首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two electrophysiological manifestations of myocardial infarction (MI)-induced myocyte hypertrophy are prolongation of action potential duration (APD) and reduction of transient outward current (I(to)) density. Because high-intensity sprint training (HIST) ameliorated myocyte hypertrophy and improved myocyte Ca(2+) homeostasis and contractility after MI, the present study evaluated whether 6-8 wk of HIST would shorten the prolonged APD and improve the depressed I(to) in post-MI myocytes. There were no differences in resting membrane potential and action potential amplitude (APA) measured in myocytes isolated from sham-sedentary (Sed), MI-Sed, and MI-HIST groups. Times required for repolarization to 50 and 90% APA were significantly (P < 0.001) prolonged in MI-Sed myocytes. HIST reduced times required for repolarization to 50 and 90% APA to values observed in Sham-Sed myocytes. The fast and slow components of I(to) were significantly (P < 0.0001) reduced in MI-Sed myocytes. HIST significantly (P < 0.001) enhanced the fast and slow components of I(to) in MI myocytes, although not to levels observed in Sham-Sed myocytes. There were no significant differences in steady-state I(to) inactivation and activation parameters among Sham-Sed, MI-Sed, and MI-HIST myocytes. Likewise, recovery from time-dependent inactivation was also similar among the three groups. We suggest that normalization of APD after MI by HIST may be mediated by restoration of I(to) toward normal levels.  相似文献   

2.
To give information about intracellular Ca2+ translocation during and after K-contractures in vertebrate skeletal muscle fibers, we examined recovery of action potentials and twitches after interruption and spontaneous relaxation of K-contractures at low temperature (3 degrees C) that greatly reduced the rate of Ca2+ reuptake by the sarcoplasmic reticulum. On membrane repolarization interrupting K-contractures, the amplitude of both action potentials and twitches recovered quickly, while the falling phase of action potential was markedly slowed at first to prolong its refractory period, so that repetitive stimulation (20 Hz) did not produce a complete tetanus. Meanwhile, on membrane repolarization after spontaneous relaxation of K-contractures, the action potentials were markedly reduced in amplitude and prolonged in duration at first, also resulting in prolonged refractory period. These results are discussed in connection with Ca2+ absorption to the surface and transverse tubule membranes, producing changes in action potential kinetics.  相似文献   

3.
Zhang LP  Wei Y  Song SL  Cheng M  Zhang Y 《生理学报》2011,63(1):48-54
有研究表明白藜芦醇甙(polydatin)具有抗缺血性心律失常作用,但其电生理学机制尚未明了。本研究旨在应用细胞内记录和全细胞膜片钳方法,探讨白藜芦醇甙对大鼠心室乳头状肌动作电位的影响及其离子机制。结果显示:(1)白藜芦醇甙(50和100μmol/L)可剂量依赖性地缩短正常乳头状肌动作电位复极化50%时间(APD50)和90%时间(APD90)(P<0.01)。白藜芦醇甙对正常乳头状肌静息电位(resting potential,RP)、动作电位幅值(amplitude of action potential,APA)、超射值(overshoot,OS)和0期最大上升速度(Vmax)无影响(P>0.05)。(2)对部分去极化的乳头状肌,白藜芦醇甙(50μmol/L)不但缩短APD50和APD90,而且还降低动作电位OS、APA和Vmax(P<0.05)。(3)ATP敏感钾通道阻断剂格列本脲(10μmol/L)可部分阻断白藜芦醇甙(50μmol/L)的电生理效应。(4)一氧化氮合酶抑制剂L-NAME(1 mmol/L)对白藜芦醇甙的上述效应无影响。(5)白藜芦醇甙(25、50、75、100μmol/L)可浓度依...  相似文献   

