首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
NMDA receptor-dependent ocular dominance plasticity in adult visual cortex   总被引:12,自引:0,他引:12  
The binocular region of mouse visual cortex is strongly dominated by inputs from the contralateral eye. Here we show in adult mice that depriving the dominant contralateral eye of vision leads to a persistent, NMDA receptor-dependent enhancement of the weak ipsilateral-eye inputs. These data provide in vivo evidence for metaplasticity as a mechanism for binocular competition and demonstrate that an ocular dominance shift can occur solely by the mechanisms of response enhancement. They also show that adult mouse visual cortex has a far greater potential for experience-dependent plasticity than previously appreciated. These insights may force a revision in how data on ocular dominance plasticity in mutant mice have been interpreted.  相似文献   

2.
3.
4.
As in other mammals with binocular vision, monocular lid suture in mice induces bidirectional plasticity: rapid weakening of responses evoked through the deprived eye followed by delayed strengthening of responses through the open eye. It has been proposed that these bidirectional changes occur through three distinct processes: first, deprived-eye responses rapidly weaken through homosynaptic long-term depression (LTD); second, as the period of deprivation progresses, the modification threshold determining the boundary between synaptic depression and synaptic potentiation becomes lower, favouring potentiation; and third, facilitated by the decreased modification threshold, open-eye responses are strengthened via homosynaptic long-term potentiation (LTP). Of these processes, deprived-eye depression has received the greatest attention, and although several alternative hypotheses are also supported by current research, evidence suggests that alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor endocytosis through LTD is a key mechanism. The change in modification threshold appears to occur partly through changes in N-methyl-D-aspartate (NMDA) receptor subunit composition, with decreases in the ratio of NR2A to NR2B facilitating potentiation. Although limited research has directly addressed the question of open-eye potentiation, several studies suggest that LTP could account for observed changes in vivo. This review will discuss evidence supporting this three-stage model, along with outstanding issues in the field.  相似文献   

5.
6.
One of the transformation products of tritiated cyclic GMP in frog heart tissue homogenate was identified with cyclic AMP. The purified product met all criteria tested for: solubility in ZnCO3, behavior on various ion-exchangers and sensitivity to cyclic nucleotide phosphodiesterase. Our findings may provide insight into the understanding of heart pacemaker activity.  相似文献   

7.
Ocular dominance plasticity has long served as a successful model for examining how cortical circuits are shaped by experience. In this paradigm, altered retinal activity caused by unilateral eye-lid closure leads to dramatic shifts in the binocular response properties of neurons in the visual cortex. Much of the recent progress in identifying the cellular and molecular mechanisms underlying ocular dominance plasticity has been achieved by using the mouse as a model system. In this species, monocular deprivation initiated in adulthood also causes robust ocular dominance shifts. Research on ocular dominance plasticity in the mouse is starting to provide insight into which factors mediate and influence cortical plasticity in juvenile and adult animals.  相似文献   

8.
9.
10.
Intracellular cyclic adenosine 3', 5'-monophosphate (cAMP) was measured in two laboratory strains of Neisseria gonorrhoeae. Decreasing the glucose content of a defined media from 33 mM to 5.5 mM glucose resulted in an 11-to 25-fold increase of intracellular cAMP.  相似文献   

11.
A specific cGMP receptor protein has been identified and separated from the cAMP receptor protein by chromatography on 8-(6-aminohexyl)-amino-cAMP-Sepharose. Scatchard analysis of cGMP binding indicates a single affinity class of receptor sites with KD = 1.4 × 10?8 M. The specificity of the cGMP receptor site has been defined by using a number of nucleotides as competitors for cGMP binding. The cGMP receptor protein sediments at 7S in glycerol density gradients.  相似文献   

