首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
The deletion spectrum and distribution of deletion breakpoints (DBs) in 36 patients with Duchenne muscular dystrophy (DMD) from 33 families and in three patients with Becker muscular dystrophy (BMD) from one family from Bashkortostan were studied by amplifying 20 exons of the dystrophin gene by multiplex polymerase chain reaction (mPCR). Eight out of 34 unrelated DMD (BMD) patients (23.2%) were shown to carry a deletion varying in size from one to seven exons. Most DBs (15 out of 16, 93.7%) were in the distal region of the gene, commonly between exons 44-45, 45-47, and 50-52. Thus, high-polymorphic intergenic markers located in introns 44 (STR 44), 45 (STR 45), 49 (STR 49), and 50 (STR 50) can be used for indirect or direct carrier detection among women closely related to DMD patients that carry a deletion with DB located between exons 44-45, 45-47, and 50-52. Prenatal diagnosis of DMD is also possible in these families.  相似文献   

2.
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive genetic disorders resulting from mutations in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5' and central region of the gene. The remaining DMD/BMD cases show no deletions, so they cannot be easily identified by current strategies. In these DMD/BMD families, a linkage analysis that involves DNA markers of the flanking and intragenic dystrophin gene are necessary for carrier and prenatal diagnosis. We analyzed eighteen deletion-prone exons of the gene by a polymerase chain reaction (PCR) in order to characterize the molecular defects of the dystrophin gene in Korean DMD/BMD families. We also performed a linkage analysis to assess the usefulness and application of six short tandem repeat markers for molecular diagnosis in the families. We observed a deletion that eliminated the exon 50. Also, a linkage analysis in the families with six short tandem repeat (STR) markers showed heterozygosity at most of the STR markers. The haplotype analysis was useful for detecting the carrier status. This study will be helpful for a molecular diagnosis of DMD/BMD families in the Korean population.  相似文献   

3.
X-linked deafness is a rare cause of hereditary hearing impairment. We have identified a family with X-linked dominant sensorineural hearing impairment, characterized by incomplete penetrance and variable expressivity in carrier females, that is linked to the Xp21.2, which contains the Duchenne muscular dystrophy (DMD) locus. The auditory impairment in affected males was congenital, bilateral, profound, sensorineural, affecting all frequencies, and without evidence of radiographic abnormality of the temporal bone. Adult carrier females manifested bilateral, mild-to-moderate high-frequency sensorineural hearing impairment of delayed onset during adulthood. Eighteen commercially available, polymorphic markers from the X chromosome, generating a 10-15-cM map, were initially used for identification of a candidate region. DXS997, located within the DMD gene, generated a two-point LOD score of 2.91 at theta = 0, with every carrier mother heterozygous at this locus. Recombination events at DXS992 (located within the DMD locus, 3' to exon 50 of the dystrophin gene) and at DXS1068 (5' to the brain promoter of the dystrophin gene) were observed. No recombination events were noted with the following markers within the DMD locus: 5'DYS II, intron 44, DXS997, and intron 50. There was no clinical evidence of Duchenne or Becker muscular dystrophy in any family member. It is likely that this family represents a new locus on the X chromosome, which when mutated results in nonsyndromic sensorineural hearing loss and is distinct from the heterogeneous group of X-linked hearing losses that have been previously described.  相似文献   

4.
We have studied 34 Becker and 160 Duchenne muscular dystrophy (DMD) patients with the dystrophin cDNA, using conventional blots and FIGE analysis. One hundred twenty-eight mutations (65%) were found, 115 deletions and 13 duplications, of which 106 deletions and 11 duplications could be precisely mapped in relation to both the mRNA and the major and minor mutation hot spots. Junction fragments, ideal markers for carrier detection, were found in 23 (17%) of the 128 cases. We identified eight new cDNA RFLPs within the DMD gene. With the use of cDNA probes we have completed the long-range map of the DMD gene, by the identification of a 680-kb SfiI fragment containing the gene's 3' end. The size of the DMD gene is now determined to be about 2.3 million basepairs. The combination of cDNA hybridizations with long-range analysis of deletion and duplication patients yields a global picture of the exon spacing within the dystrophin gene. The gene shows a large variability of intron size, ranging from only a few kilobases to 160-180 kb for the P20 intron.  相似文献   