4.
迷走神经对家兔在体心脏心室肌细胞跨膜电位的影响   总被引:4,自引:0,他引:4  
本研究观察了电刺激迷走神经对家兔在体心脏心室肌细胞跨膜电位的作用及钾通道阻滞剂氯化四乙基铵对这一作用的影响。结果表明,在自然心率条件下,迷走神经刺激可使静息电位(RP)、动作电位振幅(APA)和0相最大上升速率(dv/dt)_(max)增加,动作电位时程(APD)缩短。冠脉注射氯化四乙基铵使心室肌细胞复极过程明显延长,迷走神经刺激不再引起 RP、APA 增大,动作电位时程不再缩短,(dv/dt)_(max)反而减小。这些结果提示,迷走神经刺激对正常心室肌细胞跨膜电位的影响可能是通过外向 K~ 流增加引起的。  相似文献   

5.
Although cardiac Purkinje cells (PCs) are believed to be the source of early afterdepolarizations generating ventricular tachyarrhythmias in long Q-T syndromes (LQTS), the ionic determinants of PC repolarization are incompletely known. To evaluate the role of the slow delayed rectifier current (I(Ks)) in PC repolarization, we studied PCs from canine ventricular false tendons with whole cell patch clamp (37 degrees C). Typical I(Ks) voltage- and time-dependent properties were noted. Isoproterenol enhanced I(Ks) in a concentration-dependent fashion (EC(50) approximately 30 nM), negatively shifted I(Ks) activation voltage dependence, and accelerated I(Ks) activation. Block of I(Ks) with 293B did not alter PC action potential duration (APD) in the absence of isoproterenol; however, in the presence of isoproterenol, 293B significantly prolonged APD. We conclude that, without beta-adrenergic stimulation, I(Ks) contributes little to PC repolarization; however, beta-adrenergic stimulation increases the contribution of I(Ks) by increasing current amplitude, accelerating I(Ks) activation, and shifting activation voltage toward the PC plateau voltage range. I(Ks) may therefore provide an important "braking" function to limit PC APD prolongation in the presence of beta-adrenergic stimulation.  相似文献   

6.
The pacemaker neurons of the heart ganglion are innervated from the CNS through two pairs of acceleratory nerves. The effect of acceleratory nerve stimulation was examined with intracellular electrodes from the pacemaker cells. The major effects on the pacemaker potential were an increase in the rate of rise of the spontaneous depolarization and in the duration of the plateau. The aftereffect of stimulation could last for minutes. No clear excitatory postsynaptic potential (EPSP) was observed, however. On high frequency stimulation, a small depolarizing response (the initial response) was sometimes observed, but the major postsynaptic event was the following slow depolarization, or the enhancement of the pacemaker potential (the late response). With hyperpolarization the initial response did not significantly change its amplitude, but the late response disappeared, showing that the latter has the property of the local response. The membrane conductance did not increase with acceleratory stimulation. The injection of depolarizing current increased the rate of rise of the spontaneous depolarization, but only slightly in comparison with acceleratory stimulation, and did not increase the burst duration. It is concluded that the acceleratory effect is not mediated by the EPSP but is due to a direct action of the transmitter on the pacemaker membrane.  相似文献   

7.
Studies were performed on canine cardiac Purkinje fibers to evaluate the effects of acidosis and bicarbonate (HCO3) on action potential repolarization. Extracellular pH (pHe) was reduced from 7.4 to 6.8 by increasing carbon dioxide (CO2) concentration from 4 to 15% in a HCO3-buffered solution or by NaOH titration in a Hepes-buffered solution. Both types of acidosis produced a slowing of the rate of terminal repolarization (i.e., period of repolarization starting at about -60 mV and ending at the maximum diastolic potential) with an attendant increase in action potential duration of 10--20 ms. This was accompanied by a reduction in the maximum diastolic potential of 2--8 mV. In contrast, if the same pH change was made by keeping CO2 concentration constant and lowering extracellular HCO3 from 23.7 to 6.0 mM, in addition to the slowing of terminal repolarization, the plateau was markedly prolonged resulting in an additional 50- to 80-ms increase in action potential duration. If pHe was held constant at 7.4 and HCO3 reduced from 23.7 mM to 0 (Hepes-buffered solution), the changes in repolarization were nearly identical to those seen in 6.0 mM HCO3 except that terminal repolarization was unchanged. This response was unaltered by doubling the concentration of Hepes. Reducing HCO3 to 12.0 mM produced changes in repolarization of about one-half the magnitude of those in 6.0 mM HCO3. These findings suggest that in Purkinje fibers, HCO3 either acts as a current that slows repolarization or modulates the ionic currents responsible for repolarization.  相似文献   