12.
Enzymic assay of adenosine 3',5'-monophosphate   总被引:1,自引:0,他引:1  
  相似文献   

13.
The role of cyclic AMP in the regulation of cartilage macromolecule synthesis in vitro was studied in pelvic cartilage from 10-12 day chick embryos. Incubation of cartilages in medium containing 0.5 mM cyclic AMP resulted in a 30% inhibition of 35SO4-2, [3H]leucine and [3H]uridine incorporation into proteoglycan, total protein and RNA, respectively. Higher concentrations of cyclic AMP had no greater effects. In contrast, butyrylated cyclic AMP derivatives (0.5-5.0 mM) added to the incubation medium stimulated (50-100%) the incorporation of these radiolabeled precursors into cartilage macromolecules. Theophylline, in concentrations (0.1-0.5 mM) which raise intracellular cyclic AMP, also increases the incorporation of radiolabeled precursors into macromolecules. The data indicate that exogenous cyclic AMP and butyrylated cyclic AMP derivatives have paradoxical effects on cartilage macromolecule synthesis. Butyrylated cyclic AMP derivatives, not exogenous cyclic AMP, mimic the effects of intracellular cyclic AMP. Incubation of embryonic chicken cartilage with exogenous cyclic AMP results in the extracellular degradation of the cyclic AMP to adenosine. Adenosine (0.125 mM) inhibits precursor incorporation into cartilage macromolecules. The metabolism of exogenous cyclic AMP generates sufficient adenosine to account for the observed inhibitory effects of exogenous cyclic AMP on cartilage macromolecule synthesis. Butyrylated cyclic AMP derivatives are not degraded during incubation with cartilage. The data indicate that cartilage is a tissue in which the effect of cyclic AMP is to stimulate anabolic processes.  相似文献   

14.
The effect of adenosine on the mouse thymocyte adenylate cyclase-adenosine 3':5'-monophosphate (cyclic AMP) system was examined. Adenosine, like prostaglandin E1, can cause 5-fold or greater increases in thymocyte cyclic AMP content in the presence but not in the absence of certain cyclic phosphodiesterase inhibitors. Two non-methylxanthine inhibitors potentiated the prostaglandin E1 and adenosine responses, while methylxanthines selectively inhibited the adenosine response. Adenosine increased cyclic AMP content significantly within 1 min and was maximal by 10 to 20 min with approx. 2 and 10 muM adenosine being minimal and half-maximal effective doses, respectively. Combinations of prostaglandin E1, isoproterenol and adenosine were near additive and not synergistic. Of the adenosine analogues tested, only 2-chloro- and 2-fluoroadenosine significantly increased cyclic AMP. Thymocytes prelabeled with [14C]adenine exhibited dramatic increases in cyclic [14C]AMP 10 min after addition of adenosine or prostaglandin E1 which corresponded to simultaneously determined increases in total cyclic AMP. Using [14C]adenosine, the percent of total cyclic AMP increase due to adenosine was only 16%. Adenosine was also shown to elicit a 40% increase in particulate thymocyte adenylate cyclase activity. Therefore, the increased content of cyclic AMP seen in mouse thymocytes after incubation with adenosine was due primarily to stimulation of adenylate cyclase and only partially to conversion of adenosine to cyclic AMP. The increased cellular content of cyclic AMP may be, in part, responsible for various immunosuppressive effects of adenosine.  相似文献   

15.
16.
Experience-dependent plasticity is crucial for the precise formation of neuronal connections during development. It is generally thought to depend on Hebbian forms of synaptic plasticity. In addition, neurons possess other, homeostatic means of compensating for changes in sensory input, but their role in cortical plasticity is unclear. We used two-photon calcium imaging to investigate whether homeostatic response regulation contributes to changes of eye-specific responsiveness after monocular deprivation (MD) in mouse visual cortex. Short MD durations decreased deprived-eye responses in neurons with binocular input. Longer MD periods strengthened open-eye responses, and surprisingly, also increased deprived-eye responses in neurons devoid of open-eye input. These bidirectional response adjustments effectively preserved the net visual drive for each neuron. Our finding that deprived-eye responses were either weaker or stronger after MD, depending on the amount of open-eye input a cell received, argues for both Hebbian and homeostatic mechanisms regulating neuronal responsiveness during experience-dependent plasticity.  相似文献   

17.
18.
19.
In vivo administration of glucagon caused an increase in the dissociation of protein kinase subunits which was accompanied by elevated adenosine 3′,5′-monophosphate concentrations in the rat liver. Concomitantly, there was a decrease in non saturated adenosine 3′,5′-monophosphate binding sites. A reduction in protein kinase activity measured in the presence of the cyclic nucleotide was apparent at 5 minutes of glucagon administration while enzyme activity assayed in the absence of adenosine 3′,5′-monophosphate was already increased after one minute. Glucose, given through an intragastric tube, caused no changes in the effect of glucagon on hepatic protein kinase.  相似文献   

20.
The cytochrome P-450 content of primary hepatocyte cultures was maintained at levels close to those found in vivo by using a defined medium containing testosterone, thyroxine, hydrocortisone, estradiol, glucagon, insulin, linoleic acid and oleic acid. Using these cultures, [14C]aflatoxin B1, a potent liver carcinogen, was metabolized primarily to water-soluble metabolites. In agreement with in vivo results, aflatoxin M1 was the only nonpolar metabolite detected. In addition, a significant portion of radioactivity was covalently bound to cell constituents. These results suggest that primary hepatocyte cultures may be a good model of the liver for studying the metabolism and mechanism of action of toxic chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号