5.
Summary Prenatal diagnosis and carrier detection for Duchenne muscular dystrophy (DMD) usually can be performed using DNA analysis. When recombination occurs within the DMD gene, or DNA analysis is uninformative, or in pedigrees where it is unclear whether or not the consultand is a carrier, direct examination of muscle by dystrophin analysis may provide the only means of prenatal diagnosis. We present three cases representing each of these molecular genetic diagnostic dilemmas. In each instance, we used sonographically guided fetal muscle biopsy for dystrophin protein analysis to resolve the dilemma. In the first and third cases, the presence of normal dystrophin was shown by immunofluorescence and this was followed by delivery of an unaffected male fetus. In the second case, dystrophin was not found in fetal muscle tissue implying that this fetus was affected. The absence of dystrophin and affected status was confirmed in skeletal and cardiac muscle obtained after pregnancy termination.  相似文献   

6.
Summary A basic problem in genetic counseling of families with Duchenne/Becker muscular dystrophy (DMD/BMD) concerns the carrier status of female relatives of an affected male. In about 60% of these patients, deletions of one or more exons of the dystrophin gene can be identified. These deletions preferentially include exon 45, which can be detected by multiplex polymerase chain reaction (PCR) and Southern blot analysis of genomic cosmid clones that map to this critical region. As a new approach for definitive carrier detection, we have performed chromosomal in situ suppression (CISS) hybridization with these cosmid clones in female relatives of four unrelated patients. In normal females, most metaphases showed signals on both×chromosomes, whereas only one×chromosome was labeled in carriers. Our results demonstrate that CISS hybridization can define the carrier status in female relatives of DMD patients exhibiting a deletion in the dystrophin gene.  相似文献   

7.
8.
Li SY  Sun XF  Li Q  Zhang HM  Wang XM 《遗传》2011,33(3):251-254
假性肥大型进行性肌营养不良症(Duchenne’s muscular dystrophy,DMD)是源于横纹肌的一种X-连锁隐性致死性遗传病,由编码抗肌营养不良蛋白(dystrophin)基因突变所致。为了探讨中国人群中DMD患者的dystrophin基因突变类型和分布特点及其与临床症状的相关性,文章采用Multiplex Ligation-Dependent Probe Amplification(MLPA)方法对720例DMD患者及其母亲和20例正常成年男性进行dystrophin基因分析。结果显示,检出率为64.9%(467/720),54.3%(391/720)的患者为基因缺失;10.6%(76/720)的患者为基因重复。累及Exon45-54缺失突变型占全部缺失型患者的71.9%(281/391);重复突变型累及Exon1-40占全部重复型患者82.9%(63/76);检出的患者中,DMD型和中间型营养不良症(Intermediate muscular dystrophy,IMD)型占90.6%(423/467),Becker型营养不良症(Becker muscular dystrophy,BMD)型占9.4%(44/467)。表明假肥大型肌营养不良症以dystrophin基因缺失突变为主,突变发生在整个基因中非均匀分布,存在突变热区,在缺失和重复的位置和片段长度与肌病的临床症状严重程度之间并不存在简单的相关关系。  相似文献   

9.
Recent studies suggest that a non-isotopic in situ hybridisation (NISH) approach can be successfully employed to investigate the carrier status of female relatives in families of selected patients with Duchenne muscular dystrophy (DMD) or Hunter syndrome, whose diseases are due to a specific X chromosome deletion. Whilst the majority of metaphase spreads from normal females show specific hybridisation signals on both X chromosomes when tested with either dystrophin or Hunter gene-derived probes, only one X chromosome in each metaphase spread will show the relevant hybridisation complex in female carriers of deletions involving the dystrophin or Hunter gene. Thus, the NISH method can be a valuable diagnostic tool for the detection of the carrier status of female relatives of patients with X chromosome deletions.  相似文献   

10.
To compare the frequency and distribution of rearrangements in the dystrophin gene in Duchenne muscular dystrophy (DMD) between Japanese DMD patients and those in North America and Europe, Southern blot analyses of the dystrophin gene were carried out in 88 probands classified as DMD. Gene rearrangements were found in 61 (69%) subjects, and they were composed of partial gene deletions in 53 (60%) probands and partial duplications in 7 (8%) probands. A total deletion of the gene was found in 1 (1%) patient. Among 53 patients with deletions, 34 (64%) had breakpoints between introns 44 and 52 and 7 (13%) had breakpoints between introns 2 and 11. Both the frequency and the distribution of gene rearrangements found in this study were similar to those reported in North America and Europe. These data suggest that there are no ethnic or racial differences in the frequency and distribution of rearrangements thought to be caused by similar mechanisms in the dystrophin gene in all human racial groupings.  相似文献   