8.
Satoh H 《Life sciences》2003,72(9):1039-1048
Effects of NS-7 (1 to 100 microM), a novel neuroprotective drug, on the action potentials in guinea pig ventricular muscles were investigated at different stimulation frequencies, different extracellular Ca(2+) concentrations ([Ca](o)) and in the presence of inhibitors for selective delayed rectifier K(+) channels. A conventional microelectrode technique was carried out. NS-7 caused inhibitory actions on the action potential configuration in a concentration-dependent manner. NS-7 at less concentrations than 30 microM did not affect, but at 100 microM decreased the action potential amplitude (APA) and the maximum rate of depolarization (V(max)) by 11.1 +/- 2.3% (n = 14, P < 0.05) and by 24.3 +/- 2.6% (n = 14, P < 0.01), respectively. NS-7 at 100 microM also prolonged the 75 and 90% repolarizations of action potential duration (APD(75) and APD(90)) by 14.5 +/- 2.2% (n = 14, P < 0.05) and 20.2 +/- 2.4% (n = 14, P < 0.01), respectively, but it at any concentrations failed to affect the 50% repolarization of action potential duration (APD(50)). The resting potential was unaffected. These responses were almost reversible after 10-to 20-min washout. The stronger inhibition was caused at higher frequencies of stimulation. NS-7 prolonged the APD at lower [Ca](o) than 3.6 mM. In the presence of 5 microM E-4031 or 30 microM 293B, NS-7 increased further the APD. These results indicate that NS-7 at relatively higher concentrations produced inhibitory actions on the cardiac muscles, and that the APD prolongation and the V(max) inhibition induced by NS-7 are dependent on stimulation frequencies, but are independent of [Ca](o) levels, resulting in exhibition of its cardioprotective action.  相似文献   

9.
在体兔心左室肌缺血中心区与边缘区跨膜电位的比较   总被引:1,自引:0,他引:1  
实验在30只兔身上进行。利用浮置微电极技术,在心脏的缺血中心区、边缘区和非缺血区共记录了630个细胞的动作电位,其中270个细胞在阻断冠脉条件下进行记录,360个细胞在冠脉灌流条件下,造成心肌不同程度缺血后进行记录。同时,用棉线电极记录了各区心外膜电图ST段的变化。 阻断冠脉引起静息电位(RP)减小、动作电位振幅(APA)和零期最大除极速度(dv/dt)明显降低以及复极50%时程(APD_(50))和衰极90%时程(APD_(90))的显著缩短。缺血边缘区上述各指标的变化与ST 段抬高的程度均显著轻于缺血中心区。改变冠脉灌流血量造成心肌不同程度缺血的结果表明,当灌流血量为 50%时,在中心区所记录的静息电位和动作电位均与阻断冠脉后的边缘区相似;而灌流量为 0%时,在同一区所记录的静息电位和动作电位则与阻断冠脉后的中心区相似。另外,0% 灌流时的ST 段抬高程度也显著高于灌流量为50%时的表现。这些结果提示,在兔急性心肌缺血早期,从缺血中心区和边缘区可记录到各具特征的动作电位,似有助于说明在缺血区有边缘区的存在。  相似文献   

10.
Slow inward and outward currents of rat ventricular fibers under anoxia   总被引:1,自引:0,他引:1  
Voltage and current clamp experiments were performed on rat ventricular strips under anoxia. 1. Under the influence of anoxia the membrane depolarized by 5 to 10 mV and the action potential amplitude decreased by 15 mV. The plateau disappeared and the duration of the action potential was shortened. 2. The slow inward current was reduced by 50 to 80% and its reversal potential became more negative by about 31 mV. The conductance of the slow inward channel decreased by 26%. 3. The net outward current was slightly depressed.  相似文献   

