genes (nodB and nodC), the chromosomal housekeeping locus glutamine synthetase II (GSII), and a portion of the 16S rRNA gene. Molecular phylogenetic analysis shows that each locus generally subdivides strains into the same major groups, which correspond to the genera Rhizobium, Sinorhizobium, and Mesorhizobium. This broad phylogenetic congruence indicates a lack of lateral transfer across major chromosomal subdivisions, and it contrasts with previous studies of agricultural populations showing broad transfer of sym loci across divergent chromosomal lineages. A general correspondence of the three rhizobial genera with major legume groups suggests that host plant associations may be important in the differentiation of rhizobial nod and chromosomal loci and may restrict lateral transfer among strains. The second major result is a significant incongruence of nod and GSII phylogenies within rhizobial subdivisions, which strongly suggests horizontal transfer of nod genes among congenerics. This combined evidence for lateral gene transfer within, but not between, genetic subdivisions supports the view that rhizobial genera are "reproductively isolated" and diverge independently. Differences across rhizobial genera in the specificity of host associations imply that the evolutionary dynamics of the symbiosis vary considerably across lineages in native settings.   相似文献   

2.
Organisms have acquired plastids by convoluted paths that have provided multiple opportunities for gene transfer into a host nucleus from intracellular organisms, including the cyanobacterial ancestor of plastids, the proteobacterial ancestor of mitochondria, and both green and red algae whose engulfment has led to secondary acquisition of plastids. These gene movements are most accurately demonstrated by building phylogenetic trees that identify the evolutionary origin of each gene, and one effective tool for this is “PhIGs” (Phylogenetically Inferred Groups; http://PhIGs.org ), a set of databases and computer tools with a Web interface for whole‐genome evolutionary analysis. PhIGs takes as input gene sets of completely sequenced genomes, builds clusters of genes using a novel, graph‐based approach, and reconstructs the evolutionary relationships among all gene families. The user can view and download the sequence alignments, compare intron‐exon structures, and follow links to functional genomic databases. Currently, PhIGs contains 652,756 genes from 45 genomes grouped into 61,059 gene families. Graphical displays show the relative positions of these genes among genomes. PhIGs has been used to detect the evolutionary transfer of hundreds of genes from cyanobacteria and red algae into oömycete nuclear genomes, revealing that even though they have no plastids, their ancestors did, having secondarily acquired them from an intracellular red alga. A great number of genomes are soon to become available that are relevant to our broader understanding of the movement of genes among intracellular compartments after engulfing other organisms, and PhIGs will be an effective tool to interpret these gene movements.  相似文献   

3.
To obtain the phylogenetic relationship between diploid and tetraploid Misgurnus anguillicaudatus, the mitochondrial cyt b gene in the diploid and tetraploid weather loach were isolated and sequenced. The DNA sequences were analyzed using MEGA 3.0 software to determine the phylogenetic relationship. Forty-five variable sites among cyt b gene sequences and 18 amino acid substitutions occurred within the diploid and tetraploid loaches as deduced from the nucleotide sequences analysis of the cyt b gene. The nucleotide pairwise distance between diploid and tetraploid loach ranged from 0.001 to 0.025. Phylogenetic analysis revealed evolutionary relationships between diploid and tetraploid loach. Our results indicated a significant difference between diploid and tetraploid loach about the cyt b gene. AMOVA analysis indicated that there were no significant genetic variations within diploid loaches (Fst = 0.2529, P > 0.05) and within tetraploid loaches (Fst = 0.0564, P > 0.05), neither. However, significant genetic differences were found between diploid and tetraploid loaches (Fst = 0.7634, P < 0.05). Thus, it is concluded that no reproductive isolation was found within the same cytotypes of different localities, but there was reproductive isolation between these two cytotypes. The diploid loach existed before the tetraploid loach in nature. The present study is the first to describe the phylogenetic relationships of natural polyploidy weather loach using mtDNA cyt b gene.  相似文献   