11.
Mutations in the dystrophin gene result in both Duchenne and Becher muscular dystrophies (DMD and BMD). Approximately 65% of all mutations causing DMD are deletions (60%) or duplications (5%) of large segments of this gene, spanning one exon or more. Due to the large size of the dystrophin gene (79 exons), finding point mutations has been prohibitively expensive and laborious. Recent studies confirm the utility of pre-screening methods, as denaturing high-performance liquid chromatography (DHPLC) analysis in the identification of point mutations in the dystrophin gene, with an increment of mutation detection rate from 65% to more than 92%. Here we suggest an alternative and convenient method of DHPLC analysis in order to find mutations in a more rapid and less expensive way by introducing the analysis of 16 couples of dystrophin amplicons, in biplex exons DHPLC runs. Using this new protocol of biplex exons DHPLC screening, new mutations were identified in four male patients affected by DMD who had tested negative for large DNA rearrangements.  相似文献   

12.
运用聚合酶链式反应(polymerasechainreaction,PCR)技术对3个Duchenne型肌营养不良症(DMD)家系中的患者进行dystrophin基因内9个外显子缺失检测,在2个家系中检测到外显子45、48、51缺失,同时运用PCR技术扩增位于dystrophin基因内内含子短串联重复序列,对非缺失型DMD家系进行了产前诊断,胎儿为正常女性.dystrophin基因外显子缺失检测方法快速、敏感、准确,可在临床推广中应用;短串联重复序列(STR)多态性分析方法可用于DMD家系的产前基因诊断和携带者检出.  相似文献   

13.
Summary We have analyzed patient DNA samples in 77 unrelated Duchenne (DMD) and Becker (BMD) muscular dystrophy families, 73 of which were of French Canadian origin. We show that the frequency (68%) and distribution of deletions within the dystrophin gene was neither random nor unique in this population. We localized 33% of the deletions to the proximal portion of the dystrophin gene while 63% involved the exons spanning introns 43 through 55 with breakpoint clusters occurring within introns 44 and 50. Whether the dystrophin open reading frame (ORF) is maintained constrains the distribution of DMD/BMD deletions such that BMD deletions tend to be strikingly homogeneous. Finally, the conservation of the dystrophin ORF and the severity of the clinical phenotype were concordant in 95% of the DMD/BMD deletions documented by this work.  相似文献   

14.
15.
Clonal myogenic cell cultures were established from a potential heterozygote for a mutant Duchenne muscular dystrophy (DMD) gene who was also heterozygous for isozymes of the X-linked enzyme glucose-6-phosphate dehydrogenase. Previous tissue culture studies of this muscle donor demonstrated equal proliferative capacity of myoblasts that had lyonized either the paternal or maternal X-chromosome, indicating that mutation of the DMD gene does not affect growth of myoblasts. If this muscle donor were a gonadal mosaic, this conclusion would be incorrect. In the present study, only those myogenic colonies expressing the glucose-6-phosphate dehydrogenase-A isozyme were found to express dystrophin, indicating that this woman was indeed a heterozygote for DMD. By documenting dystrophin deficiency in a specific population of myogenic cells from this woman, we verify our previous conclusion regarding the normal proliferative capacity of DMD myoblasts. Somatic cell testing of dystrophin expression may offer an alternative to established genetic carrier tests for those women in whom deletions of the DMD are not detectable, whose pedigree structure does not permit linkage analysis, or in whom standard phenotypic analyses are ambiguous.  相似文献   

16.
In this report we describe the use of dystrophin analysis both in the diagnosis of Duchenne muscular dystrophy (DMD) in an aborted fetus and in genetic counseling. Our consultand's initial carrier risk, as based on family history and creatine kinase determinations, was calculated as 0.6%. DNA analysis of her family (and fetus) modified this risk to 8.5%. Skeletal muscle of the 23-wk male abortus was found to be histologically indistinguishable from that of age-matched controls. However, immunoblot testing for dystrophin indicated that the fetus had indeed inherited dystrophin deficiency. The carrier risk of the consultand was thus elevated to 100%. Dystrophin assays should be employed whenever the diagnosis of fetal DMD is equivocal (e.g., cases in which a gene deletion cannot be identified). Assay results are crucial for genetic counseling for subsequent pregnancies and for studies of the early pathogenesis of muscular dystrophy.  相似文献   