11.
The 6 cpm omnipresent slow waves recorded in the circular muscle (CM) layer of canine colon are generated at the submucosal surface of the CM layer. After removal of the submucosal network of interstitial cells of Cajal (ICC), 66% of the CM preparations (25 of 38) were quiescent in Krebs solution. In the presence of carbachol, seven of nine of these spontaneously quiescent CM preparations demonstrated slow wave-like activity with mean frequency, duration and amplitude of 5.9 +/- 0.4 cpm, 2.8 +/- 0.5 s, and 0.8 +/- 0.2 mV, respectively. Similar slow wave-like activities were induced by TEA (seven out of eight quiescent CM preparations) with frequency, duration and amplitude of 6.1 +/- 0.2 cpm, 2.7 +/- 0.5 s, and 1.0 +/- 0.2 mV, respectively, and by BaCl2 (eight of eight quiescent CM preparations) with frequency, duration, and amplitude of 6.3 +/- 0.3 cpm, 1.8 +/- 0.2 s, and 0.5 +/- 0.1 mV, respectively. All the induced activities were abolished in the presence of 1 microM D600. CM preparations with the submucosal ICC network intact (ICC-CM) showed slow wave activity in Krebs solution at a frequency of 6.2 +/- 0.2 cpm, a duration of 3.6 +/- 0.2 s, and an amplitude of 1.0 +/- 0.1 mV (n = 22). When ICC-CM preparations were stimulated by BaCl2, carbachol, or TEA, the slow wave frequency did not change significantly, but the duration increased as well as the amplitude. In the presence of D600, the upstroke of slow waves remained and the frequency was not affected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We examined whether adenosine equally attenuated the stimulatory effects of isoproterenol on arrhythmic activity and twitch shortening of guinea pig isolated ventricular myocytes. Transmembrane voltages and whole cell currents were recorded with patch electrodes, and cell twitch shortening was measured using a video-motion detector. Isoproterenol increased the action potential duration at 50% repolarization (APD50), L-type Ca2+ current [I(Ca(L))], and cell twitch shortening and induced delayed afterdepolarizations (DAD), transient inward current (I(Ti)), and aftercontractions. Adenosine attenuated the arrhythmogenic actions of isoproterenol more than it attenuated the effects of isoproterenol on APD50, I(Ca(L)), or twitch shortening. Adenosine (0.1-100 micromol/l) decreased the amplitude of DADs by 30 +/- 6% to 92 +/- 5% but attenuated isoproterenol-induced prolongation of the APD50 by only 14 +/- 4% to 59 +/- 4% and had no effect on the voltage of action potential plateau. Adenosine (30 micromol/l) inhibited I(Ti) by 91 +/- 4% but decreased isoproterenol-stimulated I(Ca(L)) by only 30 +/- 12%. Isoproterenol-induced aftercontractions were abolished by adenosine (10 micromol/l), whereas the amplitude of twitch shortening was not reduced. The effects of adenosine on twitch shortenings and aftercontractions were mimicked by the A1-adenosine receptor agonist CPA (N6-cyclopentyladenosine) and by ryanodine. In conclusion, adenosine antagonized the proarrhythmic effect of beta-adrenergic stimulation on ventricular myocytes without reducing cell twitch shortening.  相似文献   

13.
Zhou LB  Song LL  Guan Y  Guo SM  Yuan F  Zhang Y 《生理学报》2007,59(6):840-844
本文旨在探讨雌二醇(17β-estradiol)对家兔窦房结自律细胞的电生理学效应及其作用机制。应用经典的细胞内玻璃微电极技术观察不同浓度雌二醇(1,10,100μmol/L)对家兔窦房结自律细胞动作电位的影响。结果显示:(1)雌二醇浓度依赖性地延长窦房结自律细胞动作电位复极化50%时间(APD50)和动作电位复极化90%时间(APD50),降低窦房结自律细胞动作电位0期最大除极速率(Vmax)、动作电位幅值(amplitude of action potential,APA),降低窦房结自律细胞放电频率(rate of pacemaker firing,RPF)、舒张期(4相)自动去极化速率[velocity of diastolic(phase4)depolarization,VDD]:而雌二醇对窦房结自律细胞的最大舒张电位(maximal diastolic potential,MDP)无明显影响。(2)雌激素受体阻断剂他莫昔芬(10μmol/L)不能阻断雌二醇(10μmol/L)对窦房结自律细胞动作电位的抑制效应。(3)一氧化氮合酶抑制剂L—NAME(100μmol/L)可完全阻断雌二醇(10μmol/L)对窦房结自律细胞动作电位的抑制效应。结果提示,雌二醇对家兔窦房结自律细胞的电生理活动具有明显的抑制作用,此作用可能是通过非基因组机制发挥,与一氧化氮作用有关。  相似文献   