4.
Discordant phylogenies within the rrn loci of Rhizobia   总被引:9,自引:0,他引:9       下载免费PDF全文
It is evident from complete genome sequencing results that lateral gene transfer and recombination are essential components in the evolutionary process of bacterial genomes. Since this has important implications for bacterial systematics, the primary objective of this study was to compare estimated evolutionary relationships among a representative set of alpha-Proteobacteria by sequencing analysis of three loci within their rrn operons. Tree topologies generated with 16S rRNA gene sequences were significantly different from corresponding trees assembled with 23S rRNA gene and internally transcribed space region sequences. Besides the incongruence in tree topologies, evidence that distinct segments along the 16S rRNA gene sequences of bacteria currently classified within the genera Bradyrhizobium, Mesorhizobium and Sinorhizobium have a reticulate evolutionary history was also obtained. Our data have important implications for bacterial taxonomy, because currently most taxonomic decisions are based on comparative 16S rRNA gene sequence analysis. Since phylogenetic placement based on 16S rRNA gene sequence divergence perhaps is questionable, we suggest that the proposals of bacterial nomenclature or changes in their taxonomy that have been made may not necessarily be warranted. Accordingly, a more conservative approach should be taken in the future, in which taxonomic decisions are based on the analysis of a wider variety of loci and comparative analytical methods are used to estimate phylogenetic relationships among the genomes under consideration.  相似文献   

5.

Background  

The ever-increasing wealth of genomic sequence information provides an unprecedented opportunity for large-scale phylogenetic analysis. However, species phylogeny inference is obfuscated by incongruence among gene trees due to evolutionary events such as gene duplication and loss, incomplete lineage sorting (deep coalescence), and horizontal gene transfer. Gene tree parsimony (GTP) addresses this issue by seeking a species tree that requires the minimum number of evolutionary events to reconcile a given set of incongruent gene trees. Despite its promise, the use of gene tree parsimony has been limited by the fact that existing software is either not fast enough to tackle large data sets or is restricted in the range of evolutionary events it can handle.  相似文献   

6.
SUMMARY: RED-T is a Java application for phylogenetic analysis based on a unique method, RED, that utilizes the ratios of evolutionary distances E(d) to distinguish between alternative evolutionary histories. RED-T allows the user to examine if any given experimental gene shares the same evolutionary history as the designated control gene(s). Moreover, the tool detects any differences in evolutionary history and allows the user to examine comparisons of E(d) for a likely explanation. Lateral gene transfer, which may have a significant influence in organismal evolution is one mechanism that could explain the findings of these RED-T analyses. AVAILABILITY: The application is available online at http://www.arches.uga.edu/~whitman/RED.  相似文献   

7.

Background  

Phylogenetic trees resulting from molecular phylogenetic analysis are available in Newick format from specialized databases but when it comes to phylogenetic networks, which provide an explicit representation of reticulate evolutionary events such as recombination, hybridization or lateral gene transfer, the lack of a standard format for their representation has hindered the publication of explicit phylogenetic networks in the specialized literature and their incorporation in specialized databases. Two different proposals to represent phylogenetic networks exist: as a single Newick string (where each hybrid node is splitted once for each parent) or as a set of Newick strings (one for each hybrid node plus another one for the phylogenetic network).  相似文献   

8.
To test the validity of intron–exon structure as a phylogenetic marker, the intron–exon structure of EF-1α genes was investigated for starfish, acornworms, ascidians, larvaceans, and amphioxus and compared with that of vertebrates. Of the 11 distinct intron insertion sites found within the coding regions of the deuterostome EF-1α genes, 7 are shared by several taxa, while the remainder are unique to certain taxa. Examination of the shared introns of the deuterostome EF-1α gene revealed that independent intron loss or intron insertion must have occurred in separate lineages of the deuterostome taxa. Maximum parsimony analysis of the intron–exon data matrix recovered five parsimonious trees (consistency index = 0.867). From this result, we concluded that the intron–exon structure of deuterostome EF-1α has evolved more dynamically than previously thought, rendering it unsuitable as a phylogenetic marker. We also reconstructed an evolutionary history of intron insertion–deletion events on the deuterostome phylogeny, based on several molecular phylogenetic studies. These analyses revealed that the deuterostome EF-1α gene has lost individual introns more frequently than all introns simultaneously.  相似文献   