17.
肖楠  苏玉虹 《生命科学》2007,19(4):438-445
杜氏肌营养不良症(Duchenne muscular dystrophy,DMD)属于X连锁隐性遗传病.DMD基因是人类最大基因,突变机制复杂.随着分子生物学的研究进展,对DMD的基因和其编码的抗肌萎缩蛋白(dystrophin)及抗肌萎缩蛋白相关蛋白(utrophin)的认识不断深入.本文就DMD的病理学特点,Dys基因结构、表达、功能,DMD突变及其相关检测技术,DMD实验动物模型及相关治疗的研究进展进行综述.  相似文献   

18.
We have developed a fast and accurate PCR-based linkage and carrier detection protocol for families of Duchenne muscular dystrophy (DMD)/Becker muscular dystrophy (BMD) patients with or without detectable deletions of the dystrophin gene, using fluorescent PCR products analyzed on an automated sequencer. When a deletion is found in the affected male DMD/BMD patient by standard multiplex PCR, fluorescently labeled primers specific for the deleted and nondeleted exon(s) are used to amplify the DNA of at-risk female relatives by using multiplex PCR at low cycle number (20 cycles). The products are then quantitatively analyzed on an automatic sequencer to determine whether they are heterozygous for the deletion and thus are carriers. As a confirmation of the deletion data, and in cases in which a deletion is not found in the proband, fluorescent multiplex PCR linkage is done by using four previously described polymorphic dinucleotide sequences. The four (CA)n repeats are located throughout the dystrophin gene, making the analysis highly informative and accurate. We present the successful application of this protocol in families who proved refractory to more traditional analyses.  相似文献   

19.
Duchenne muscular dystrophy (DMD) is a severe, progressive, X-linked muscle-wasting disorder with an incidence of approximately 1/3,500 male births. Females are also affected, in rare instances. The manifestation of mild to severe symptoms in female carriers of dystrophin mutations is often the result of the preferential inactivation of the X chromosome carrying the normal dystrophin gene. The severity of the symptoms is dependent on the proportion of cells that have inactivated the normal X chromosome. A skewed pattern of X inactivation is also responsible for the clinical manifestation of DMD in females carrying X;autosome translocations, which disrupt the dystrophin gene. DMD may also be observed in females with Turner syndrome (45,X), if the remaining X chromosome carries a DMD mutation. We report here the case of a karyotypically normal female affected with DMD as a result of homozygosity for a deletion of exon 50 of the dystrophin gene. PCR analysis of microsatellite markers spanning the length of the X chromosome demonstrated that homozygosity for the dystrophin gene mutation was caused by maternal isodisomy for the entire X chromosome. This finding demonstrates that uniparental isodisomy of the X chromosome is an additional mechanism for the expression of X-linked recessive disorders. The proband's clinical presentation is consistent with the absence of imprinted genes (i.e., genes that are selectively expressed based on the parent of origin) on the X chromosome.  相似文献   

20.
One of female MZ twins presented with muscular dystrophy. Physical examination, creatine phosphokinase levels, and muscle biopsy were consistent with Duchenne muscular dystrophy (DMD). However, because of her sex she was diagnosed as having limb-girdle muscular dystrophy. With cDNA probes to the DMD gene, a gene deletion was detected in the twins and their mother. The de novo mutation which arose in the mother was shown by novel junction fragments generated by HindIII, PstI, or TaqI when probed with cDNA8. Additional evidence of a large gene deletion was given by novel SfiI junction fragments detected by probes p20, J-Bir, and J-66 on pulsed-field gel electrophoresis (PFGE). Immunoblot analysis of muscle from the affected twin showed dystrophin of normal size but of reduced amount. Immunofluorescent visualization of dystrophin revealed foci of dystrophin-positive fibers adjacent to foci of dystrophin-negative fibers. These data indicate that the affected twin is a manifesting carrier of an abnormal DMD gene, her myopathy being a direct result of underexpression of dystrophin. Cytogenetic analysis revealed normal karyotypes, eliminating the possibility of a translocation affecting DMD gene function. Both linkage analysis and DNA fingerprint analysis revealed that each twin has two different X chromosomes, eliminating the possibility of uniparental disomy as a mechanism for DMD expression. On the basis of methylation differences of the paternal and maternal X chromosomes in these MZ twins, we propose uneven lyonization (X chromosome inactivation) as the underlying mechanism for disease expression in the affected female.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号