14.
Skeletal muscle explants from normal subjects were established from biopsy material on collagen. Cellular outgrowth appeared within 3-4 days, and fusion of myoblasts was observed in 5-10 days. Multinucleated myotubes were impaled under high optical magnification, at 37 degrees C, with conventional glass microelectrodes. The mean resting potential was -44.4 mV +/- 2.4 (n = 399); -33 +/- 2.3 mV at 9 days (n = 10) vs -48 +/- 2.5 mV (n = 15) at 27 days. The average input resistance (Rin) was 9.7 M omega (n = 83). Action potentials could be elicited by electrical stimulation and had a mean amplitude of 55.9 +/- 2.1 mV with a mean maximum rate of rise (Vmax) of 72.1 +/- 7.5 V/s. The mean overshoot was 13.9 +/- 2.3 mV, and the action potential duration determined at 50% of repolarization (APD50) was 8.0 msec (n = 7). The resting membrane potential showed a depolarization of 23 mV/decade for extracellular potassium ion concentration ([K]o) between 4.5-100 mM. Thus, we have established the normal resting potential and maximum rate of rise of the action potential for human myotubes in culture. We have shown that the values for these are less than those previously reported in cultured avian and rodent cells. In addition, we have shown that the response in our system of the resting potential to change in extracellular potassium concentration is blunted compared to studies using isolated muscle, suggesting an increase in ratio of sodium to potassium permeability. Cultured human muscle cells depolarized in the presence of ouabain.  相似文献   

15.
肌苷对缺氧心肌跨膜电位和收缩强度的影响   总被引:2,自引:0,他引:2  
本工作在正常和缺氧情况下,观察肌苷对豚鼠心室乳头肌跨膜电位和收缩强度的影响。结果表明肌苷使正常心肌细胞动作电位时间(APD_(10)、APD_(50)延长。在缺氧心肌,肌苷使细胞静息电位增大,动作电位去极化幅度增高,零期最大去极化速度加快和动作电位时间延长。肌苷增加正常心肌收缩力,使缺氧心肌收缩的衰减显著缓和,亦即使收缩功能改善,且表现剂量-依从性。肌苷对心肌细胞跨膜电位的影响提示它很可能有抗心律失常作用,特别是在缺氧心脏。肌苷对离休乳头肌收缩的影响,证明其对心肌有直接的强心作用。  相似文献   

16.
The role of calcium and potassium conductances in electrogenesis of smooth muscle cells of the bovine basilar artery has been investigated using blocking agents of calcium and potassium channels both in the normal Krebs solution and in hyperpotassium solution under anelectrotonic repolarization of the cell membrane. It is shown that both voltage-operated calcium and potassium conductances participate in generation of gradual action potentials evoked by electrical stimulation. A higher contribution of potassium conductance into the total membrane conductance during depolarization is found to be the main factor interfered with development of full-size action potential.  相似文献   