9.
SUMMARY: Pairwise comparisons of disagreement in phylogenetic datasets offer a powerful tool for isolating historical incongruence for closer analysis. Statistically significant phylogenetic character incongruence may reflect important differences in evolutionary history, such as horizontal gene transfer. Such testing can also be used to specify possible combinations of datasets for further phylogenetic analysis. The process of comparing multiple datasets can be very time consuming, and it is sometimes unclear how to combine data partitions given the observed patterns of incongruence. Here we present an application that automates the process of making pairwise comparisons between large numbers of phylogenetic datasets using the Incongruence Length Difference (ILD) test. The application also implements strategies for data combination based on the patterns of incongruence observed in pairwise comparisons.  相似文献   

10.
The proteins encoded by the Herpesviridae β-gene play a critical role in the replication stage of the virus. In this paper, phylogenetic analyses provided evidence that some β-gene products, such as UL2 and UL23 from HSV1, have their homologous genes in its family, and also exist in prokaryotic organisms, indicating that these viruses appear to have been assembled over evolutionary time by numerous independent events of horizontal gene transfer. Fundation item: National Natural Science Funds (30570081)  相似文献   

11.
Kordis D  Gubensek F 《Genetica》1999,107(1-3):121-128
Since their discovery in family Bovidae (bovids), Bov-B LINEs, believed to be order-specific SINEs, have been found in all ruminants and recently also in Viperidae snakes. The distribution and the evolutionary relationships of Bov-B LINEs provide an indication of their origin and evolutionary dynamics in different species. The evolutionary origin of Bov-B LINE elements has been shown unequivocally to be in Squamata (squamates). The horizontal transfer of Bov-B LINE elements in vertebrates has been confirmed by their discontinuous phylogenetic distribution in Squamata (Serpentes and two lizard infra-orders) as well as in Ruminantia, by the high level of nucleotide identity, and by their phylogenetic relationships. The direction of horizontal transfer from Squamata to the ancestor of Ruminantia is evident from the genetic distances and discontinuous phylogenetic distribution of Bov-B LINE elements. The ancestral snake lineage (Boidae) has been recognized as a possible donor of Bov-B LINE elements to Ruminantia. The timing of horizontal transfer has been estimated from the distribution of Bov-B LINE elements in Ruminantia and the fossil data of Ruminantia to be 40–50mya. The phylogenetic relationships of Bov-B LINE elements from the various Squamata species agrees with that of the species phylogeny, suggesting that Bov-B LINE elements have been stably maintained by vertical transmission since the origin of Squamata in the Mesozoic era. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Horizontal gene transfer (HGT) is thought to have been involved in both prokaryotic and eukaryotic evolution. However, the extent to which it shapes eukaryotic genomes is still questionable. The ability to detect and study horizontal gene transfer events is of significant importance to our understanding of its effect on the evolution of eukaryotic genes and genomes. We performed phylogenetic analysis of a published anti-bacterial protein AP1 from potato (Solanum tuberosum). One domain encodes a phosphoesterase with high similarity to an acid phosphatase of Ralstonia solanacearum and closely related Betaproteobacteria. The second domain encodes an UspA-like domain similar to those present in plants. Our phylogenetic analyses suggest that both domains evolved along different evolutionary pathways until they merged into a single gene. We propose that the phosphoesterase domain was acquired by HGT. Our results support claims in favor of HGT detection at the protein domain level. The case of anti-bacterial protein AP1 in potato highlights the significance of gene fusion/protein domain fusion as an important feature of horizontal gene transfer which may contribute substantially to the adaptive abilities of eukaryotic organisms.  相似文献   