17.
Blockers of the transient outward current (4-aminopyridine) and the Ca current (Co2+) as well as injection of polarizing current during the plateau were used to assess the role of these current systems as determinants of action potential duration at different pacing rates. Papillary muscles and ventricular trabecula were superfused with oxygenated Krebs solution at 33 degrees C and driven at a basic rate of 1 Hz. The effects of varying the frequency of stimulation between 0.1 and 4 Hz on action potential parameters were determined under control conditions and during exposure to 2 mM 4-aminopyridine, 1-3 mM CoCl2, or a mixture of 4-aminopyridine and CoCl2. The control relationship between action potential duration and pacing rate showed a maximum between 1 and 2 Hz. Under 4-aminopyridine, the plateau height and the action potential duration increased. The rate-dependent shortening of the action potential at frequencies below 1 Hz was reduced or abolished, and enhanced shortening was observed at rates above 1 Hz. Exposure to Co2+ reduced the action potential shortening at rates higher than 1 Hz. Both blockers, 4-aminopyridine and Co2+ were necessary to eliminate the rate-dependent changes of the action potential duration. Our results indicated that both the transient outward current and the inward calcium current determine the plateau height and duration for frequencies less than or equal to 2 Hz, whereas at higher rates, the Ca current plays a dominant role.  相似文献   

18.
1. We measured changes in resting membrane potential (Em) and Na-K pump activity, assayed by ouabain-sensitive 86Rb uptake, in response to carbamylcholine (CCh) and its continued presence in single rat skeletal myotubes in culture. 2. CCh caused immediate depolarization from control Em (-80 to -85 mV) to near 0 followed by repolarization of varying degrees depending on the age of the culture and temperature of the recording medium; repolarization of Em was most apparent by culture age 8-9 days in vitro (DIV), Em reaching values as high as -60 mV by 5-10 min after peak depolarization at 37 degrees C. 3. Input resistance, which decreased during CCh depolarization, increased only slightly during the initial phase of repolarization and then remained essentially unchanged during the major component of membrane repolarization in the presence of CCh. 4. Ouabain, given before CCh, prevented repolarization of Em and, when given after repolarization had begun, reversed it and caused Em to return to about -7 mV. 5. Na-K pump activity was decreased in myotubes in which Em did not repolarize or did so only slightly, and was increased by over 40-50% in myotubes whose Em repolarized by 40-60 mV, even though CCh was still present in the medium. Inhibition of pump activity in non repolarizing myotubes was related to Na influx, inhibition being reversed to stimulation when CCh was administered to myotubes in Na-free medium. 6. Repeated (three or four times) or prolonged (up to 60-min) administration of CCh to myotubes in which repolarization was hardly expressed (age 6-7 DIV) caused increases both in the amount of repolarization and in 86Rb uptake, both being related to the number or duration of CCh exposures. 7. We conclude that repolarization of Em following CCh-induced depolarization of cultured rat skeletal myotubes depends to a large extent on an increase in activity of the electrogenic Na-K pump.  相似文献   

19.
铬对大鼠心电图及心肌细胞的电生理影响   总被引:14,自引:0,他引:14  
应用心电图及细胞内微电极技术观察铬对心肌电生理的影响。大鼠腹腔内注射铬,9周后心电图显示各剂量组QT间期均缩短,细胞内微电极检查显示动作电位时程(APD50、APD90)于2周后随剂量增加而逐渐缩短,0.4mg组显著缩短,9周后各剂量组APD50、APD90均缩短。心率、静息电位(RP)与动作电位(APA)幅度及动作电位最大上升速率(Vmax)无变化。铬影响了心肌复极引起QT间期缩短,而APD50、APD90缩短可能是铬影响了钙内流及钾外流的结果。  相似文献   

20.
The basic electrophysiological manifestations of the ventricular myocardium of twelve 7- to 12-week human embryos were measured with a glass electrode and a programmed stimulation technique. The resting membrane potential value was 79.37 +/- 0.34 mV and the overshoot 32.7 +/- 0.57 mV; the action potential (AP) duration at 1 Hz stimulation frequency was 120.0 +/- 5.7 ms at AP plateau phase levels and 258 +/- 17 ms at the level corresponding to 95% repolarization. The duration of the AP was a function of the stimulation frequency. i.e. it altered in correlation to the stimulation programme fully developed frequency sensitivity). In stimulation with different frequencies the duration of the steady state AP was in an inverse relation to the stimulation frequency, the maximum changes being found in the terminal repolarization zone. An interpolated extrasystole mainly affected the duration of the plateau phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号