13.
Over 200 described endemic species make up the adaptive radiation of cichlids in Lake Tanga-nyika. This species assemblage has been viewed as both an evolutionary reservoir of old cichlid lineages and an evolutionary hotspot from which the modern cichlid lineages arose, seeding the adaptive radiations in Lakes Victoria and Malawi. Here we report on a phylogenetic analysis of Lake Tanganyika cichlids combining the previously determined sequences of the mitochondrial ND2 gene (1047 bp) with newly derived sequences of the nuclear RAG1 gene (∼700 bp of intron 2 and ∼1100 bp of exon 3). The nuclear data—in agreement with mitochondrial DNA—suggest that Lake Tanganyika harbors several ancient lineages that did not undergo rampant speciation (e.g., Bathybatini, Trematocarini). We find strong support for the monophyly of the most species-rich Tanganyikan group, the Lamprologini, and we propose a new taxonomic group that we term the C-lineage. The Haplochromini and Tropheini both have an 11-bp deletion in the intron of RAG1, strongly supporting the monophyly of this clade and its derived position. Mapping the phylogenetically informative positions revealed that, for certain branches, there are six times fewer apomorphies in RAG1. However, the consistency index of these positions is higher compared to the mitochondrial ND2 gene. Nuclear data therefore provide, on a per–base pair basis, less but more reliable phylogenetic information. Even if in our case RAG1 has not provided as much phylogenetic information as we expected, we suggest that this marker might be useful in the resolution of the phylogeny of older groups. Reviewing Editor: Dr. Rafael Zardoya  相似文献   

14.
Mank JE  Avise JC 《Genetica》2006,127(1-3):321-327
The genomes of ray-finned fishes (Actinopterygii) are well known for their evolutionary dynamism as reflected by drastic alterations in DNA content often via regional and whole-genome duplications, differential patterns of gene silencing or loss, shifts in the insertion-to-deletion ratios of genomic segments, and major re-patternings of chromosomes via non-homologous recombination. In sharp contrast, chromosome numbers in somatic karyotypes have been highly conserved over vast evolutionary timescales – a histogram of available counts is strongly leptokurtic with more than 50% of surveyed species displaying either 48 or 50 chromosomes. Here we employ comparative phylogenetic analyses to examine the evolutionary history of alterations in fish chromosome numbers. The most parsimonious ancestral state for major actinopterygiian clades is 48 chromosomes. When interpreted in a phylogenetic context, chromosome numbers evidence many recent instances of polyploidization in various lineages but there is no clear indication of a singular polyploidization event that has been hypothesized to have immediately preceded the teleost radiation. After factoring out evident polyploidizations, a correlation between chromosome numbers and genome sizes across the Actinopterygii is marginally statistically significant (p = 0.012) but exceedingly weak (R 2 = 0.0096). Overall, our phylogenetic analysis indicates a mosaic evolutionary pattern in which the forces that govern labile features of fish genomes must operate largely independently of those that operate to conserve chromosome numbers.  相似文献   

15.
Phylogenomics is aimed at studying functional and evolutionary aspects of genome biology using phylogenetic analysis of whole genomes. Current approaches to genome phylogenies are commonly founded in terms of phylogenetic trees. However, several evolutionary processes are non tree-like in nature, including recombination and lateral gene transfer (LGT). Phylogenomic networks are a special type of phylogenetic network reconstructed from fully sequenced genomes. The network model, comprising genomes connected by pairwise evolutionary relations, enables the reconstruction of both vertical and LGT events. Modeling genome evolution in the form of a network enables the use of an extensive toolbox developed for network research. The structural properties of phylogenomic networks open up fundamentally new insights into genome evolution.  相似文献   

16.
Gur'ev VP  Blinov AG 《Genetika》2002,38(3):310-315
In eight Holarctic populations of two typical chironomid sibling species of the plumosus group, Chrionomus entis and Chironomus plumosus, nucleotides sequences of mitochondrial (cytb) and nuclear (gb2b) gene regions were examined. The phylogenetic trees reflecting the evolutionary histories of the nuclear and mitochondrial markers exhibited significant differences. On the tree based on the nuclear gene sequences the populations clustered according to their species affiliation, whereas on the tree based on the mitochondrial gene sequences the populations were grouped according to their geographic position. This discrepancy is probably explained by mitochondrial gene flow between sympatric species with incomplete reproductive isolation (sibling species). Based on our results together with the earlier data on nuclear and mitochondrial gene sequences of some other species from the phylogenetic group plumosus, a scheme of phylogenetic relationships within this group is proposed. This scheme is in many ways different from the traditional view on the evolutionary relationships among species of the plumosus group.  相似文献   

17.
The reconstruction of bacterial evolutionary relationships has proven to be a daunting task because variable mutation rates and horizontal gene transfer (HGT) among species can cause grave incongruities between phylogenetic trees based on single genes. Recently, a highly robust phylogenetic tree was constructed for 13 gamma-proteobacteria using the combined alignments of 205 conserved orthologous proteins.1 Only two proteins had incongruent tree topologies, which were attributed to HGT between Pseudomonas species and Vibrio cholerae or enterics. While the evolutionary relationships among these species appears to be resolved, further analysis suggests that HGT events with other bacterial partners likely occurred; this alters the implicit assumption of gamma-proteobacteria monophyly. Thus, any thorough reconstruction of bacterial evolution must not only choose a suitable set of molecular markers but also strive to reduce potential bias in the selection of species.  相似文献   

18.
In eight Holarctic populations of two typical chironomid sibling species of the plumosus group, Chironomus entisandChironomus plumosus, nucleotide sequences of mitochondrial (cytb) and nuclear (gb2b) gene regions were examined. The phylogenetic trees reflecting the evolutionary histories of the nuclear and mitochondrial markers exhibited significant differences. On the tree based on the nuclear gene sequences the populations clustered according to their species affiliation, whereas on the tree based on the mitochondrial gene sequences the populations were grouped according to their geographic position. This discrepancy is probably explained by mitochondrial gene flow between sympatric species with incomplete reproductive isolation (sibling species). Based on our results together with the earlier data on nuclear and mitochondrial gene sequences of some other species from the phylogenetic group plumosus, a scheme of phylogenetic relationships within this group is proposed. This scheme is in many ways different from the traditional view on the evolutionary relationships among species of the plumosus group.  相似文献   

19.
Aminoacyl-tRNA synthetases catalyze a fundamental reaction for the flow of genetic information from RNA to protein. Their presence in all organisms known today highlights their important role in the early evolution of life. We investigated the evolutionary history of aminoacyl-tRNA synthetases on the basis of sequence data from more than 200 Archaea, Bacteria, and Eukaryota. Phylogenetic profiles are in agreement with previous observations that many genes for aminoacyl-tRNA synthetases were transferred horizontally between species from all domains of life. We extended these findings by a detailed analysis of the history of leucyl-tRNA synthetases. Thereby, we identified a previously undetected case of horizontal gene transfer from Bacteria to Archaea based on phylogenetic profiles, trees, and networks. This means that, finally, the last subfamily of aminoacyl-tRNA synthetases has lost its exceptional position as the sole subfamily that is devoid of horizontal gene transfer. Furthermore, the leucyl-tRNA synthetase phylogenetic tree suggests a dichotomy of the archaeal/eukaryotic-cytosolic and bacterial/eukaryotic-mitochondrial proteins. We argue that the traditional division of life into Prokaryota (non-chimeric) and Eukaryota (chimeric) is favorable compared to Woese’s trichotomy into Archaea/Bacteria/Eukaryota. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Yves Van de Peer]  相似文献   

20.
The ability to fix nitrogen is widely, but sporadically distributed among the Bacteria and Archaea suggesting either a vertically inherited, ancient function with widespread loss across genera or an adaptive feature transferred laterally between co-inhabitants of nitrogen-poor environments. As previous phylogenetic studies of nifH and nifD have not completely resolved the evolutionary history of nitrogenase, sixty nifD, nifK, and combined nifDK genes were analyzed using Bayesian, maximum likelihood, and parsimony algorithms to determine whether the individual and combined datasets could provide additional information. The results show congruence between the 16S and nifDK phylogenies at the phyla level and generally support vertical descent with loss. However, statistically significant differences between tree topographies suggest a complex evolutionary history with the underlying pattern of vertical descent obscured by recurring lateral transfer events and different patterns of evolution between the genes. Results support inheritance from the Last Common ancestor or an ancient lateral transfer of the nif genes between Bacteria and Archaea, ongoing gene transfer between cohabitants of similar biogeographic regions, acquisition of nitrogen-fixing capability via symbiosis islands, possible xenologous displacement of one gene in the operon, and possible retention of ancestral genes in heterocystous cyanobacteria. Analyses support the monophyly of the Cyanobacteria, αβγ-Proteobacteria, and Actinobacteria (Frankia) and provide strong support for the placement of Frankia nif genes at the base of combined the Cyanobacteria/Proteobacteria clades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号